首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium transport by isolated sarcoplasmic reticulum vesicles has been measured by means of a calcium-stat method, utilizing a calcium-specific electrode as sensor. Free calcium ion levels were maintained between 10?7 and 10?4m during assay, without the use of calcium buffering agents. The method may be used at temperatures between 5 and 40°C and in the pH range 5.0 to 8.5. Measured initial rates of ATP-dependent calcium transport at 10?5m free calcium, 20°C, pH 7.2, and 100 μg sarcoplasmic reticulum protein per milliliter were between 1.5 and 2.3 μmol min?1 mg?1, with a coefficient of variation of 2%.  相似文献   

2.
This report describes a kinetic analysis of energy-linked Ca2+ transport in rat liver mitochondria, in which a ruthenium red/EGTA [ethanedioxy-bis(ethylamine)-tetraacetic acid] quenching technique has been used to measure rates of 45Ca2+ transport. Accurately known concentrations of free 45Ca2+ were generated with Ca2+/nitrilotriacetic acids buffers for the determination of substrate/velocity relationships. The results show that the initial velocity of transport is a sigmoidal function of Ca2+ concentration (Hill coefficient = 1.7), the Km being 4 muM Ca4 at 0 degrees C and pH 7.4. These values for the Hill coefficient and the Km remain constant in the presence of up to 2 mM phosphate, but with 10 mM acetate both parameters are increased slightly. Both permeant acids increase the maximum velocity to an extent dependent on their concentration. The Ca2+-binding site(s) of the carrier contains a group ionizing at pH approximately 7.5 at 0 degrees C, which is functional in the dissociated state. The stimulatory effect of permeant acids is ascribed to their facilitating the release of Ca2+ from the carrier to the internal phase, an interpretation which is strengthened by the lack of effect of the permeant anion SCN- on Ca2+ transport. Studies on the time-course of Ca2+ uptake and of EFTA-induced Ca2+ efflux from pre-loaded mitochondria demonstrate the reversibility of the carrier in respiring mitochondria and the extent to which this property is influenced by permeant acids. These data are accommodated in a carrier mechanism based on electrophoretic transport of Ca2+ bound to pairs of interacting acidic sites.  相似文献   

3.
The crustacean hepatopancreas is an epithelial-lined, multifunctional organ that, among other activities, regulates the flow of calcium into and out of the animal's body throughout the life cycle. Transepithelial calcium flow across this epithelial cell layer occurs by the combination of calcium channels and cation exchangers at the apical pole of the cell and by an ATP-dependent, calcium ATPase in conjunction with a calcium channel and an Na+/Ca2+ antiporter in the basolateral cell region. The roles of intracellular organelles such as mitochondria, lysosomes, and endoplasmic reticulum (ER) in transepithelial calcium transport or in transient calcium sequestration are unclear, but may be involved in transferring cytosolic calcium from one cell pole to the other. The ER membrane has a complement of ATP-dependent calcium ATPases (SERCA) and calcium channels that regulate the uptake and possible transfer of calcium through this organelle during periods of intense calcium fluxes across the epithelium as a whole. This investigation characterized the mechanisms of calcium transport by lobster hepatopancreatic ER vesicles and the effects of drugs and heavy metals on them. Kinetic constants for 45Ca2+ influx under control conditions were K(n) (m)=10.38+/-1.01 microM, J(max)=14.75+/-1.27 pmol/mg protein x sec, and n=2.53+/-0.46. The Hill coefficient for 45Ca2+ influx under control conditions, approximating 2, suggests that approximately two calcium ions were transported for each transport cycle in the absence of ATP or the inhibitors. Addition of 1 mM ATP to the incubation medium significantly (P<0.01) elevated the rate of 45Ca2+ influx at all calcium activities used and retained the sigmoidal nature of the transport relationship. The kinetic constants for 45Ca2+ influx in the presence of 1 mM ATP were K(n) (m)=12.76+/-0.91 microM, J(max)=25.46+/-1.45 pmol/mg protein x sec, and n=1.95+/-0.15. Kinetic analyses of ER 65Zn2+ influx resulted in a sigmoidal relationship between transport rate and zinc activity under control conditions (K(n) (m)=38.63+/-0.52 microM, J(max)=19.35+/-0.17 pmol/mg protein x sec, n=1.81+/-0.03). The Addition of 1 mM ATP enhanced 65Zn2+ influx at each zinc activity, but maintained the overall sigmoidal nature of the kinetic relationship. The kinetic constants for zinc influx in the presence of 1 mM ATP were K(n) (m)=34.59+/-2.31 microM, J(max)=26.09+/-1.17 pmol/mg protein x sec, and n=1.96+/-0.17. Both sigmoidal and ATP-dependent calcium and zinc influxes by ER vesicles were reduced in the presence of thapsigargin and vanadate. This investigation found that lobster hepatopancreatic ER exhibited a thapsigargin- and vanadate-inhibited, SERCA-like, calcium ATPase. This transporter displayed cooperative calcium transport kinetics (Hill coefficient, n approximately 2.0) and was inhibited by the heavy metals zinc and copper, suggesting that the metals may reduce the binding and transport of calcium when they are present in the cytosol.  相似文献   

