首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Glutamate receptors (GluR) are oligomeric protein complexes formed by the assembly of four or perhaps five subunits. The rules that govern the selectivity of this process are not well understood. Here, we expressed combinations of subunits from two related GluR subfamilies in COS7 cells, the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate receptors. By co-immunoprecipitation experiments, we assessed the ability of AMPA receptor subunits to assemble into multimeric complexes. Subunits GluR1-4 associated with indistinguishable efficiency with each other, whereas the kainate receptor subunits GluR6 and 7 showed a much lower degree of association with GluR1. Using chimeric receptors and truncation fragments of subunits, we show that this assembly specificity is determined by N-terminal regions of these subunits and that the most N-terminal domain of GluR2 together with a membrane anchor efficiently associates with GluR1.  相似文献   

2.
The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of ionotropic glutamate receptors (iGluRs) mediates fast excitatory neurotransmission in the mammalian brain. Although the most N-terminal leucine/isoleucine/valine-binding protein (LIVBP) domain is suggested to play a role in the initial assembly of iGluR subunits, it is unclear how this domain is arranged and functions in intact iGluRs. Similarly, although recent crystallographic analyses indicate that the isolated ligand-binding lysine/arginine/ornithine-binding protein domain forms a 2-fold symmetric dimer, the subunit stoichiometry of intact iGluRs remains elusive. Here, we developed a new approach to address these issues. The LIVBP domain of the GluR1 subunit of AMPA receptors was replaced by leucine-zipper peptides designed to form stable symmetric dimers, trimers, tetramers, or pentamers. All these mutant GluR1s were expressed in human embryonic kidney 293 cells and were transported to the cell surface as well as wild type GluR1. Functional and biochemical analyses indicated that these oligomerizing peptides specifically controlled the formation of the expected number of subunits in a channel complex. However, the channel function was only restored by the tetramer-forming peptide. Although the purified LIVBP domain of GluR1 formed a dimmer in solution, a dimer-forming peptide could not restore the function of GluR1. Moreover, a cross-linking assay indicated that four LIVBP domains are located in proximity to each other. These results suggest that the function of the LIVBP domain is not simply to form initial dimers but to adopt a conformation compatible with the overall tetrameric arrangement of subunits in intact AMPA receptors.  相似文献   

3.
In hippocampal neurons, the exocytotic process of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-type glutamate receptors is known to depend on activation of N-methyl-d-aspartate channels and its resultant Ca(2+) influx from extracellular spaces. Here we found that brain-derived neurotrophic factor (BDNF) induced a rapid surface translocation of AMPA receptors in an activity-independent manner in developing neocortical neurons. The receptor translocation became evident within hours as monitored by [(3)H]AMPA binding and was resistant against ionotropic glutamate receptor antagonists as evidenced with surface biotinylation assay. This process required intracellular Ca(2+) and was inhibited by the blockers of conventional exocytosis, brefeldin A, botulinum toxin B, and N-ethylmaleimide. To explore the translocation mechanism of individual AMPA receptor subunits, we utilized the human embryonic kidney (HEK) 293 cells carrying the BDNF receptor TrkB. After the single transfection of GluR2 cDNA or GluR1 cDNA into HEK/TrkB cells, BDNF triggered the translocation of GluR2 but not that of GluR1. Subsequent mutation analysis of GluR2 carboxyl-terminal region indicated that the translocation of GluR2 subunit in HEK293 cells involved its N-ethylmaleimide-sensitive factor-binding domain but not its PDZ-interacting site. Following co-transfection of GluR1 and GluR2 cDNAs, solid phase cell sorting revealed that GluR1 subunits were also able to translocate to the cell surface in response to BDNF. An immunoprecipitation assay confirmed that BDNF stimulation can enhance the interaction of GluR2 with N-ethylmaleimide-sensitive factor. These results reveal a novel role of BDNF in regulating the surface expression of AMPA receptors through a GluR2-NSF interaction.  相似文献   

