首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bootstrapping method of determining confidence in the topology of phylogenetic trees has been applied to electrophoretic protein data for two groups of amphibians: salamanders of two North American genera (Aneides and Plethodon) of the tribe Plethodontini and Holarctic hylid frogs. Some current methods of phylogenetic reconstruction for electrophoretic protein data have been evaluated by comparing the trees obtained from molecular data sets with available morphological data. Molecular data on the phylogenetic relationships of Aneides and Plethodon, data obtained from electrophoretic and immunological studies, indicate that Aneides probably was derived from western Plethodon subsequent to the separation of eastern and western Plethodon. Thus Plethodon very likely is a paraphyletic genus. The extremely low rate of morphological evolution in Plethodon compared with that in Aneides causes difficulty in indicating their evolutionary relationships taxonomically because there are no synapomorphic morphological characters that define either eastern or western Plethodon, whereas there are several for the genus Aneides. Thus molecular data alone probably indicate the evolutionary relationships of the species in these genera. Highton and Larson's (1979) arrangement of species of Plethodon into eight species groups is supported. The topologies of the unweighted pair-group method using arithmetic means (UPGMA) and distance Wagner trees were compared with independent morphological and molecular data on the relationships of the 28 plethodonine species. It was found that UPGMA trees indicate relationships that are more in agreement with other information than are those provided by distance Wagner trees. The use of the bootstrap technique indicates that the topologies of UPGMA trees are better supported statistically than are the topologies of distance Wagner trees. Moreover, different addition criteria produce a variety of distance Wagner trees with different topologies, each with several groupings that are not supported statistically. It is concluded that considerable caution should be used in interpreting the topology of distance Wagner trees. Very similar results were obtained with a second data set on 30 taxa of Holarctic hylid frogs. Trees obtained by the neighbor-joining method are more in agreement with UPGMA phenograms and other data, so this method of phylogenetic reconstruction may be useful to systematists not willing to assume constant rates of evolution.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Phylogenetic relationships among 30 species of the genusPinus were studied using restriction site polymorphism in the large subunit of nuclear rDNA. Of the 58 restriction sites scored, 48 were phylogenetically informative, and the 30 species reduced to ten taxa when species with identical restriction site patterns were combined. These ten taxa corresponded to the currently recognized subsections of the genus, with the sole exception ofP. leiophylla, which was identical in its pattern of restriction sites to all three species included from subsect.Oocarpae despite its being in a different section of subg.Pinus (Pinea instead ofPinus). A measure of the proportion of phylogenetic information contained within the data set (Homoplasy Excess Ratio, or HER) revealed that the character states were significantly non-randomly distributed among the ten taxa (HER = 0.71, p < 0.01). Branchand-bound searches using either Wagner or Dollo parsimony as the optimization criterion were carried out using PAUP in order to estimate phylogenetic relationships among the ten taxa. Three taxa (Picea pungens, Tsuga canadensis, andLarix decidua) were used independently as outgroups for purposes of rooting the trees. Despite the extreme differences in the assumptions underlying the Wagner and Dollo parsimony, the two gave surprisingly similar estimates of phylogeny, with both analyses supporting the monophyly of the two major subgeneraPinus andStrobus and differing in topology only in the placement of subsect.Ponderosae within subg.Pinus. The likelihood for the Wagner tree was only slightly higher than that computed for the Dollo tree.  相似文献   

