首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple trials failed to express significant amounts of olfactory receptors in heterologous cells as they are typically retained in the endoplasmic reticulum (ER). Evidence is accumulating that cell-type-specific accessory proteins regulate the folding of olfactory receptors, their exit from the ER, and the trafficking to the plasma membrane of the olfactory cilia where the receptors gain access to odorants. We found Hsc70t, a testis-enriched variant of the Hsp70 family of heat shock proteins which is specifically expressed in post-meiotic germ cells, in the olfactory epithelium of mouse and human. Cotransfected HEK293 cells with Hsc70t and different green fluorescent protein-tagged odorant receptors (ORs) from mouse and man showed a significantly enhanced OR expression. Hsc70t expression also changed the amount of cells functionally expressing olfactory receptors at the cell surface as the number of cells responding to odorants in Ca2+-imaging experiments significantly increased. Our results show that Hsc70t helps expression of ORs in heterologous cell systems and helped the characterization of an "orphan" human olfactory receptor.  相似文献   

2.
Heat shock proteins (Hsps) and molecular chaperones isolated from tumors or virally infected cells elicit an efficient CD8+ T cell response against bound antigenic peptides. This immune response is mediated by presentation of the peptides on MHC class I complexes of antigen-presenting cells (APCs), but the cellular mechanism of this presentation process is not yet understood. Here we provide evidence for the existence of a proteinaceous receptor on the surface of APCs that is specific for mammalian Hsp70. Using a flow cytometry-based assay, saturable binding of Hsp70 to the cell surface of macrophages and peripheral blood monocytes, but not of lymphocytes, can be demonstrated. The affinity of the receptor is in the sub-micromolar range (Kd < 100 nM). Only mammalian Hsc70/Hsp70, but not bacterial Hsp70, is bound with high affinity. Subsequent to binding, Hsp70 is taken up by endocytosis, resulting in an intracellular localization. Our results suggest that receptor-mediated endocytosis forms the basis for the demonstrated efficacy of Hsp70-peptide complexes as anti-tumor vaccines.  相似文献   

3.
Immune responses against antigens generally require an efficient activation of antigen-presenting cells (APCs). Currently, the targeting of vaccine antigens to APCs has emerged as a promising strategy for boosting vaccine immunogenicity. Here, we reported that the C-terminus of heat shock protein 60 (HSP60C) can activate mouse peritoneal macrophages to secret a series of cytokines, and phosphorylation of p38 mitogen-activated protein kinase (MAPK) and NF-κB p65 was involved in the pathway. We showed that the activation effect of HSP60C on macrophages was independent of toll-like receptor (TLR) 4 and the TLR-associated myeloide differentiation factor 88 (MyD88). Knockdown of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) reduced the activation of HSP60C-induced macrophage p38 MAPK, NF-κB p65 and cytokine secretion to some extent. Finally, we found that HSP60C up-regulated the expression of LOX-1 on macrophages and ovalbumin (OVA) model antigen fused with HSP60C markedly enhanced OVA-specific IgG responses. Thus, our results unravel a novel LOX-1-dependent pathway by which HSP60C can effectively activate macrophages and APCs targeting based on LOX-1 interaction is a promising approach to improve vaccines.  相似文献   

4.
In the present study, we characterized regions of human heat shock protein (HSP) 60 responsible for binding to primary macrophages. Studies using 20-mer peptides of the HSP60 sequence to compete with HSP60-binding to macrophages from C57BL/6J mice showed that regions aa241-260, aa391-410 and aa461-480 are involved in surface-binding. HSP60 mutants, lacking the N-terminal 137, 243 or 359 amino acids, inhibited HSP60-binding to primary macrophages to different degrees, demonstrating that all three regions are required for optimal binding. Analysis of different pro- and eukaryotic HSP60 species indicated that phylogenetically separate HSP60 species use different binding sites on primary macrophages.  相似文献   