4.
Lateral mobility of AMPA-type glutamate receptors as well as their trafficking between plasma membrane and intracellular compartments are major mechanisms for the regulation of synaptic plasticity. Here we applied a recently established labeling technique in combination with lentiviral expression in hippocampal neurons to label individual ACP-tagged AMPA receptor subunits specifically at the surface of neurons. We show that this technique allows the differential labeling of two receptor subunits on the same cell. Moreover, these subunits are integrated into heteromeric receptors together with endogenous subunits, and these labeled receptors are targeted to active synapses. Sequential labeling experiments indicate that there is basal surface insertion of GluR1, GluR2 and GluR3, and that this insertion is strongly increased following potassium depolarization. Moreover, we found that ACP-labeled GluR3 shows the highest surface mobility among GluR1, GluR2, and GluR3. In double-infected neurons the diffusion coefficient of labeled GluR2 at the surface of living neurons is significantly higher in GluR2/GluR3-infected neurons compared to GluR1/GluR2-infected neurons suggesting a higher mobility of GluR2/3 receptors compared to GluR1/2 receptors. These results indicate that surface mobility is regulated by different subunit compositions of AMPA receptors.  相似文献   

5.
The ataxic mutant mouse stargazer is a null mutant for stargazin, a protein involved in the regulation of cell surface trafficking and synaptic targeting of AMPA receptors. The extreme C terminus of stargazin (sequence, -TTPV), confers high affinity for PDZ domain-containing proteins e.g. PSD-95. Interaction with PDZ proteins enables stargazin to fulfill its role as an AMPA receptor synaptic targeting molecule but is not essential for its ability to influence AMPA receptor trafficking to the neuronal cell surface. Using the yeast-two hybrid approach we screened for proteins that interact with the intracellular C-terminal tail of stargazin. Positive interactors included PDZ domain-containing proteins e.g. SAP97, SAP102, and PIST. Interestingly, light chain 2 of microtubule-associated protein 1 (LC2), which does not contain a PDZ domain, was also a strong interactor. This was shown to be a direct interaction that occurred upstream of the -TTPV sequence of stargazin. Immunoprecipitations of Triton X-100 soluble cerebellar extracts revealed that LC2 is pulled down not only by anti-stargazin antibodies but also anti-GluR2 antibodies suggesting that stargazin and AMPA receptor subunits associate with LC2. Immunopurified full-length, native stargazin was shown to co-associate not only with GluR2 in vivo but also with full-length, native LC2. Indeed, LC2 co-associates with stargazin when part of a tripartite complex comprising LC2-stargazin-GluR2. Since this complex was extracted using Triton X-100 and was devoid of PSD95, SAP97, and actin we postulate that LC2 is involved in trafficking of AMPA receptors in cerebellar neurons before they are anchored at the synapse.  相似文献   

6.
7.
Ionotropic glutamate receptor (iGluR) subunits contain a approximately 400-residue extracellular N-terminal domain ("X domain"), which is sequence-related to bacterial amino acid-binding proteins and to class C G-protein-coupled receptors. The X domain has been implicated in the assembly, transport to the cell surface, allosteric ligand binding, and desensitization in various members of the iGluR family, but its actual role in these events is poorly characterized. We have studied the properties of homomeric alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA)-selective GluR-D glutamate receptors carrying N-terminal deletions. Our analysis indicates that, surprisingly, transport to the cell surface, ligand binding properties, agonist-triggered channel activation, rapid desensitization, and allosteric potentiation by cyclothiazide can occur normally in the complete absence of the X domain (residues 22-402). The relatively intact ligand-gated channel function of a homomeric AMPA receptor in the absence of the X domain indirectly suggests more subtle roles for this domain in AMPA receptors, e.g. in the assembly of heteromeric receptors and in synaptic protein interactions.  相似文献   

8.
Single-particle electron microscopy (EM) combined with biochemical measurements revealed the molecular shape of SAP97 and a monomer-dimer transition that depended on the N-terminal L27 domain. Overexpression of SAP97 drove GluR1 to synapses, potentiated AMPA receptor (AMPAR) excitatory postsynaptic currents (EPSCs), and occluded LTP. Synaptic potentiation and GluR1 delivery were dissociable by L27 domain mutants that inhibit multimerization of SAP97. Loss of potentiation was correlated with faster turnover of monomeric SAP97 mutants in dendritic spines. We propose that L27-mediated interactions of SAP97 with itself or other proteins regulate the synaptic delivery of AMPARs. RNAi knockdown of endogenous PSD-95 depleted surface GluR1 and impaired AMPA EPSCs. In contrast, RNAi knockdown of endogenous SAP97 reduced surface expression of both GluR1 and GluR2 and inhibited both AMPA and NMDA EPSCs. Thus SAP97 has a broader role than its close relative, PSD-95, in the maintenance of synaptic function.  相似文献   

