首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张海涛  王如松  胡聃  张云 《生态学报》2011,31(19):5638-5645
工业固废的大量堆积产生多种环境危害,工业固废的资源化利用能够节约资源和缓解环境压力。建筑行业是能源消耗和碳排放的主要部门之一,其中建筑材料生产阶段的能耗和碳排放占有重要的地位。粉煤灰、煤矸石是常见的工业固体废物,尤其是在以煤炭为主要能源的地区。粉煤灰、煤矸石资源化利用的途径之一是用于制造新型墙体砖。本文以煤炭资源型城市淮北市的新型墙体砖(粉煤灰砌块、煤矸石砖)和传统墙体砖(粘土砖、粘土多孔砖)为案例,对墙体砖生产过程的生态效率和碳排放进行分析和比较。在淮北市墙体材料行业碳排放不增加的前提下,以最优生态效率为目标,建立线性规划模型,对淮北市4种主要墙体材料的产量进行规划。分析结果表明:新型墙体材料的生态效率高于传统墙体材料;煤矸石砖生产过程的碳排放系数高于传统墙体砖;粉煤灰砌块生产过程的碳排放系数介于粘土砖和粘土多孔砖之间。在淮北市墙体材料行业碳排放不增加的前提下,与现有的产量相比,淮北市应禁止粘土砖的生产,适当减少粘土多孔砖的产量,适当增加粉煤灰砌块和煤矸石砖的产量,以达到最优生态效率。在最优生态效率的情况下,淮北市新型墙体材料煤矸石砖对煤矸石工业固废的利用率将由目前的15.8%增加到25.2%。  相似文献   

2.
To achieve climate neutrality ambitions, greenhouse gas emissions from the transport sector need to be reduced by at least 90% by 2050. To support industry and policy makers on mitigating actions on climate goals it is important to holistically compare and reduce life cycle environmental impacts of road passenger vehicles. A web-based sustainability assessment tool named battery electric vehicle sustainability impact assessment model, BEVSIM, is developed to assess the environmental, circularity, and economic performance of the materials, sub-systems, parts, and individual components of battery electric vehicles and internal combustion engine vehicles. This tool allows to measure and compare impacts resulting from recycling technologies, end-of-life scenarios, and future scenarios resulting from changes in grid mixes. This paper explains the purpose of the tool, its functionality and design as well as the underlying assumptions.  相似文献   

3.
Neodymium is one of the most important enabling materials for next‐generation clean technologies, especially electric vehicles and wind turbines. As the world's largest producer of rare earth minerals, China dominates the global neodymium supply and a considerable amount of primary neodymium resources are from illegal mining. Many studies have been conducted on the material flow of neodymium in different regions, but few studies focus on China. In this study, a static material flow analysis of neodymium is conducted to quantitatively analyze the industrial chain structure of neodymium in China and to calculate the neodymium output from illegal mining. The results quantitatively depict the neodymium material flow of each stage of China's neodymium industrial chain in 2016, which indicates that 12.3–17.0 kt of primary neodymium resources were from illegal mining. On the basis of the results, reasonable conclusions can be drawn that the recycling of neodymium from end‐of‐life products provides an important opportunity to both reduce illegal rare earth mining and cope with increasing neodymium demand.  相似文献   

4.
A model is presented for calculating the environmental burdens of the part manufacturing and vehicle assembly (VMA) stage of the vehicle life cycle. The model is based on a process‐level approach, accounting for all significant materials by their transformation processes (aluminum castings, polyethylene blow molding; etc.) and plant operation activities (painting; heating, ventilation, and air conditioning [HVAC], etc.) germane to VMA. Using quantitative results for these material/transformation process pairings, a percent‐by‐weight material/transformation distribution (MTD) function was developed that permits the model to be applied to a range of vehicles, both conventional and advanced (e.g., hybrid electric, light weight, aluminum intensive). Upon consolidation of all inputs, the model reduces to two terms: one proportional to vehicle mass and a plant overhead per vehicle term. When the model is applied to a materially well‐characterized conventional vehicle, reliable estimates of cumulative energy consumption (34 gigajoules/vehicle) and carbon dioxide (CO2) emissions (2 tonnes/vehicle) with coefficients of variation are computed for the VMA life cycle stage. Due to the more comprehensive coverage of manufacturing operations, our energy estimates are on the higher end of previously published values. Nonetheless, they are still somewhat underestimated due to a lack of data on overhead operations in part manufacturing facilities and transportation of parts and materials between suppliers and vehicle manufacturing operations. For advanced vehicles, the material/transformation process distribution developed above needs some adjusting for different materials and components. Overall, energy use and CO2 emissions from the VMA stage are about 3.5% to 4.5% of total life cycle values for vehicles.  相似文献   