5.
6.
Daugaard M  Rohde M  Jäättelä M 《FEBS letters》2007,581(19):3702-3710
The human heat shock protein 70 (Hsp70) family contains at least eight homologous chaperone proteins. Endoplasmatic reticulum and mitochondria have their specific Hsp70 proteins, whereas the remaining six family members reside mainly in the cytosol and nucleus. The requirement for multiple highly homologous although different Hsp70 proteins is still far from clear, but their individual and tissue-specific expression suggests that they are assigned distinct biological tasks. This concept is supported by the fact that mice knockout for different Hsp70 genes display remarkably discrete phenotypes. Moreover, emerging data suggest that individual Hsp70 proteins can bring about non-overlapping and chaperone-independent functions essential for growth and survival of cancer cells. This review summarizes our present knowledge of the individual members of human Hsp70 family and elaborate on the functional differences between the cytosolic/nuclear representatives.  相似文献   

7.
The 60-kDa heat shock protein (HSP60), an endogenous ligand for the toll-like 4 receptor, is generated in response to inflammation, tissue injury, and/or stress and stimulates macrophages to produce cytotoxic and proinflammatory mediators including nitric oxide, tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-12. In the present studies we report that HSP60 is an effective inducer of cyclooxygenase-2 (COX-2) in macrophages, as well as endothelial cells. In both cell types, the synthesis of COX-2 was coordinate with induction of nitric oxide synthase (NOS)-2 and with nitric oxide production. With the use of promoter constructs in transient transfection assays, optimal expression of COX-2 in macrophages was found to require nuclear factor (NF)-kappaB, the cAMP-response element (CRE), and NF-IL-6, but not the E-box. Mobility shift assays revealed that HSP60 induced NF-kappaB and CRE binding activity, while CCAAT/enhancer binding protein (C/EBP), which binds to NF-IL-6, was constitutively active in the cells. Both c-Jun and CRE binding protein (CREB) bound to the CRE, while C/EBP-beta bound to NF-IL-6. These data indicate that NF-kappaB, C/EBP-beta, c-Jun, and CREB are important in HSP60-induced expression of COX-2. The c-Jun-NH(2)-terminal kinase (JNK), p44/42 mitogen-activated protein (MAP) kinase [extracellular signal-regulated kinase 1/2 (ERK1/2)], and p38 MAP kinase were rapidly activated by HSP60 in the macrophages. PD-98059, an inhibitor of phosphorylation of ERK1/2, caused a marked inhibition of HSP60-induced COX-2 and NOS-2 expression. Unexpectedly, SB-203580, a p38 kinase antagonist, was found to block HSP60-induced expression of COX-2, but not NOS-2. These data indicate that both ERK1/2 kinase and p38 kinase play a role in regulating HSP60-induced expression of COX-2.  相似文献   

8.
Work on glomalin-related soil protein produced by arbuscular mycorrhizal (AM) fungi (AMF) has been limited because of the unknown identity of the protein. A protein band cross-reactive with the glomalin-specific antibody MAb32B11 from the AM fungus Glomus intraradices was partially sequenced using tandem liquid chromatography-mass spectrometry. A 17 amino acid sequence showing similarity to heat shock protein 60 (hsp 60) was obtained. Based on degenerate PCR, a full-length cDNA of 1773 bp length encoding the hsp 60 gene was isolated from a G. intraradices cDNA library. The ORF was predicted to encode a protein of 590 amino acids. The protein sequence had three N-terminal glycosylation sites and a string of GGM motifs at the C-terminal end. The GiHsp 60 ORF had three introns of 67, 76 and 131 bp length. The GiHsp 60 was expressed using an in vitro translation system, and the protein was purified using the 6xHis-tag system. A dot-blot assay on the purified protein showed that it was highly cross-reactive with the glomalin-specific antibody MAb32B11. The present work provides the first evidence for the identity of the glomalin protein in the model AMF G. intraradices, thus facilitating further characterization of this protein, which is of great interest in soil ecology.  相似文献   