4.
The effects of several factors that affect the sugar transport activity in rat epididymal fat cells were studied. The transport activity was assessed semiquantitatively by measuring the uptake of 3-O-methyl-d-glucose by the oil-flotation method. The transport activity was stimulated by mechanical agitation, such as centrifugation of cells. This effect was transient. When agitated cells were incubated at 37 °C with gentle shaking, their transport activity declined. The decline was often facilitated by the addition of glucose or pyruvate. Presumably some cell preparations were low in the source of metabolic energy that was required for this recovery process. When cells were exposed to a high concentration of insulin, washed, and suspended in fresh buffer, the effect of insulin (plus that of mechanical agitation) declined after a certain lag period. The length of this period was a function of the initial insulin concentration. The incubation temperature had different effects on the basal and plus-insulin activities. The basal activity at 25 °C was higher than that at 37 °C, while the plus-insulin activity was lower at 25 °C than at 37 °C.  相似文献   

5.
The calcium ion dependence of calcium transport by isolated sarcoplasmic reticulum vesicles from rabbit skeletal muscle has been investigated by means of the Calcium-stat method, in which transport may be measured in the micromolar free calcium ion concentration range, in the absence of calcium buffers. At pH 7.2 and 20 degrees C, ATP, in the range 1 to 10 mM, decreased [Ca2+]0.5 from 2.0 microM to 0.3 microM and decreased Vmax of oxalate-supported transport from 0.5 to 1.3 mumol min-1 mg-1. Simultaneous measurements of transport and of ATPase activity in the range 0.8 to 10 microM free Ca2+ showed a ratio of 2.1 calcium ions translocated/molecule of ATP hydrolyzed. Transport, in the presence of 5 mM ATP, ceased when calcium ion concentration fell to 0.6 to 1.2 microM, whilst ATPase activity of 90 nmol of ATP hydrolyzed min-1 mg-1 persisted. The data obtained by the Calcium-stat method differed from those described previously using calcium buffers, in that they showed lower apparent affinities of the transport site for calcium ions, more marked sigmoidal behavior, an effect of ATP concentration on Ca2+ concentration dependence and lower ATPase activity in the absence of transport. The calcium complex of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (CaEGTA) had no effect when transport was stimulated maximally at saturating free Ca2+ concentrations. However, at calcium ion levels below [Ca2+]0.5, 70 microM CaEGTA stimulated transport to rates of 20 to 45% of Vmax. Half-maximal stimulation of transport occurred at 19 microM CaEGTA. CaEGTA, 50 microM, decreased [Ca2+]0.5, determined at 5 mM ATP, from 1.3 microM to 0.45 microM. It is proposed that a ternary complex, E . Ca2+ . EGTA4-, is formed as an intermediate species during CaEGTA-stimulated calcium transport by sarcoplasmic reticulum membranes and stimulates the calcium pump at limiting free Ca2+ ion concentration.  相似文献   

6.
THE EGTA — ruthenium red quench technique was used to obtain initial-velocity plots of Ca2+ uptake by skeletal-muscle mitochondria. The Km was 5 μM and the Hill coefficient 1.9 at both 0° and 10°C. Inorganic phosphate stimulated and Mg2+ inhibited initial rates of transport. In experiments on Ca2+ release, the Na+Ca2+ exchange was demonstrated. Factors influencing Ca2+ release during anaerobiosis include phosphate concentration and extent of Ca2+ loading. The results are discussed in relation to the possible participation of mitochondria in the calcium-ion regulation of muscle.  相似文献   