5.
赵薇  孙一桢  张文宇  梁赛 《生态学报》2016,36(22):7208-7216
我国生活垃圾产量大但处理能力不足,产生多种环境危害,对其资源化利用能够缓解环境压力并回收资源。为探讨生活垃圾资源化利用策略,综合生命周期评价与生命周期成本分析方法,建立生态效率模型。以天津市为例,分析和比较焚烧发电、卫生填埋-填埋气发电、与堆肥+卫生填埋3种典型生活垃圾资源化利用情景的生态效率。结果表明,堆肥+卫生填埋情景具有潜在最优生态效率;全球变暖对总环境影响贡献最大,而投资成本对经济影响贡献最大。考虑天津市生活垃圾管理现状,建议鼓励发展生活垃圾干湿组分分离及厨余垃圾堆肥的资源化利用策略。  相似文献   

6.
Purpose

Composites consist of at least two merged materials. Separation of these components for recycling is typically an energy-intensive process with potentially significant impacts on the components’ quality. The purpose of this article is to suggest how allocation for recycling of products manufactured from composites can be handled in life cycle assessment to accommodate for the recycling process and associated quality degradations of the different composite components, as well as to describe the challenges involved.

Method

Three prominent recycling allocation approaches were selected from the literature: the cut-off approach, the end-of-life recycling approach with quality-adjusted substitution, and the circular footprint formula. The allocation approaches were adapted to accommodate for allocation of impacts by conceptualizing the composite material recycling as a separation process with subsequent recycling of the recovered components, allowing for separate modeling of the quality changes in each individual component. The adapted allocation approaches were then applied in a case study assessing the cradle-to-grave climate impact and energy use of a fictitious product made from a composite material that in the end of life is recycled through grinding, pyrolysis, or by means of supercritical water treatment. Finally, the experiences and results from applying the allocation approaches were analyzed with regard to what incentives they provide and what challenges they come with.

Results and discussion

Using the approach of modeling the composite as at least two separate materials rather than one helped to clarify the incentives provided by each allocation approach. When the product is produced using primary materials, the cut-off approach gives no incentive to recycle, and the end-of-life recycling approach and the circular footprint formula give incentives to recycle and recover materials of high quality. Each of the allocation approaches come with inherent challenges, especially when knowledge is limited regarding future systems as in prospective studies. This challenge is most evident for the circular footprint formula, for example, with regard to the supply and demand balance.

Conclusions

We recommend modeling the composite materials in products as separate, individual materials. This proved useful for capturing changes in quality, trade-offs between recovering high quality materials and the environmental impact of the recycling system, and the incentives the different approaches provide. The cut-off and end-of-life approaches can both be used in prospective studies, whereas the circular footprint formula should be avoided as a third approach when no market for secondary material is established.

  相似文献   

7.
Strategies for Meeting EU End-of-Life Vehicle Reuse/Recovery Targets   总被引:1,自引:0,他引:1  
Disposal of end-of-life vehicles (ELVs) is a relatively new focus of the European policy community. Technical requirements for car design and minimum reuse and recovery rates for end-of-life vehicles are the subject of a recent European Union directive on ELVs. This directive is expected to induce changes in the infrastructure required for ELV processing, and presents a substantial challenge to maintaining such an infrastructure as economically viable.
This paper assesses current and emerging ELV recycling technologies, in order to provide guidelines for the development of future ELV recycling strategies. Emphasis is given to technologies dedicated to automobile shredder residue (ASR) recovery, as an alternative/complement to more labor-intensive dismantling activities. The ultimate goal is to develop a vision of the type of ASR processing technology that could emerge in the future.
The analysis is based on a model developed to simulate ELV processing infrastructures, and shredding data are taken from full-scale experiments. The results obtained show that ASR mechanical separation and recycling technologies may enable more extensive recycling and contribute to achieving European Union recycling targets, and can thus be considered as far more promising than technologies based on energy recovery.  相似文献   