9.
Histoplasma capsulatum (Hc), is a facultative intracellular fungus that binds to CD11/CD18 receptors on macrophages (Mphi). To identify the ligand(s) on Hc yeasts that is recognized by Mphi, purified human complement receptor type 3 (CR3, CD11b/CD18) was used to probe a Far Western blot of a detergent extract of Hc cell wall and cell membrane. CR3 recognized a single 60-kDa protein, which was identified as heat shock protein 60 (hsp60). Biotinylation of viable yeasts, followed by precipitation with streptavidin-coated beads, and Western blotting with anti-hsp60 demonstrated that hsp60 was on the surface of Hc yeasts. Electron and confocal microscopy revealed that hsp60 resided on the yeast cell wall in discrete clusters. Recombinant hsp60 (rhsp60) inhibited attachment of Hc yeasts to Mphi. Recombinant hsp60 and Abs to CD11b and CD18 inhibited binding of yeasts to Chinese hamster ovary cells transfected with CR3 (CHO3). Polystyrene beads coated with rhsp60 bound to Mphi, and attachment was inhibited by Abs to CD11 and CD18. Freeze/thaw extract (F/TE), a preparation of Hc yeast surface proteins that contained hsp60, inhibited the attachment of Hc yeasts to Mphi. Depletion of hsp60 from F/TE removed the capacity of F/TE to block binding of Hc to Mphi. Interestingly, rhsp60 did not inhibit binding of Hc yeasts to dendritic cells (DC), which recognize Hc via very late Ag 5. Moreover, F/TE inhibited attachment of Hc to DC even when depleted of hsp60. Thus, Hc hsp60 appears to be a major ligand that mediates attachment of Hc to Mphi CD11/CD18, whereas DC recognize Hc via a different ligand(s).  相似文献   

10.
In a study of seven different hsp60 species, we found that all mammalian and microbial proteins shared the property of eliciting an inflammatory response in mouse macrophages. In all cases, TNFalpha production was induced by 0.1 microM concentrations of hsp60. However, the different hsp60 preparations did not compete for the same binding site. The binding of fluorescence-labeled human hsp60 was inhibited by excess unlabeled human, rat or mouse hsp60, but not hamster, Escherichia coli, Chlamydia pneumoniae or Mycobacterium bovis hsp60. We conclude that phylogenetically separate hsp60 species interact with innate immune cells via different recognition pathways.  相似文献   

11.
Calcineurin (CaN) is a Ca++/calmodulin-dependent protein phosphatase with two subunits: a catalytic subunit (CaNA) and a regulatory subunit (CaNB). With four Ca(++)-binding sites and a sequence homology to calmodulin, CaNB has been defined as the regulatory subunit for CaNA. However, we have shown that mitochondrial expression of CaNB far exceeds that of CaNA. To investigate the role of this excess CaNB, we have generated glutathione-S-transferase-CaNB (GST-CaNB) fusion protein and demonstrated that the fusion protein predominantly bound to alpha-tubulin, a 57 kDa protein in bovine brain extracts, and heat shock protein 60 (Hsp60) in bovine kidney extracts. Their Ca(++)-dependent interactions with CaNB were verified by immunoprecipitation. The binding of CaNB could be demonstrated with purified alpha/beta tubulins and Hsp60, but not GroEL, a bacterial Hsp60 analog. The interaction of CaNB and Hsp60 was not disrupted by the incubation with Hsp10, ATP and Mg++, suggesting that CaNB was not associated with Hsp60 as a misfolded substrate, and may serve as a regulatory protein. Thus, CaNB may play other regulatory roles in Ca(++)-dependent events in addition to its interaction with CaNA, and may be important for Ca(++)-dependent processes in mitochondria.  相似文献   

12.
We have isolated cDNA clones from soybean and pea that specify nuclear-encoded heat shock proteins (HSPs) which localize to chloroplasts. The mRNAs for these HSPs are undetectable at control temperatures, but increase approximately 150-fold during a 2-h heat shock. Hybridization-selection followed by in vitro translation demonstrates that these HSPs are synthesized as precursor proteins which are processed by the removal of 5-6.5 kd during import into isolated chloroplasts. The nucleotide sequence of the cDNAs shows the derived amino acid sequences of the mature pea and soybean proteins are 79% identical. While the predicted transit peptide encoded by the pea cDNA has some characteristics typical of transit sequences, including high Ser content, multiple basic residues and no acidic residues, it lacks two domains proposed to be important for import and maturation of other chloroplast proteins. The carboxy-terminal region of the chloroplast HSP has significant homology to cytoplasmic HSPs from soybean and other eukaryotes. We hypothesize that the chloroplast HSP shares a common structural and functional domain with low mol. wt HSPs which localize to other parts of the cell, and may have evolved from a nuclear gene.  相似文献   