9.
The goal of this study was to understand how dopamine receptors, which are activated during psychostimulant administration, might influence glutamate-dependent forms of synaptic plasticity that are increasingly recognized as important to drug addiction. Regulation of the surface expression of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunit GluR1 plays a critical role in long-term potentiation, a well-characterized form of synaptic plasticity. Primary cultures of rat nucleus accumbens neurons were used to examine whether dopamine receptor stimulation influences cell surface expression of GluR1, detected using antibody to the extracellular portion of GluR1 and fluorescence microscopy. Surface GluR1 labeling on processes of medium spiny neurons and interneurons was increased by brief (5-15 min) incubation with a D1 agonist (1 microm SKF 81297). This effect was attenuated by the D1 receptor antagonist SCH 23390 (10 microm) and reproduced by the adenylyl cyclase activator forskolin (10 microm). Labeling was decreased by glutamate (10-50 microm, 15 min). These results are the first to demonstrate modulation of AMPA receptor surface expression by a non-glutamatergic G protein-coupled receptor. Normally, this may enable ongoing regulation of AMPA receptor transmission in response to changes in the activity of dopamine projections to the nucleus accumbens. When dopamine receptors are over-stimulated during chronic drug administration, this regulation may be disrupted, leading to inappropriate plasticity in neuronal circuits governing motivation and reward.  相似文献   

10.
Fast excitatory neurotransmission is mediated largely by ionotropic glutamate receptors (iGluRs), tetrameric, ligand‐gated ion channel proteins comprised of three subfamilies, AMPA, kainate and NMDA receptors, with each subfamily sharing a common, modular‐domain architecture. For all receptor subfamilies, active channels are exclusively formed by assemblages of subunits within the same subfamily, a molecular process principally encoded by the amino‐terminal domain (ATD). However, the molecular basis by which the ATD guides subfamily‐specific receptor assembly is not known. Here we show that AMPA receptor GluR1‐ and GluR2‐ATDs form tightly associated dimers and, by the analysis of crystal structures of the GluR2‐ATD, propose mechanisms by which the ATD guides subfamily‐specific receptor assembly.  相似文献   

11.
Stargazin is an accessory protein of AMPA receptors that enhances surface expression and also affects the biophysical properties of the receptor. AMPA receptor domains necessary for either of these two processes have not yet been identified. Here, we used confocal imaging and electrophysiology of heterologously expressed, fluorophore-tagged GluR1, GluR2, and stargazin to study surface expression and desensitization kinetics. Stargazin-mediated trafficking was sensitive to the nature of the AMPA receptor cytoplasmic domain. The insertion of YFP after residue 15 of the truncated cytoplasmic tail of GluR1i perturbed stargazin-mediated trafficking of the receptor but not its modulation of desensitization kinetics. This construct also failed to permit fluorescence resonance energy transfer (FRET) with stargazin in the endoplasmic reticulum (ER), whereas FRET between fluorophore-tagged stargazin and non-truncated AMPA receptors demonstrated a specific interaction between these proteins, both in the ER and the plasma membrane. Rather than encoding a specific binding site, the fluorophore-tagged C terminus may restrict access to one or more ER retention sites. Although perturbations of the C terminus impeded stargazin-mediated trafficking to the plasma membrane, the effects of stargazin on the biophysical properties of AMPA receptors (i.e. modulation of desensitization) remained intact. These data provide strong evidence that the AMPA receptor domains required for stargazin modulation of gating and trafficking are separable.  相似文献   

12.
Lee SH  Simonetta A  Sheng M 《Neuron》2004,43(2):221-236
Removal of synaptic AMPA receptors is important for synaptic depression. Here, we characterize the roles of individual subunits in the inducible redistribution of AMPA receptors from the cell surface to intracellular compartments in cultured hippocampal neurons. The intracellular accumulation of GluR2 and GluR3 but not GluR1 is enhanced by AMPA, NMDA, or synaptic activity. After AMPA-induced internalization, homomeric GluR2 enters the recycling pathway, but following NMDA, GluR2 is diverted to late endosomes/lysosomes. In contrast, GluR1 remains in the recycling pathway, and GluR3 is targeted to lysosomes regardless of NMDA receptor activation. Interaction with NSF plays a role in regulated lysosomal targeting of GluR2. GluR1/GluR2 heteromeric receptors behave like GluR2 homomers, and endogenous AMPA receptors show differential activity-dependent sorting similar to homomeric GluR2. Thus, GluR2 is a key subunit that controls recycling and degradation of AMPA receptors after internalization.  相似文献   