8.
The use of aluminum alloys in automobile production is growing as automakers strive to lower vehicle fuel consumption and reduce emissions by substituting aluminum for steel. The current recycling infrastructure for end-of-life vehicles is mature, profitable, and well suited to steel-intensive vehicles; increased use of cast and wrought aluminum, however, will present new challenges and opportunities to the disassembler and shredder, who now comprise the first stages of the vehicle recycling infrastructure.
Using goal programming techniques, a model of the auto recycling infrastructure is used to assess the materials streams and process profitabilities for several different aluminum-intensive vehicle (AIV) processing scenarios. The first case simulates the processing of an AIV in the current recycling infrastructure. Various changes to the initial case demonstrate the consequences to the disassembler and shredder profitabilities whenever the price of nonferrous metals changes; greater fractions of the vehicle are removed as parts; the parts removed by the disassembler have increased aluminum content; the quantity of polymer removed by the disassembler is increased; the disassembly costs increase; the disposal costs for shredder residue and hazardous materials increase; the shredder processing costs increase; and different AIV designs are considered. These profits are also compared to those achieved for a steel unibody vehicle to highlight the impact of introducing AIVs into the existing infrastructure. Results indicate that the existing infrastructure will be able to accommodate AIVs without economic detriment.  相似文献   

9.
Alloying elements in steel add a wide range of valuable properties to steel materials that are indispensable for the global economy. However, they are likely to be effectively irretrievably blended into the steel when recycled because of (among other issues) the lack of information about the composition of the scrap. This results in the alloying elements dissipating in slag during steelmaking and/or becoming contaminants in secondary steel. We used the waste input‐output material flow analysis model to quantify the unintentional flows of alloying elements (i.e., chromium, nickel, and molybdenum) that occur in steel materials and that result from mixing during end‐of‐life (EOL) processes. The model can be used to predict in detail the flows of ferrous materials in various phases, including the recycling phase by extending steel, alloying element source, and iron and steel scrap sectors. Application of the model to Japanese data indicates the critical importance of the recycling of EOL vehicles (ELVs) in Japan because passenger cars are the final destination of the largest share of these alloying elements. However, the contents of alloying elements are rarely considered in current ELV recycling. Consequently, the present study demonstrates that considerable amounts of alloying elements, which correspond to 7% to 8% of the annual consumption in electric arc furnace (EAF) steelmaking, are unintentionally introduced into EAFs. This result suggests the importance of quality‐based scrap recycling for efficient management of alloying elements.  相似文献   

10.
We used a thermodynamic framework to characterize the resource consumption of the construction sector in 2001 in Catalonia, the northeast region of Spain. The analysis was done with a cradle‐to‐product life cycle approach using material flow analysis (MFA) and exergy accounting methodologies to quantify the total material and energy inputs in the sector. The aim was to identify the limitations of resource metabolism in the sector and to pinpoint the opportunities for improved material selection criteria, processing, reuse, and recycling for sustainable resource use. The results obtained from MFA showed that nonrenewables such as minerals and natural rocks, cement and derivatives, ceramics, glass, metals, plastics, paints and other chemicals, electric and lighting products, and bituminous mix products accounted for more than 98% of the input materials in the construction sector. The exergy analysis quantified a total 113.1 petajoules (PJ) of exergy inputs in the sector; utilities accounted for 57% of this exergy. Besides exergy inputs, a total of 6.85 million metric tons of construction and demolition waste was generated in 2001. With a recycling rate of 6.5%, the sector recovered 1.3 PJ of exergy. If the sector were able to recycle 80% of construction and demolition waste, then exergy recovery would be 10.3 PJ. Hence the results of this analysis indicate that improvements are required in manufacturing processes and recycling activities, especially of energy‐intensive materials, in order to reduce the inputs of utilities and the extraction of primary materials from the environment.  相似文献   

