首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Transport of L-carnitine into skeletal muscle was investigated using rat sarcolemmal membrane vesicles. In the presence of an inwardly directed sodium chloride gradient, L-carnitine transport showed a clear overshoot. The uptake of L-carnitine was increased, when vesicles were preloaded with potassium. When sodium was replaced by lithium or cesium, and chloride by nitrate or thiocyanate, transport activities were not different from in the presence of sodium chloride. However, L-carnitine transport was clearly lower in the presence of sulfate or gluconate, suggesting potential-dependent transport. An osmolarity plot revealed a positive slope and a significant intercept, indicating transport of L-carnitine into the vesicle lumen and binding to the vesicle membrane. Displacement experiments revealed that approximately 30% of the L-carnitine associated with the vesicles was bound to the outer and 30% to the inner surface of the vesicle membrane, whereas 40% was unbound inside the vesicle. Saturable transport could be described by Michaelis-Menten kinetics with an apparent Km of 13.1 microM and a Vmax of 2.1 pmol.(mg protein-1).s-1. L-Carnitine transport could be trans-stimulated by preloading the vesicles with L-carnitine but not with the carnitine precursor butyrobetaine, and was cis-inhibited by L-palmitoylcarnitine, L-isovalerylcarnitine, and glycinebetaine. On comparing carnitine transport into rat kidney brush-border membrane vesicles and OCTN2, a sodium-dependent high-affinity human carnitine transporter, cloned recently from human kidney also expressed in muscle, the Km values are similar but driving forces, pattern of inhibition and stereospecificity are different. This suggests the existence of more than one carnitine carrier in skeletal muscle.  相似文献   

3.
The plasma membrane (PM) is a highly heterogenous structure intertwined with the cortical actin cytoskeleton and extracellular matrix. This complex architecture makes it difficult to study the processes taking place at the PM. Model membrane systems that are simple mimics of the PM overcome this bottleneck and allow us to study the biophysical principles underlying the processes at the PM. Among them, cell-derived giant plasma membrane vesicles (GPMVs) are considered the most physiologically relevant system, retaining the compositional complexity of the PM to a large extent. GPMVs have become a key tool in membrane research in the last few years. In this review, I will provide a brief overview of this system, summarize recent applications and discuss the limitations.  相似文献   

4.
Addition of thallous ion (Tl+) inhibited the spontaneous mechanical activity of rat myometrium in K-free Krebs solutions with an I50 value of 30 microM. The corresponding value for I50 for similar inhibition by addition of K+ was 150 microM. Tl+ as well as K+-activated p-nitrophenylphosphatase (PNPPase) of isolated rat myometrium plasma membrane vesicles. Half maximal activation was caused by 0.47 mM Tl+ or 1.6 mM K+. Maximal enzyme activities obtained using Tl+ and K+ were comparable. The Km values for the substance p-nitrophenylphosphatase using Tl+ (1.24 mM) and K+ (1.46 mM) were also similar. Activation by either ion was inhibited by ouabain, Na+, inorganic phosphate, and vanadate (V +5). The results suggest that Tl+ can substitute for K+ for activation of the Na-K pump of rat myometrium plasma membrane.  相似文献   

5.
6.
We have studied the effects of changes in the resting membrane potential (Vm) and T-tubules on caffeine contracture (25 mM) elicited in rat soleus muscle in vitro at 34 degrees C. In high [K]o (30-140 mM, [K]o X [Cl]o constant) caffeine contractures were reduced by about 40-50% and had a faster time course than in normal Krebs ([K]o = 5 mM). Detubulation of the muscles by an osmotic treatment produces a reduction of about 30% in the caffeine contracture tension. Our results with high K solutions suggest a reduced sensitivity of the myofibrils to calcium released by caffeine. The effects of detubulation on caffeine contracture suggest that caffeine may have a direct effect on sarcolemma in addition to its well known action on the sarcoplasmic reticulum (SR). However, a depletion of the calcium content in the SR of depolarized muscle fibres as well as an anatomical damage produced by the osmotic treatment can not be ruled out as an explanation for the reduced caffeine contracture.  相似文献   