13.
Small heat shock proteins have been characterized in vitro as ATP-independent molecular chaperones that can prevent aggregation of un- or mis-folded proteins and assist in their refolding with the help of ATP-dependent chaperone machines (e.g., the Hsp70 proteins). Comparison of the functionality of the 10 human members of the small HSPB family in cell models now reveals that some members function entirely differently and independently from Hsp70 machines. One member, HSPB7, has strong activities to prevent toxicity of polyglutamine-containing proteins in cells and Drosophila, and seems to act by assisting the loading of misfolded proteins or small protein aggregates into autophagosomes.  相似文献   

14.
15.
Heat shock proteins (HSPs) are immunodominant antigens recognized by the host immune system in various infectious diseases. We analyzed HSP-specific antibodies, including immunoglobulin G (IgG), IgM and IgA, in sera from malaria patients in Thailand by using an enzyme-linked immunosorbent assay. All of the antibodies to HSP90 were remarkably increased in the patients compared with those in controls, while only IgM to HSP70 or IgA to HSP65 was significantly elevated. Further experiments showed that anti-HSP IgG was significantly increased in C57BL/6 mice infected with a non-lethal strain of Plasmodium yoelii, with anti-HSP90 IgG being the most elevated. These results suggest that the antigenic potential of HSP90 is higher than those of HSP70 and HSP65 in malaria infection.  相似文献   

16.
Endogenous heat shock proteins (HSPs) 70 and 25/27 are induced in renal cells by injury from energy depletion. Transfected over-expression of HSPs 70 or 27 (human analogue of HSP25), provide protection against renal cell injury from ATP deprivation. This study examines whether over-expressed HSP27 depends on induction of endogenous HSPs, in particular HSP70, to afford protection against cell injury. LLC-PK1 cells transfected with HSP27 (27OE cells) were injured by ATP depletion for 2 h and recovered for 4 h in the presence of HSF decoy, HSP70 specific siRNA (siRNA-70) and their respective controls. Injury in the presence of HSF decoy, a synthetic oligonucleotide identical to the heat shock element, the nuclear binding site of HSF, decreased HSP70 induction by 80% without affecting the over-expression of transfected HSP27. The HSP70 stress response was completely ablated in the presence of siRNA-70. Protection against injury, provided by over-expression of HSP27, was reduced by treatment with HSF decoy and abolished by treatment with siRNA-70. Immunoprecipitation studies demonstrated association of HSP27 with actin that was not affected by either treatment with HSF decoy or siRNA. Therefore, HSP27 is dependent on HSP70 to provide its maximal cytoprotective effect, but not for its interaction with actin. This study suggests that, while it has specific action on the cytoskeleton, HSP 25/27 must have coordinated activity with other HSP classes, especially HSP70, to provide the full extent of resistance to injury from energy depletion.  相似文献   

17.
The HuCha60 protein, a polymorphic protein on two-dimensional gels of human lymphocytes, is found to be structurally and functionally related to the Escherichia coli groEL gene product: The structural homology is evident from the N-terminal amino-acid sequence analysis and from the immunological cross-reactivity with an antiserum against the E. coli groEL gene product. The functional homology is suggested by the heat sensitivity and the growth dependence of this protein. Both genetic variants of the HuCha60 occurring on the two-dimensional protein pattern of lymphocytes, the common "a" variant and the rare "b" variant, are strongly enhanced after heat shock. The expression of the HuCha60 in resting or normally growing cultures human cells is in general low, whereas in mitogen-stimulated cells or transformed cell lines the synthesis of the HuCha60 is strongly enhanced. After cell fractionation and subsequent two-dimensional gel electrophoresis and immunoblotting, the HuCha60 has been found to be mainly expressed in mitochondria. In the cytosol fraction two different molecular weight forms of the HuCha60 have been observed with low expression. Also in the nuclear fraction, HuCha60 is present in low concentration.  相似文献   