3.
The aim of this study was to infer from allozyme data the phylogenetic relationships of nine species of actiniid sea anemones, and also use these data to assess the various methods (phenetic and cladistic) available for phylogenetic analysis. Starch gel electrophoresis was used to obtain genetic data from 13 gene loci. The anemone Metridium senile, from the family Metridiidae, was used as an outgroup. For the phenetic analysis a matrix of pairwise unbiased genetic distances was computed and, from this, dendrograms were produced both by the Wagner distance and the UPGMA methods. For the cladistic analyses three different approaches were used: the first was to treat the allele as a binary character; this was investigated using a Wagner parsimony algorithm. Another approach used was to consider the locus as an unordered character, using the alleles as states. Finally, we used the locus as an ordered multistate character, where mutation, fixation and elimination of each allele were treated as evolutionary novelties, and the heterozygotes were used as cues for the construction of transformation series. The trees produced by the phenetic and cladistic methods were highly congruent. This result suggests that allozymes can be used to produce phylogenetic hypotheses at higher taxonomic levels than those at which they are more usually employed. The Solé difference between the various trees was the relative positions of Bunodosoma caissarum and Bunodactis verrucosa in relation to the two species of Urticina. This difference was probably due to a high rate of anagenic change in B. verrucosa, which distorted the UPGMA dendrogram. The genera Actinia and Urticina appeared monophyletic in all of the trees produced. Also, the sea anemones with specialized column structures such as verrucae and vesicles (U.felina, U. eques, B. verrucosa, B. caissarum) formed a monophyletic cluster, a result compatible with the suggestion that these structures may have appeared only once in the evolutionary history of the Actiniidae.  相似文献   

4.
 Phylogenetic relationships of Coffea species were estimated from the sequences of the internal transcribed spacer (ITS 2) region of nuclear ribosomal DNA. The ITS 2 region of 37 accessions belonging to 26 Coffea taxa and to three Psilanthus species was directly sequenced from polymerase chain reaction (PCR)-amplified DNA fragments. The level of variation was high enough to make the ITS 2 a useful tool for phylogenetic reconstruction. However, an unusual level of intraspecific variation was observed leading to some difficulty in interpreting rDNA sequence divergences. Sequences were analysed using Wagner parsimony as well as the neighbour-joining distance method. Coffea taxa were divided into several major groups which present a strong geographical correspondence (i.e. Madagascar, East Africa, Central Africa and West Africa). This organisation is well supported by cytogenetic evidence. On the other hand, the results were in contradiction with the present classification of coffee-tree taxa into two genera, namely Coffea and Psilanthus. Furthermore, additivity of parental rDNA types was not observed in the allotetraploid species C. arabica. Received: 25 July 1996 / Accepted: 18 October 1996  相似文献   

5.
Information from the same restriction analysis of chloroplast DNA of 33 taxa ofRubiaceae was scored in four different ways, two of which were based on fragments, and two on restriction sites, and they were subsequently analysed with Wagner parsimony. The methods resulted in different phylogenetic trees. The inherent differences between the methods relate to the amount of non-homologous characters and dependent characters, but none of the methods will systematically bias the resulting cladograms. The fragment analyses are much less time-consuming, but probably less accurate, than the site analyses. The choice of method is dependent on a trade-off between accuracy and resources (time). One important recommendation is made: all phylogenetic analyses of chloroplast DNA data should be accompanied by a data matrix and contain information on how the matrix was compiled.  相似文献   

6.
Synecological analyses are usually based on typological, phenetic and cladistic methods. The disadvantages of these techniques are shown. The application of the Wagner parsimony method to synecology is considered. All the methods need some prerequisites, viz. definitions of localities and characters (the most simple one being the presence/absence of taxa); the choice of taxonomic level of taxa; their autochthony. The application of Wagner parsimony needs a new terminology. The congruence of any environmental condition, including freshwater monitoring indices, can be tested on parsimonious trees. The Wagner parsimony method not only provides various indices (tree length, CI, HI, RC, RI) which allow the comparison of trees but also minimal trees which are direct tools in synecology.  相似文献   