7.
8.
Most of the plasma membrane vesicles formed upon homogenization of plant tissue have a right-side-out (cytoplasmic side-in) orientation. Subsequent purification of plasma membrane vesicles using aqueous two-phase partitioning leads to a further enrichment in right-side-out vesicles resulting in preparations with 80–90% of the vesicles in this orientation. Thus, to be able to assay, e.g. the ion-pumping activities of the H+-ATPase and the Ca2+-ATPase, which expose their active sites towards the cytoplasm, the vesicles have to be inverted. This is very efficiently achieved by including 0.05% of the detergent Brij 58 (C16E20) in the assay medium, which produces 100% sealed, inside-out (cytoplasmic side-out) vesicles from preparations of 80–90% right-side-out vesicles. This was shown by assaying ATP-dependent H+ pumping using the ΔpH probe acridine orange and dissipating the H+ gradient with nigericin, and by assaying ATP-dependent Ca2+ transport using 45CA2+ and dissipating the Ca2+ gradient with the ionophore A23187. The presence of intact vesicles was confirmed by electronmicroscopy. The detergent Brij 58 is a polyoxyethylene acyl ether and a survey among some other members of this series revealed that those with a head group of relatively large size (E20–23) showed this 'non-detergent behavior', whereas those with smaller head groups (E8–10) behaved as normal detergents and permeabilized the membranes. Thus, a very convenient system for studies on ion-pumping activities and other vectorial properties of the plasma membrane is obtained by simply including the detergent Brij 58 in the assay medium.  相似文献   

9.
By a mild and highly reproducible fractionation of Torpedo californica electric tissue, we prepared membrane which was 30 times enriched in nicotinic acetylcholine receptor (AChR). This preparation was neither alkali-stripped nor reconstituted and consequently contained nu (43-kDa protein), which is associated with the cytoplasmic aspect of the receptor. We tested this membrane for the presence of sealed vesicles and determined the orientation of these vesicles by combining three methods. Two of these methods were based on the accessibilities, in the presence and absence of detergent, of the extracellular acetylcholine binding site to alpha-bungarotoxin and of the intracellular nu to trypsin. These two methods are specific for AChR-containing membrane. The third method was morphometry of electron micrographs, by which we estimated the proportion of sequestered membrane. These methods taken together indicated that approximately 45% of the AChR-containing membrane was in the form of leaky vesicles or sheets, 33% was sealed right-side-out vesicles, 11% was sealed inside-out vesicles, and 11% was sequestered within multilamellar or multivesicular vesicles. The complexity of this membrane needs to be taken into account in sidedness studies of the AChR.  相似文献   

10.
11.
This study of the postnatal development (from 1 to 60 days) of smooth muscle elements in the rat testicular capsule has demonstrated that while such elements are identifiable by light microscopy at 30 days, myocytes are present at birth as seen by electron microscopy. The differentiation of smooth muscle from birth to 30 days has been described, by which time it is of adult morphology and content. Perhaps significantly, it is at 30 days that the testis achieves a scrotal position, although sexual maturity does not occur until about 60 days. Presumably, at 30 days the testicular capsule of the rat is capable of the spontaneous contractions which are known to occur in the adult and which are assumed to aid the transport of non-motile spermatozoa from the testis to the spididymis. The presence of occasional striated muscle fibers in the rat testicular capsule as reported previously has not been confirmed by this investigation, although their possible origin is discussed.  相似文献   

12.
13.
The distribution of [3H]oxytocin binding sites among various subcellular fractions of rat myometrium paralleled the distribution of 5'-nucleotidase, a plasma membrane marker enzyme, but not of NADPH-cytochrome c reductase or succinate-cytochrome c reductase, which are endoplasmic reticulum and mitochondrial marker enzymes respectively. [3H]Oxytocin binding to the most enriched plasma membrane fraction showed the degree of selectivity with respect to hormone analogues that is expected for the oxytocin receptor. The binding of oxytocin to this fraction showed an apparent Kd of 1.98 X 10(-9) M and a capacity of 1.28 pmol mg-1. It is concluded that the oxytocin receptor is located on the plasma membrane of the smooth muscle cells of the rat uterus.  相似文献   