11.
任胜钢  张如波  袁宝龙 《生态学报》2018,38(15):5485-5497
提高长江经济带工业生态效率,是促进工业向绿色转型升级的重要路径,更是促进区域经济与生态协调发展的重要选择。将工业生态系统分解为工业经济、环境、能源三个子系统,以2009—2013年9省2市的工业数据为基础,采用网络DEA模型对长江经济带9省2市的工业生态效率及三个子系统效率进行评价。结果显示:(1)长江经济带工业生态效率水平整体呈上升趋势,且自上游至下游效率水平依次递增。(2)长江经济带工业经济子系统效率水平相对稳定,区域内以下游最高、上游最低;环境子系统效率水平呈增长趋势,区域内以下游最高、中游最低;能源子系统效率水平呈增长趋势,区域内以下游最高、上游最低;(3)收敛性检验显示,长江经济带工业生态效率及各子系统效率呈收敛趋势,其中工业经济子系统效率呈相对稳定的状态。研究为长江经济带工业生态效率的改善提出了可操作性的政策建议。  相似文献   

12.
The article presents a method for the calculation of selected economy‐wide material flow indicators (namely, direct material input [DMI] and raw material input [RMI]) for economic sectors. Whereas sectoral DMI was calculated using direct data from statistics, we applied a concept of total flows and a hybrid input‐output life cycle assessment method to calculate sectoral RMI. We calculated the indicators for the Czech Republic for 2000–2011. We argue that DMI of economic sectors can be used for policies aiming at decreasing the direct input of extracted raw materials, and imported raw materials and products, whereas sectoral RMI can be better used for justifying support for or weakening the role of individual sectors within the economy. High‐input material flows are associated in the Czech Republic with the extractive industries (agriculture and forestry, the mining of fossil fuels [FFs], other types of mining, and quarrying), with several manufacturing industries (manufacturing of beverages, basic metals, motor vehicles or electricity, and gas and steam supply) and with construction. Viable options for reducing inputs of agricultural biomass include changes in people's diet toward a lower amount of animal‐based food and a decrease in the wasting of food. For FFs, one should think of changing the structure of total primary energy supply toward cleaner gaseous and renewable energy sources, innovations in transportation systems, and improvements in overall energy efficiency. For metal ores, viable options include technological changes leading to smaller and lighter products, as well as consistent recycling and use of secondary metals.  相似文献   

13.
Raw materials costs form an increasingly significant proportion of the total costs of renewable energy technologies that must be adopted at unprecedented rates to combat climate change. As the affordable deployment of these technologies grows vulnerable to materials price changes, effective strategies must be identified to mitigate the risk of higher input costs faced by manufacturers. To better understand potential threats to deployment, a market modeling approach was developed to quantify economic risk factors including material demand, substitutability, recycling, mining productivity, resource quality, and discovery. Results demonstrate that price changes are determined by interactions between demand growth, mining productivity, and resource quality. In the worst cases with high demand and low productivity, development of material substitutes and large recycling rates help reduce the prevalence of price risk from over 90% to under 10%. Investing in these strategies yields significant benefits for manufacturers and governments concerned about costs of materials critical to decarbonization and other advanced technologies.  相似文献   

14.
Throughout their life cycle stages—material production, package manufacture, distribution, end-of-life management—packaging systems consume natural resources and energy, generate waste, and emit pollutants. Each of these stages also carries a financial cost. Motivated by a desire to decrease environmental burdens while reducing financial costs associated with the packaging of accessory and service parts, Toyota Motor Sales (TMS) partnered with the Donald Bren School of Environmental Science & Management to build a life cycle assessment and costing tool to support packaging design decisions. The resulting Environmental Packaging Impact Calculator (EPIC) provides comprehensive life cycle assessment (LCA) and life cycle costing (LCC). It allows packaging designers to identify environmentally and economically preferable packaging systems in daily decision-making. EPIC's parameterized process flow model allows users to assess many different packaging systems using a single model. Its input/output interface is designed for users without preexisting knowledge of LCA theory or practice and calculates results based on relatively few input data. The main motivation behind this environmental design tool is to provide relevant information to those individuals who are in the best position to reduce life cycle impacts and costs from TMS's packaging and distribution systems.  相似文献   