7.
The effects of calcium ion on the adenylate cyclase system was studied in isolated, renal basal-lateral plasma membranes of the rat. Bovine parathyroid hormone (bPTH) and a guanyl triphosphate analogue, Gpp(NH)p were used to stimulate cyclase activity. Under conditions of maximal stimulation, calcium ions inhibited cyclic adenosine monophosphate (cAMP) formation, the formation rate falling exponentially with the calcium concentration. Fifty percent inhibition of either bPTH- or Gpp(NH)p-stimulated activity was given by approximately 50 μM Ca++. Also the Hill coefficient for the inhibition was close to unity in both cases. The concentration of bPTH giving half-maximal stimulation of cAMP formation (1.8 × 10?8 M) was unchanged by the presence of calcium. These data suggest that calcium acts at some point other than the initial hormone-receptor interaction, presumably decreasing the catalytic efficiency of the enzymic moiety of the membrane complex.  相似文献   

8.
The mitochondrial calcium uniporter behaves as a cooperative mechanism, where the velocity is dependent on [Ca2+]ex. Transport kinetics follows a sigmoidal behavior with a Hill coefficient near 2.0, indicating the binding of at least two calcium molecules. Calcium transport in mitochondria is dependent on a negative inner membrane potential and is inhibited by policationic ruthenium compounds. In this study, calcium uptake activity was reconstituted into cytochrome oxidase vesicles by incorporating solubilized mitochondrial proteins. Calcium accumulation plotted against increasing Ca2+ concentrations followed a sigmoidal behavior with a Hill coefficient of 1.53. The uptake was sensitive to ruthenium policationic inhibitors, e.g. ruthenium red and Ru360. After mitochondrial proteins were separated by preparative isoelectrofocusing and incorporated into cytochrome oxidase vesicles, two peaks of calcium uptake activity were recovered. One of the activities was inhibited by Ru360, while the second activity was insensitive to Ru360 and was associated with proteins focused at very acidic isoelectric points. By using a thiol-group crosslinker and radiolabeled Ru360, we proposed a scheme of partial dissociation of the uniporter inhibitor-binding subunit under acidic conditions.  相似文献   

9.
The effect of temperature on evaporation and biodegradation rates during soil bioventing (SBV) was studied for a mixture of toluene and decane in bench-scale soil columns at a continuous air flow and consecutively at two different flow rates. The effect of temperature on SBV was monitored by GC headspace analysis of contaminant, CO2 and O2 concentrations in the soil gas over time. Separation of evaporation and biodegradation processes into three different phases based on their rates was used together with Q10 and E10 (values that give the factor by which biodegradation and evaporation rates increase when the temperature is raised by 10 degrees) to compare quantitatively the removal kinetics at 10 and 20°C. Adsorption of toluene and decane onto soil (a phase partitioning process) at 20 and 10°C was described with linear Freundlich isotherms. A temperature decrease from 20 to 10°C resulted in an increase of soil-air partitioning coefficients by a factor of 1.8 and of 2.1 for toluene and decane, respectively. The mean Q10 value for the biodegradation of toluene was found to be 2.2 for a temperature rise from 10 to 20°C. A toluene content in the soil gas above 75% of the saturation concentration inhibited biodegradation at both temperatures. The SBV efficiency was dependent on temperature with respect to remediation time. SBV at 20°C resulted in a 99.8% and a 98.7% reduction of toluene and decane initial concentrations, respectively. To reach similar results at 10°C, about 1.6 times as much time and 1.4 times as much air were required; however, at both temperatures the total amounts of biodegraded hydrocarbons were approximately the same. The evaporation-to-biodegradation ratios at 20°C were 82.5:17.5 for toluene and 16:84 for decane, whereas at 10 °C they were 71:29 and 2:98, respectively. A comparison of Q10 values showed that, except during the initial phase of SBV, only a modest decrease in biodegradation rates should be expected after a decrease in temperature from 20 to 10°C. Flow rate reduction had a significant impact on the toluene evaporation rate at a higher temperature, whereas for decane this rate was only slightly affected by temperature. In contrast to decane, the ratio between toluene vapor pressures at 20 and 10°C may be used to predict the removal of toluene by evaporation during the above-mentioned phases of SBV, when evaporation is important.  相似文献   