7.
A restriction-site analysis of chloroplast DNA from 44 species, representing 19 genera and all six subfamilies of the Crassulaceae was conducted using 12 restriction endonucleases. A total of 969 variable sites was detected, 608 of which were phylogenetically informative and used in parsimony analysis. Estimated values of nucleotide sequence divergence were used to construct a distance tree by the neighbor-joining method. Maximum sequence divergence in the family was ~7%. Different tree inference methods yielded only moderately different topologies. The amount of support for the monophyletic groups obtained in the Wagner parsimony analysis was evaluated by bootstrap and decay analysis. There is very strong support for a basal division of the family, which separates the monophyletic subfamily Crassuloideae from all other taxa. Four of the six traditionally recognized subfamilies are indicated to be polyphyletic. These include the Cotyledonoideae, Sempervivoideae, Sedoideae, and Echeverioideae. The Kalanchoideae and the genera Cotyledon and Adromischus exhibit low levels of cpDNA sequence divergence relative to one another, suggesting a relatively recent radiation. The genera Sedum and Rosularia are indicated to be polyphyletic. Sedum comprises sister taxa of most of the other genera of the family.  相似文献   

8.
Petrified specimens of pteridosperm foliage assignable to Reticulopteris muensteri (Eichwald) Gothan and Neuropteris rarinervis Bunbury were found in a Middle Pennsylvanian age coal ball from central Iowa. The presumed close affinity of these two foliage taxa is supported by various anatomical similarities including hydathode-like vein terminations and non-papillate lower epidermises with high stomatal density. Comparison of the foliar anatomy of these neuropterids to that of the xeromorphic taxa Alethopteris sullivanti (Lesquereux) Schimper and A. lesquereuxi Wagner show striking differences which suggest that these neuropterid and alethopterid taxa were adapted to markedly different habitats.  相似文献   

9.
Phylogenetic inference under the pure drift model   总被引:1,自引:1,他引:0  
When pairwise genetic distances are used for phylogenetic reconstruction, it is usually assumed that the genetic distance between two taxa contains information about the time after the two taxa diverged. As a result, upon an appropriate transformation if necessary, the distance usually can be fitted to a linear model such that it is expressed as the sum of lengths of all branches that connect the two taxa in a given phylogeny. This kind of distance is referred to as "additive distance." For a phylogenetic tree exclusively driven by random genetic drift, genetic distances related to coancestry coefficients (theta XY) between any two taxa are more suitable. However, these distances are fundamentally different from the additive distance in that coancestry does not contain any information about the time after two taxa split from a common ancestral population; instead, it reflects the time before the two taxa diverged. In other words, the magnitude of theta XY provides information about how long the two taxa share the same evolutionary pathways. The fundamental difference between the two kinds of distances has led to a different algorithm of evaluating phylogenetic trees when theta XY and related distance measures are used. Here we present the new algorithm using the ordinary- least-squares approach but fitting to a different linear model. This treatment allows genetic variation within a taxon to be included in the model. Monte Carlo simulation for a rooted phylogeny of four taxa has verified the efficacy and consistency of the new method. Application of the method to human population was demonstrated.   相似文献   

10.
The cheilanthoid ferns have long resisted efforts to circumscribe well-defined, phylogenetically natural generic and infrageneric groups, presumably because of homoplastic morphologies associated with their xeric habitats. This cladistic analysis of phylogenetically informative chloroplast DNA restriction site data from 14 enzymes and seven taxa in the cheilanthoid genus Pellaea provides new insights into the phylogenetic relationships of the P. glabella complex. It also assesses the congruence of results based on restriction site data at inter- and intraspecific levels in these sexually and apogamously reproducing ferns with those of earlier morphological and isozyme analyses of the same group. Wagner parsimony yielded a single most parsimonious tree of 187 steps and 11% homoplasy, based on a data matrix of 166 restriction sites of which 66 were phylogenetically informative. Phylogenetic analysis based on user-defined stepmatrix character-state weighting of site gains over losses produced an identical single most parsimonious tree. Dollo parsimony yielded two most parsimonious trees, one of which was topologically identical to the Wagner tree. Specific and infraspecific relationships in the P. glabella complex determined by the completely independent restriction site and isozyme data sets are identical. This lends confidence to the ongoing use of restriction site data in a broader study of Pellaea and other cheilanthoid taxa and to the present conclusions that P. atropurpurea is sister to the P. glabella complex, whereas P. breweri, previously considered the closest relative of this complex, is actually more distantly related to it than are the other taxa in this study.  相似文献   

11.