15.
Zhang Y  Yang Z F 《农业工程》2007,27(8):3124-3131
The keys of studying urban sustainable development are material metabolism flux and efficiency. Metabolism flux of urban materials can only reflect the metabolism velocity, while its eco-efficiency can determine the metabolism capacity to support socio-economic development. The general model and the measure model of the eco-efficiency were set up, based on the source recycle (decreasing the consumption of crude resources) and the terminal recycle (decreasing the discharge of pollutants) of production and life. These models were employed to study material metabolism flux and efficiency in Shenzhen, China. Results showed that water, energy and waste metabolism fluxes have increased since 1998 with constant socio-economic development, and their eco-efficiencies have also increased rapidly. When GDP rose by 2.7 times, the metabolism fluxes of urban water and electricity rose by 1.5 and 3.0 times, respectively. When the added value of industry rose by 3.7 times, the metabolism fluxes of industrial water, electricity, energy and waste rose by 1.9, 3.5, 2.7 and 2.0 times, respectively. When population rose by 1.5 times, the metabolism fluxes of residential water and electricity rose by 1.8 and 1.7 times, respectively. During the period, the resource efficiency, environmental efficiency and eco-efficiency rose by 1.8, 3.7 and 2.3 times, respectively. Whereas the efficiency of material metabolism has been improved in Shenzhen, the scarcity of material resources has become more and more serious. Therefore, it is necessary to further improve the efficiency of material metabolism. The keys of improving the eco-efficiency of urban material metabolism are the increasing of resource and environmental efficiencies, and the establishing of the recycling chain of re-utilization of waste resources.  相似文献   

16.
The keys of studying urban sustainable development are material metabolism flux and efficiency. Metabolism flux of urban materials can only reflect the metabolism velocity, while its eco-efficiency can determine the metabolism capacity to support socio-economic development. The general model and the measure model of the eco-efficiency were set up, based on the source recycle (decreasing the consumption of crude resources) and the terminal recycle (decreasing the discharge of pollutants) of production and life. These models were employed to study material metabolism flux and efficiency in Shenzhen, China. Results showed that water, energy and waste metabolism fluxes have increased since 1998 with constant socio-economic development, and their eco-efficiencies have also increased rapidly. When GDP rose by 2.7 times, the metabolism fluxes of urban water and electricity rose by 1.5 and 3.0 times, respectively. When the added value of industry rose by 3.7 times, the metabolism fluxes of industrial water, electricity, energy and waste rose by 1.9, 3.5, 2.7 and 2.0 times, respectively. When population rose by 1.5 times, the metabolism fluxes of residential water and electricity rose by 1.8 and 1.7 times, respectively. During the period, the resource efficiency, environmental efficiency and eco-efficiency rose by 1.8, 3.7 and 2.3 times, respectively. Whereas the efficiency of material metabolism has been improved in Shenzhen, the scarcity of material resources has become more and more serious. Therefore, it is necessary to further improve the efficiency of material metabolism. The keys of improving the eco-efficiency of urban material metabolism are the increasing of resource and environmental efficiencies, and the establishing of the recycling chain of re-utilization of waste resources.  相似文献   

17.
A model of the use of the platinum group metals (PGMs) platinum, palladium, and rhodium in Europe has been developed and combined with a model of the environmental pressures related to PGM production. Compared to the base case presented in Part I of this pair of articles, potential changes in PGM production and use are quantified with regard to cumulative and yearly environmental impacts and PGM resource use, for the period 2005–2020. Reducing sulfur dioxide (SO2) emissions of PGM producer Norilsk Nickel could cut the cumulative SO2 emissions associated with the use of PGMs in Europe by 35%. Cleaner electricity generation in South Africa could reduce cumulative SO2 emissions by another 9%. Increasing the recycling rate of end-of-life catalytic converters to 70% in 2020 could save 15% of the cumulative primary PGM input into car catalysts and 10% of the SO2 emissions associated with PGM production. In 2020, PGM requirements and SO2 emissions would be, respectively, 40% and 22% lower than the base case.
Substituting palladium for part of the platinum in diesel catalysts, coupled with a probable palladium price increase, could imply 15% more cumulative SO2 emissions if recycling rates do not increase.
A future large-scale introduction of fuel cell vehicles would require technological improvements to significantly reduce the PGM content of the fuel cell stack. The basic design of such vehicles greatly influences the vehicle power, a key parameter in determining the total PGM requirement.  相似文献   

18.