18.
Expression of heat shock proteins (HSP) is anadaptive response to cellular stress. Stress induces tumor necrosisfactor (TNF)- production. In turn, TNF- induces HSP70 expression.However, osmotic stress or ultraviolet radiation activates TNF-receptor I (TNFR-I) in the absence of TNF-. We postulated thatTNF- receptors are involved in the induction of HSP70 by cellularstress. Peritoneal M were isolated from wild-type (WT), TNF-knockout (KO), and TNFR (I or II) KO mice. Cells were culturedovernight and then heat stressed at 43 ± 0.5°C for 30 minfollowed by a 4-h recovery at 37°C. Cellular HSP70 expression wasinduced by heat stress or exposure to endotoxin [lipopolysaccharide(LPS)] as determined by immunoblotting. HSP70 expression induced byeither heat or LPS was markedly decreased in TNFR-I KO M, whereasTNFR-II KO M exhibited HSP70 expression comparable to that in WTmice. Expression of HSP70 after heat stress in TNF- KO M was alsosimilar to that in WT mice, suggesting that induction of HSP70 byTNFR-I occurs independently of TNF-. In addition, levels ofsteady-state HSP70 mRNA were similar by RT-PCR in WT and TNFR-I KO Mdespite differences in protein expression. Furthermore, the effect of TNFR-I appears to be cell specific, since HSP70 expression in splenocytes isolated from TNFR-I KO was similar to that in WT splenocytes. These studies demonstrate that TNFR-I is required for thesynthesis of HSP70 in stressed M by a TNF-independent mechanism andsupport an intracellular role for TNFR-I.

  相似文献   

19.
Recent studies have shown that commercially available recombinant human heat shock protein 60 (rhHSP60) could induce tumor necrosis factor alpha (TNF-alpha) release from macrophages and monocytes in a manner similar to that of lipopolysaccharide (LPS), e.g. via CD14 and Toll-like receptor 4 complex-mediated signal transduction pathway. In this study, we demonstrated that a highly purified rhHSP60 preparation with low endotoxin activity (designated rhHSP60-1) was unable to induce TNF-alpha release from murine macrophages at concentrations of up to 10 microg/ml. In contrast, a less purified rhHSP60 preparation (designated rhHSP60-2) was able to induce a marked TNF-alpha release at concentrations as low as 1 microg/ml. Failure of rhHSP60-1 to induce TNF-alpha release was not due to defective physical properties because rhHSP60-1 and rhHSP60-2 contained a similar amount of HSP60 as determined by SDS gels stained with Coomassie Blue and Western blots probed with an anti-rhHSP60 antibody. Both rhHSP60 preparations also had similar enzymatic activities as judged by their ability to hydrolyze ATP. Polymyxin B added in the incubation media abolished the endotoxin activity but inhibited only about 50% of the TNF-alpha-inducing activity of rhHSP60-2. However, both the endotoxin activity and the TNF-alpha-inducing activity of rhHSP60-2 were essentially eliminated after passing through a polymyxin B-agarose column that removes LPS and LPS-associated molecules from the rhHSP60 preparation. The TNF-alpha-inducing activities of both rhHSP60-2 and LPS with equivalent endotoxin activity present in rhHSP60-2 were equally sensitive to heat inactivation. These results suggest that rhHSP60 does not induce TNF-alpha release from macrophages. Approximately 50% of the observed TNF-alpha-inducing activity in the rhHSP60-2 preparation is due to LPS contamination, whereas the rest of the activity was due to the contamination of LPS-associated molecule(s).  相似文献   

20.
Many forms of neurodegenerative disease are characterized by Wallerian degeneration, an active program of axonal destruction. Recently, the important player which enacts Wallerian degeneration was discovered, the multidomain protein SARM1. Since the SARM1 protein has classically been thought of as an innate immune molecule, its role in Wallerian degeneration has raised questions on the evolutionary forces acting on it. Here, we synthesize a picture of SARM1’s evolution through various organisms by examining the molecular and genetic changes of SARM1 and the genes around it. Using proteins that possess domains homologous to SARM1, we established distances and Ka/Ks values through 5671 pairwise species–species comparisons. We demonstrate that SARM1 diverged across species in a pattern similar to other SAM domain-containing proteins. This is surprising, because it was expected that SARM1 would behave more like its TIR domain relatives. Going along with this divorce from TIR, we also noted that SARM1’s TIR is under stronger purifying selection than the rest of the TIR domain-containing proteins (remaining highly conserved). In addition, SARM1’s synteny analysis reveals that the surrounding gene cluster is highly conserved, functioning as a potential nexus of gene functionality across species. Taken together, SARM1 demonstrates a unique evolutionary pattern, separate from the TIR domain protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号