13.
Cerebellar long-term depression (LTD) is a major form of synaptic plasticity that is thought to be critical for certain types of motor learning. Phosphorylation of the AMPA receptor subunit GluR2 on serine-880 as well as interaction of GluR2 with PICK1 have been suggested to contribute to the endocytic removal of postsynaptic AMPA receptors during LTD. Here, we show that targeted mutation of PICK1, the GluR2 C-terminal PDZ ligand, or the GluR2 PKC phosphorylation site eliminates cerebellar LTD in mice. LTD can be rescued in cerebellar cultures from mice lacking PICK1 by transfection of wild-type PICK1 but not by a PDZ mutant or a BAR domain mutant deficient in lipid binding, indicating the importance of these domains in PICK1 function. These results demonstrate that PICK1-GluR2 PDZ-based interactions and GluR2 phosphorylation are required for LTD expression in the cerebellum.  相似文献   

14.
Regulation of AMPA receptor trafficking by N-cadherin   总被引:1,自引:0,他引:1  
Dendritic spines are dynamically regulated, both morphologically and functionally, by neuronal activity. Morphological changes are mediated by a variety of synaptic proteins, whereas functional changes can be dramatically modulated by the regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor trafficking. Although these two forms of plasticity appear to be highly coordinated, the connections between them are not fully understood. In this study the synaptic cell adhesion molecule N-cadherin was found to associate with AMPA receptors and regulate AMPA receptor trafficking in neurons. N-cadherin and beta-catenin formed a protein complex with AMPA receptors in vivo, and this association was regulated by extracellular Ca2+. In addition, these proteins co-clustered at synapses in cultured neurons. In heterologous cells and in cultured neurons, overexpression of wild-type N-cadherin specifically increased the surface expression level of the AMPA receptor subunit glutamate receptor 1 (GluR1) and this effect was reversed by a dominant-negative form of N-cadherin. Finally, GluR1 increased the surface expression of N-cadherin in heterologous cells. Importantly, recent studies suggest that N-cadherin and beta-catenin play key roles in structural plasticity in neurons. Therefore, our data suggest that the association of N-cadherin with AMPA receptors may serve as a biochemical link between structural and functional plasticity of synapses.  相似文献   

15.
The physiological responses of AMPA receptors can be modulated through the differential expression of their subunits and by modifying their number at the cell surface. Here we have studied the expression of AMPA receptor subunits (GluR1-4) mRNAs in cerebellar granule cells grown in depolarizing (25 mM K+) medium, and we have evaluated the effect of decreasing the [K+] in the culture medium for 24 h on both GluR1-4 expression (both mRNA and protein) and their presence at the plasma membrane. The expression of the four AMPAR subunits increases as the [K+] decreases, although the increase in GluR2 and GluR3 was only observed in the cell soma but not in the dendrites. Calcium entry through L-type calcium channel and CaMKIV activation are responsible for the reduction in the expression of AMPA receptor subunits in cells cultured in depolarizing conditions. Indeed, prolonged reduction of extracellular [K+] or blockage of L-type calcium channels enhanced both the surface insertion of the four AMPAR subunits and the AMPA response measured through intracellular calcium increase. These findings reveal a balanced increase in functional AMPA receptors at the surface of cells that can trigger strong increases in calcium in response to the persistent reduction of calcium entry.  相似文献   

16.
Ionotropic glutamate receptors (GluRs) are ligand-gated ion channels with a modular structure. The ion channel itself shares structural similarity, albeit an inverted membrane topology, with P-loop channels. Like P-loop channels, prokaryotic GluR subunits (e.g. GluR0) have two transmembrane segments. In contrast, eukaryotic GluRs have an additional transmembrane segment (M4), located C-terminal to the ion channel core. However, the structural/functional significance of this additional transmembrane segment is poorly defined. Although topologically similar to GluR0, mammalian AMPA receptor (GluA1) subunits lacking the M4 segment do not display surface expression. This lack of expression is not due to the M4 segment serving as an anchor to the ligand-binding domain because insertion of an artificial polyleucine transmembrane segment does not rescue surface expression. Specific interactions between M4 and the ligand-binding domain are also unlikely because insertion of polyglycines into the linker connecting them has no deleterious effects on function or surface expression. However, tryptophan and cysteine scanning mutagenesis of the M4 segment, as well as recovery of function in the polyleucine background, defined a unique face of the M4 helix that is required for GluR surface expression. In the AMPA receptor structure, this face forms intersubunit contacts with the transmembrane helices of the ion channel core (M1 and M3) from another subunit within the homotetramer. Thus, our experiments show that a highly specific interaction of the M4 segment with an adjacent subunit is required for surface expression of AMPA receptors. This interaction may represent a mechanism for regulating AMPA receptor biogenesis.  相似文献   