14.
Studies on the orientation of brush-border membrane vesicles.   总被引:14,自引:7,他引:7       下载免费PDF全文
Orientation of rat renal and intestinal brush-border membrane vesicles was studied with two independent methods: electron-microscopic freeze-fracture technique and immunological methods. With the freeze-fracture technique a distinct asymmetric distribution of particles on the two membrane fracture faces was demonstrated; this was used as a criterion for orientation of the isolated membrane vesicles. For the immunological approach the accessibility or inaccessibility of aminopeptidase M localized on the outer surface of the cell membrane to antibodies was used. With both methods we showed that the brush-border membrane vesicles isolated from rat kidney cortex and from rat small intestine for transport studies are predominantly orientated right-side out.  相似文献   

15.
Glutamine metabolism in the liver is essential for gluconeogenesis and ureagenesis. During the suckling period there is high hepatic protein accretion and the portal vein glutamine concentration is twice that in the adult, whereas hepatic vein glutamine concentration is similar between adult and suckling rats. Therefore, we hypothesized that glutamine uptake by the liver could be greater in the suckling period compared to the adult period. The present studies were, therefore, designed to investigate the transport of glutamine by plasma membranes of rat liver during maturation (suckling--2-week old, weanling--3-week old and adult--12-week old). Glutamine uptake by the plasma membranes of the liver represented transport into an osmotically sensitive space in all age groups. Inwardly directed Na+ gradient resulted in an "overshoot" phenomenon compared to K+ gradient. The magnitude of the overshoot was greater in suckling rats plasma membranes compared to adult membranes. Glutamine uptake under Na+ gradient was electrogenic and maximal at pH 7.5, whereas uptake under K+ gradient was electroneutral. Glutamine uptake with various concentrations of glutamine under Na+ gradient was saturable in all age groups with a Vmax of 1.5 +/- 0.1, 0.7 +/- 0.1 and 0.5 +/- 0.06 nmoles/mg protein/10 seconds in suckling, weanling and adult rats, respectively (P < 0.01). Km values were 0.6 +/- 0.1, 0.5 +/- 0.1 and 0.5 +/- 0.1 mM respectively. Vmax for Na(+)-independent glutamine uptake were 0.6 +/- 0.1, 0.55 +/- 0.07 and 0.54 +/- 0.06 nmoles/mg protein with Km values of 0.54 +/- 0.2, 0. +/- 0.1 and 0.5 +/- 0.2 mM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Isopycnic centrifugation experiments using sucrose density gradients showed that in digitonin-treated microsomes the distribution of the plasma membrane (PM) marker 5'-nucleotidase was shifted to higher densities. The treatment also caused similar but less pronounced changes in the distribution of protein, the putative endoplasmic reticulum (ER) marker NADPH-dependent cytochrome c reductase, and the inner mitochondrial marker cytochrome c oxidase. Similar experiments using more purified membrane fractions showed that the digitonin treatment led to a comparable increase in the densities of the fractions N1 and N2 previously described as subfractions of plasma membrane and to considerably less increase in the density of the fraction N3B which is enriched in the endoplasmic reticulum and the inner mitochondrial markers. Digitonin inhibited the ATP-dependent Ca uptake by the N1 fraction in a concentration-dependent manner (I50 = 0.3 mg/mL). Digitonin (0.5 mg/mL) inhibited the ATP-dependent azide-insensitive Ca uptake by all the fractions. The results support the hypothesis that (a) N1 and N2 are subfractions of plasma membrane, and (b) ATP-dependent azide-insensitive Ca uptake in rat myometrium is a property of plasma membranes.  相似文献   

17.
The final step in the exocytotic process is the docking and fusion of membrane-bound secretory vesicles at the cell plasma membrane. This docking and fusion is brought about by several participating vesicle membrane, plasma membrane and soluble cytosolic proteins. A clear understanding of the interactions between these participating proteins giving rise to vesicle docking and fusion is essential. In this study, the binding force profiles between synaptic vesicle membrane and plasma membrane proteins have been examined for the first time using the atomic force microscope. Binding force contributions of a synaptic vesicle membrane protein VAMP1, and the plasma membrane proteins SNAP-25 and syntaxin, are also implicated from these studies. Our study suggests that these three proteins are the major, if not the only contributors to the interactive binding force that exist between the two membranes.  相似文献   