Background  

Some distance methods are among the most commonly used methods for reconstructing phylogenetic trees from sequence data. The input to a distance method is a distance matrix, containing estimated pairwise distances between all pairs of taxa. Distance methods themselves are often fast, e.g., the famous and popular Neighbor Joining (NJ) algorithm reconstructs a phylogeny of n taxa in time O(n 3). Unfortunately, the fastest practical algorithms known for Computing the distance matrix, from n sequences of length l, takes time proportional to l·n 2. Since the sequence length typically is much larger than the number of taxa, the distance estimation is the bottleneck in phylogeny reconstruction. This bottleneck is especially apparent in reconstruction of large phylogenies or in applications where many trees have to be reconstructed, e.g., bootstrapping and genome wide applications.  相似文献   

12.

Background

Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call this centered allele coding. This study considered effects of different allele coding methods on inference. Both marker-based and equivalent models were considered, and restricted maximum likelihood and Bayesian methods were used in inference.

Results

Theoretical derivations showed that parameter estimates and estimated marker effects in marker-based models are the same irrespective of the allele coding, provided that the model has a fixed general mean. For the equivalent models, the same results hold, even though different allele coding methods lead to different genomic relationship matrices. Calculated genomic breeding values are independent of allele coding when the estimate of the general mean is included into the values. Reliabilities of estimated genomic breeding values calculated using elements of the inverse of the coefficient matrix depend on the allele coding because different allele coding methods imply different models. Finally, allele coding affects the mixing of Markov chain Monte Carlo algorithms, with the centered coding being the best.

Conclusions

Different allele coding methods lead to the same inference in the marker-based and equivalent models when a fixed general mean is included in the model. However, reliabilities of genomic breeding values are affected by the allele coding method used. The centered coding has some numerical advantages when Markov chain Monte Carlo methods are used.  相似文献   

13.
Quantitative fatty acid signature analysis has become an important method of diet estimation in ecology, especially marine ecology. Controlled feeding trials to validate the method and estimate the calibration coefficients necessary to account for differential metabolism of individual fatty acids have been conducted with several species from diverse taxa. However, research into potential refinements of the estimation method has been limited. We compared the performance of the original method of estimating diet composition with that of five variants based on different combinations of distance measures and calibration‐coefficient transformations between prey and predator fatty acid signature spaces. Fatty acid signatures of pseudopredators were constructed using known diet mixtures of two prey data sets previously used to estimate the diets of polar bears Ursus maritimus and gray seals Halichoerus grypus, and their diets were then estimated using all six variants. In addition, previously published diets of Chukchi Sea polar bears were re‐estimated using all six methods. Our findings reveal that the selection of an estimation method can meaningfully influence estimates of diet composition. Among the pseudopredator results, which allowed evaluation of bias and precision, differences in estimator performance were rarely large, and no one estimator was universally preferred, although estimators based on the Aitchison distance measure tended to have modestly superior properties compared to estimators based on the Kullback–Leibler distance measure. However, greater differences were observed among estimated polar bear diets, most likely due to differential estimator sensitivity to assumption violations. Our results, particularly the polar bear example, suggest that additional research into estimator performance and model diagnostics is warranted.  相似文献   

14.
Most meiofaunal species are known to have a broad distribution with no apparent barriers to their dispersion. However, different morphological and/or molecular methods supported patterns of diversity and distribution that may be different among taxa while also conflicting within the same group. We accurately assessed the patterns of geographic distribution in actual genetic species of a marine meiofaunal animal model: Ototyphlonemertes. Specimens were collected from several sites around Europe, Northern and Central America, Southern America, Pacific Islands and Asia. We sequenced regions of two mitochondrial and two nuclear genes. Using single‐gene, a concatenated data set, multilocus approaches and different DNA taxonomy methods, we disentangled the actual diversity and the spatial structures of haplotypes and tested the possible correlation between genetic diversity and geographic distance. The results show (i) the importance of using several genes to uncover both diversity and highlight phylogeographic relationships among species and that (ii) independent genetic evolutionary entities have a narrower distribution than morphological species. Moreover, (iii) a Mantel test supported a positive correlation between genetic and geographical distance. By sampling from the two sides of Isthmus of Panama, we were additionally able to identify lineage divergence times that are concordant with vicariance mechanisms caused by the geological closure of the seaway across the Isthmus. We therefore propose that in addition to distance, other geological and ecological conditions are also barriers to the dispersion of and gene flow in marine meiofaunal organisms.  相似文献   