17.
High resolution structural studies of models of glutamate receptors (GluRs) have been limited to monomeric models of the ligand-binding site. To obtain oligomeric models of glutamate receptors that can reveal more complete structural information, we examined the assembly and ligand binding properties of two truncated versions of the GluR1 subunit. The first version, GluR1-WS, consisted of only the N-terminal extracellular segment (Ala(1)-Glu(520)) bridged by a synthetic linker to the second extracellular domain (Asn(615)-Gly(790)). The second version, GluR1-M1, consisted of the first N-terminal extracellular domain (Ala(1)-Glu(520)) bridged by a synthetic linker to a second segment containing the second extracellular domain, the third transmembrane domain, and the intracellular C-terminal domain (Asn(615)-Leu(889)). When expressed in Xenopus oocytes, GluR-WS was secreted and water-soluble; GluR1-M1 was displayed on the surface of oocytes. GluR1-WS exhibited a velocity sedimentation profile that was consistent with assembly of homooligomers and bound the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid with high affinity. These findings show that the extracellular domains of GluR1 that are sufficient for ligand binding apparently are sufficient for subunit assembly and might be a suitable target for structural studies of a water-soluble GluR1 oligomer.  相似文献   

18.
AMPA receptors are thought to be a tetrameric assembly of the subunits GluR1-4. We have examined whether two coexpressed subunits (GluR1/2) combine at random to form channels, or preferentially assemble with a specific stoichiometry and spatial configuration. The subunits carried markers controlling ion permeation and desensitization, and these properties were monitored as a function of relative expression level and subunit composition. Homomeric receptors assembled stochastically while heteromeric receptors preferentially formed with a stoichiometry of two GluR1 and two GluR2 subunits, and with identical subunits positioned on opposite sides of the channel pore. This structure will predominate if GluR1 binds to GluR2 more rapidly during receptor assembly than other subunit combinations. The practical outcome of selective heteromeric assembly is a more homogenous receptor population in vivo.  相似文献   

19.
In recent years, a role for AMPA receptors as modulators of presynaptic functions has emerged. We have investigated the presence of AMPA receptor subunits and the possible dynamic control of their surface exposure at the presynaptic membrane. We demonstrate that the AMPA receptor subunits GluR1 and GluR2 are expressed and organized in functional receptors in axonal growth cones of hippocampal neurons. AMPA receptors are actively internalized upon activation and recruited to the surface upon depolarization. Pretreatment of cultures with botulinum toxin E or tetanus toxin prevents the receptor insertion into the plasma membrane, whereas treatment with alpha-latrotoxin enhances the surface exposure of GluR2, both in growth cones of cultured neurons and in brain synaptosomes. Purification of small synaptic vesicles through controlled-pore glass chromatography, revealed that both GluR2 and GluR1, but not the GluR2 interacting protein GRIP, copurify with synaptic vesicles. These data indicate that, at steady state, a major pool of AMPA receptor subunits reside in synaptic vesicle membranes and can be recruited to the presynaptic membrane as functional receptors in response to depolarization.  相似文献   

20.
Here, we show that disruption of N-ethylmaleimide-sensitive fusion protein- (NSF-) GluR2 interaction by infusion into cultured hippocampal neurons of a blocking peptide (pep2m) caused a rapid decrease in the frequency but no change in the amplitude of AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs). N-methyl-D-aspartate (NMDA) receptor-mediated mEPSCs were not changed. Viral expression of pep2m reduced the surface expression of alpha-amino-3-hydroxy-5-methyl-isoxazolepropionate (AMPA) receptors, whereas NMDA receptor surface expression in the same living cells was unchanged. In permeabilized neurons, the total amount of GluR2 immunoreactivity was unchanged, and a punctate distribution of GluR2 was observed throughout the dendritic tree. These data suggest that the NSF-GluR2 interaction is required for the surface expression of GluR2-containing AMPA receptors and that disruption of the interaction leads to the functional elimination of AMPA receptors at synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号