Purpose

This paper will give an overview of LCA studies on lead metal production and use recently conducted by the International Lead Association.

Methods

The lead industry, through the International Lead Association (ILA), has recently completed three life cycle studies to assess the environmental impact of lead metal production and two of the products that make up approximately 90 % of the end uses of lead, namely lead-based batteries and architectural lead sheet.

Results and discussion

Lead is one of the most recycled materials in widespread use and has the highest end-of-life recycling rate of all commonly used metals. This is a result of the physical chemical properties of the metal and product design, which makes lead-based products easily identifiable and economic to collect and recycle. For example, the end-of-life collection and recycling rates of lead automotive and industrial batteries and lead sheet in Europe are 99 and 95 %, respectively, making them one of the few products that operate in a true closed loop. These high recycling rates, coupled with the fact that both lead-based batteries and architectural lead sheet are manufactured from recycled material, have a beneficial impact on the results of LCA studies, significantly lowering the overall environmental impact of these products. This means that environmental impacts associated with mining and smelting of lead ores are minimised and in some cases avoided completely. The lead battery LCA assesses not only the production and end of life but also the use phase of these products in vehicles. The study demonstrates that the technological capabilities of innovative advanced lead batteries used in start-stop vehicles significantly offset the environmental impact of their production. A considerable offset is realised through the savings achieved in global warming potential when lead-based batteries are installed in passenger vehicles with start-stop and micro-hybrid engine systems which have significantly lower fuel consumption than regular engines.

Conclusions

ILA has undertaken LCAs which investigate the environmental impact associated with the European production of lead metal and the most significant manufactured lead products (lead-based batteries used in vehicles and architectural lead sheet for construction) to ensure up-to-date and robust data is publically and widely available.
  相似文献   

19.
Lithium-ion batteries (LIBs) are a key technology in decarbonizing the transportation and electricity sectors, yet the use of critical materials, such as cobalt, nickel, and lithium, lead to environmental and social impacts. Reusing, repurposing, and recycling mitigate battery impacts by extending their lifespan and reducing reliance on virgin materials. Innovation that reduces demand for these problematic materials and increases battery efficiency also reduces impacts. Two examples of this technological innovation include, (1) the development of energy dense cathode chemistry containing less cobalt, a material with high social and environmental impacts; and (2) the use of columnar silicon thin film anode, which results in increased energy density compared to the commonly used graphite anode. This research assesses whether these technological innovations change the currently understood waste hierarchy, which prioritizes reuse or repurposing prior to recycling. This is of interest because retired high-cobalt batteries could supply their constituent materials sooner if recycled immediately and be used in low-cobalt, higher-performing batteries. The assessment considers the life cycle environmental impacts of two end-of-life management routes for a high-cobalt LIB: first, recycling the battery immediately after the first use life to produce a new, and less material intensive battery, and second, repurposing the battery for a stationary storage application followed by recycling. Findings show that battery reuse reduces life cycle environmental impacts relative to immediate recycling. Thus, from an environmental perspective, the waste hierarchy holds, and steps to retain the batteries in their highest value use, such as through repurposing, should still be prioritized.  相似文献   

20.
High‐performance and lost‐cost lithium‐ion and sodium‐ion batteries are highly desirable for a wide range of applications including portable electronic devices, transportation (e.g., electric vehicles, hybrid vehicles, etc.), and renewable energy storage systems. Great research efforts have been devoted to developing alternative anode materials with superior electrochemical properties since the anode materials used are closely related to the capacity and safety characteristics of the batteries. With the theoretical capacity of 2596 mA h g?1, phosphorus is considered to be the highest capacity anode material for sodium‐ion batteries and one of the most attractive anode materials for lithium‐ion batteries. This work provides a comprehensive study on the most recent advancements in the rational design of phosphorus‐based anode materials for both lithium‐ion and sodium‐ion batteries. The currently available approaches to phosphorus‐based composites along with their merits and challenges are summarized and discussed. Furthermore, some present underpinning issues and future prospects for the further development of advanced phosphorus‐based materials for energy storage/conversion systems are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号