15.
Cluster analysis by four methods, ordination by principal component analysis (PCA) and simulation of evolutionary trees (Wagner Trees) were performed on morphological data from 43 characters of eight species of the South American genus Bulnesia (Zygophyllaceae). The results of cluster analysis and principal component analysis in general agree and show that there are three pairs of taxa that appear, or obviously are, closely related. These are the pairs B. arborea–B. carrapo, B. foliosa–B. schickendantzii and B. retama–B. chilensis. These methods also indicate that the southern species B. bonariensis occupies an intermediate position between the pair of northern tropical species (B. arborea, B. carrapo) and the remaining southern species. From the beginning it was assumed that these three multifoliolate species with large flowers may be rather primitive. The Prim network indicates that these three species are closely related among themselves. Also in two of the three Wagner Trees they are placed in a group. In all cases B. sarmientoi is shown as the more remote and isolated of all species. It is regarded as a unique, specialized arboreal species showing extreme reduction in number of leaflets and carpels, leaf and flower size, etc. All graphic representations (Fig. 1–3) show the phenetic similarity or the close phylogenetic relationships of the pairs B. foliosa–B. schickendantzii and B. retama–B. chilensis to each other. These four species would represent a rather advanced group. The most xerophytic species B. retama and B. chilensis are regarded as the most advanced taxa and the most specialized histophysiologically. These occupy extreme and distant positions in PCA diagrams and Prim network, and top positions in the Wagner Trees.  相似文献   

16.
Chloroplast DNA restriction site variation was examined for 35 taxa in theVernonieae and four outgroup tribes, using 17 restriction enzymes mapped for ca. 900 restriction sites per species; 139 mutations were found to be phylogenetically informative. Phylogenetic trees were constructed using Wagner and weighted parsimony, and evaluated by bootstrap and decay analyses. Relationships of Old and New World taxa indicate complex geographical relationships; there was no clear geographic separation by hemisphere. The relationships between Old and New World Vernonias found here support prior morphological analyses. The sister group to all New and most Old World taxa was composed of a small group of Old World species including yellow-flowered, trinervate-leaved species previously postulated to be basal in the tribe. The majority of both New and Old World taxa are derived from a lineage beginning with the monotypic genusStokesia, an endemic of the southeastern United States. The genusVernonia was also found to be paraphyletic within both the New and Old World. Available data do not support either the separation ofVernonia or the tribeVernonieae into geographically distinct lineages. The pattern of relationships within theVernonieae for taxa from North America, Asia, Africa, Central and South America is most similar to that of several other groups of both plants and animals with a boreotropical origin, rather than an origin in Gondwanaland. Such a pattern of distribution suggests more ancient vicariant events than are routinely postulated for theAsteraceae.  相似文献   

17.
We investigated the molecular phylogeny of conifers using restriction endonuclease fragment length polymorphism of six polymerase chain reaction-amplified chloroplast genes — frxC, rbcL, psbA, psbD, trnK, and 16S. We detected 227 total site changes among species, representing 23, 26, 38, 48, 67, and 25 site changes in frxC, psbA, psbD, rbcL, trnK and 16S, respectively. The mean nucleotide substitution was 10.75% (SD 0.573) among species in five families. Forty maximally parsimonious trees were obtained using the Wagner parsimony method, and a 50% majority-rule consensus tree was obtained from them. Data analysis produced similar basic patterns when both the Wagner parsimony and the neighbor-joining methods were applied, and the main lineages were clearly separated. Taxaceae and Cephalotaxaceae species were used as the out-groups when applying Wagner parsimony methods. With the Wagner method, the consistency index was 0.510, the retention index was 0.879, and tree length was 435 steps. Our results indicated that Cupressaceae and Taxodiaceae are closely related families and that Sciadopitys verticillata is the basal lineage of Cupressaceae and Taxodiaceae. The neighbor-joining tree is similar to the 50% majority-rule consensus of the 40 Wagner parsimony trees except for the position of Keteleeria daversifolia, the Picea and Cedrus group, and the divergence within Cupressaceae.  相似文献   