18.
To elucidate the mechanism of taurine transport across the hepatic plasma membranes, rat liver sinusoidal plasma membrane vesicles were isolated and the transport process was analyzed. In the presence of a sodium gradient across the membranes (vesicle inside less than vesicle outside), an overshooting uptake of taurine occurred. In the presence of other ion gradients (K+, Li+, and choline+), taurine uptake was very small and no such overshoot was observed. Sodium-dependent uptake of taurine occurred into an osmotically active intravesicular space. Taurine uptake was stimulated by preloading vesicles with unlabeled taurine (transstimulation) in the presence of NaCl, but not in the presence of KCl. Sodium-dependent transport followed saturation kinetics with respect to taurine concentration; double-reciprocal plots of uptake versus taurine concentration gave a straight line from which an apparent Km value of 0.38 mM and Vmax of 0.27 nmol/20 s x mg of protein were obtained. Valinomycin-induced K+-diffusion potential failed to enhance the rate of taurine uptake, suggesting that taurine transport does not depend on membrane potential. Taurine transport was inhibited by structurally related omega-amino acids, such as beta-alanine and gamma-aminobutyric acid, but not by glycine, epsilon-aminocaproic acid, or other alpha-amino acids, such as L-alanine. These results suggest that Na+-dependent uptake of taurine might occur across the hepatic sinusoidal plasma membranes via a transport system that is specific for omega-amino acids having 2-3 carbon chain length.  相似文献   

19.
ATP-dependent Cl- uptake by membrane vesicles from the rat brain plasma membrane fractions was not affected by the addition of 40 mM of K+, Na+ or HCO3- to the assay medium. Na+ and K+ did not alter the uptake even in the presence of a K+ ionophore, valinomycin (10 microM), or a H+/K+ exchanger, nigericin (10 microM), whereas in the presence of both of these ionophores, K+, but not Na+, reduced the Cl- uptake. Inhibitors of proton pump activity, N,N'-dicyclohexylcarbodiimide (1 mM) and 5-(N,N-hexamethylene)amiloride (40 microM), however, did not affect the Cl- uptake. These findings suggest the presence of a primary Cl- transport system probably associated with passive H+ flux in the brain plasma membranes.  相似文献   

20.
G Pines  B I Kanner 《Biochemistry》1990,29(51):11209-11214
Membrane vesicles from rat brain exhibit sodium-dependent uptake of L-[3H]glutamate in the absence of any transmembrane ion gradients. The substrate specificity of the process is identical with (Na+ + K+)-coupled L-glutamate accumulation. Although these vesicles are prepared after osmotic shock and are washed repeatedly, they contain about 1.5 nmol/mg of protein endogenous L-glutamate, apparently located inside the vesicles. The affinity of the process (Km approximately 1 microM) is similar to that of (Na+ + K+)-dependent accumulation by the L-glutamate transporter. Membrane vesicles have been disrupted by the detergent cholate, and the solubilized proteins have been subsequently reconstituted into liposomes. The reconstituted proteoliposomes also exhibit the above uptake--with the same characteristics--provided they contain entrapped cold L-glutamate. Counterflow is optimal when sodium is present on both sides of the membrane, but partial activity is still observed when sodium is present either on the inside or on the outside. Increasing the L-glutamate concentration above the Km results in counterflow completely independent of cis sodium. The initial rate of counterflow is 100-200-fold lower than that of net trans potassium dependent flux. The rate of net flux in the presence of trans sodium or lithium is about 10-fold lower than when choline or Tris are used instead. However, the rate of counterflow (no internal potassium present) was not stimulated by replacing internal sodium or lithium by internal choline. Therefore, optimal functioning of the transporter requires internal potassium while internal sodium and lithium are inhibitory.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号