18.
We used the four redfish taxa (genus Sebastes) from the North Atlantic to evaluate the potential of multilocus genotype information obtained from microsatellites in assigning individuals at two different levels of group divergence. We first tested the hypothesis that microsatellites can diagnostically discriminate individual redfish from different groups. Second, we compared two different methods to quantify the effect of number of loci and likelihood stringency levels on the power of microsatellites for redfish group membership. The potential of microsatellites to discriminate individuals from different taxa was illustrated by a shared allele distance tree in which four major clusters corresponding to each taxa were defined. Concomitant with this strong discrimination, microsatellites also proved to be powerful in reclassifying specimens to the taxon of origin, using either an empirical or simulated method of estimating assignment success. By testing for the effect of both the number of loci and the level of stringency on the assignment success, we found that 95% of all specimens were still correctly reclassified with only four loci at the most commonly used criterion of log0. In contrast, the results obtained at the population level within taxa highlighted several problems of assignment that may occur at low levels of divergence. Namely, a drastic decrease of success with increasing stringency illustrated the lack of power of our set of loci. Strong discrepancy was observed between results obtained from the empirical and simulated methods. Finally, the highest assignment success was obtained when reducing the number of loci used, an observation previously reported in studies of human populations.  相似文献   

19.
Outlier detection and environmental association analysis are common methods to search for loci or genomic regions exhibiting signals of adaptation to environmental factors. However, a validation of outlier loci and corresponding allele distribution models through functional molecular biology or transplant/common garden experiments is rarely carried out. Here, we employ another method for validation, namely testing outlier loci in specifically designed, independent data sets. Previously, an outlier locus associated with three different habitat types had been detected in Arabis alpina. For the independent validation data set, we sampled 30 populations occurring in these three habitat types across five biogeographic regions of the Swiss Alps. The allele distribution model found in the original study could not be validated in the independent test data set: The outlier locus was no longer indicative of habitat‐mediated selection. We propose several potential causes of this failure of validation, of which unaccounted genetic structure and technical issues in the original data set used to detect the outlier locus were most probable. Thus, our study shows that validating outlier loci and allele distribution models in independent data sets is a helpful tool in ecological genomics which, in the case of positive validation, adds confidence to outlier loci and their association with environmental factors or, in the case of failure of validation, helps to explain inconsistencies.  相似文献   

20.
High genetic diversity is thought to characterize successful invasive species, as the potential to adapt to new environments is enhanced and inbreeding is reduced. The red swamp crayfish, Procambarus clarkii, native to northeastern Mexico and south-central USA was introduced to Nanjing, China from Japan in 1929. Little is known about the genetic diversity and population structure of this species in China. We examined the genetic diversity and population structure of six P. clarkii populations using nine polymorphic microsatellites. Among the six populations, Nanjing population showed the highest allele number, allele richness and gene diversity, which is consistent with records indicating Nanjing may be the first site of introduction. In all six populations, significant heterozygote deficit was observed, suggesting founder effects and non-random mating. Analysis of bottleneck under infinite allele model, stepwise mutation model and two-phased model of mutation revealed evidence of a recent bottleneck in all these populations. Pairwise genetic distance analysis, AMOVA and assignment tests demonstrated high genetic differentiation between populations. Pairwise genetic distance did not fit the pairwise geographic distance, suggesting that human mediated dispersal have played a role in the population expansion and genetic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号