10.
J Myung  W P Jencks 《FEBS letters》1991,278(1):35-37
The E-E* model for calcium pumping by the CaATPase of sarcoplasmic reticulum includes two distinct conformational states of the enzyme, E and E*. Exterior Ca2+ binds only to E and interior Ca2+ binds only to E*. Therefore, it is expected that there will be competition between the binding of calcium to the unphosphorylated enzyme from the two sides of the membrane. The equilibrium concentration of cECa2, the enzyme with Ca2+ bound at the exterior site, was measured at different Ca2+ concentrations with empty sarcoplasmic reticulum vesicles (SRV) and with SRV loaded with 40 mM Ca2+ by reaction with 0.5 mM [gamma-32P]ATP plus 20 mM EGTA for 13 ms (100 mM KCl, 5 mM MgSO4, 40 mM Mops/KOH, pH 7.0, 25 degrees C). The sigmoidal dependence on free exterior calcium concentration of the concentration of cECa2, measured as [32P]phosphoenzyme, is identical with empty and loaded SRV, within experimental error. The value of K0.5 is 2.8 microM, and the Hill coefficient is 2. This result shows that there is no competition between binding of Ca2+ to the outside and the inside of the membrane. This is consistent with a model in which the vectorial specificity for calcium binding is controlled by the chemical state of the enzyme, rather than a simple conformational change. It is concluded that there are not two interconverting forms of the free enzyme, E and E*, instead the vectorial specificity for binding and dissociation of Ca2+ is determined by the state of phosphorylation of the CaATPase.  相似文献   

11.
A Dascalu  Z Nevo  R Korenstein 《FEBS letters》1991,282(2):305-309
Activation of the Na+/H+ exchanger following isosmotic and hyperosmotic stimuli was investigated in an osteoblast cell line (RCJ 1.20). The pH dependence of the transporter activity was studied under conditions of abolished proton gradient (pHi = pHo) across the membrane. The isotonic response is Na+o dependent, increases towards higher pH-values, displaying a sigmoidal dependence on pHi = o (Hill coefficient approximately 1.8) and is controlled by pHo. The greater than first order dependence on pH suggests that H+o inhibits the exchange beyond the rate expected from competition with the Na+o alone. This may be due to the existence of an external H+ regulatory site with a negative cooperative effect on the intra- or extracellular transport site. The hyperosmotic activation is Na+o independent, parallels the sigmoidal pH dependence of the isosmotic stimulus (Hill coefficient approximately 2.0) and is mediated through an increase of the Vmax without a change in the intracellular proton sensitivity.  相似文献   

12.
The calcium chelators EGTA, EDTA and cyclohexanediamine tetraacetic acid (CDTA) enhance initial rates of Nai+-dependent Ca2+ uptake by cardiac sarcolemmal vesicles. The affinity of the exchanger for calcium is increased in the presence of the chelators to an extent dependent on chelator concentration and on the range of free calcium concentrations over which the phenomenon is measured. For free Ca2+ in the range of 4 μM or less, the apparent Km is lowered to approximately 1 μM. The Ca-chelator complex appears to be the species which causes stimulation. The effect is not due to sequestration of contaminating heavy metal ions in the sarcolemmal membrane preparations or the solutions used in experiments. Caution is suggested in the use of EGTA or EDTA as calcium buffers when measuring calcium dependence of phenomena involving calcium binding and transport, because the added chelator may alter the properties of the system.  相似文献   

13.
A calcium ion-specific electrode has been used to study calcium transport by isolated,hepatic mitochondria. The methodology used requires only a sensitive pH meter operated in the millivolt mode with the electrode. Free calcium ion concentrations may be followed continuously. Using incubation conditions which cause release of intramitochondrial calcium, the calcium electrode system may also be used to determine total. intramitochondrial calcium. Techniques for the calibration of the electrode response are discussed. Free calcium ion concentrations have been calculated from total calcium concentrations and the association constants for the binding species present in the assay medium. The observation that the electrode response is linear to submicromolar concentrations allows calculation of a linear least-squares fit of millivolt reading to computed free calcium ion concentration. A computer program written in BASIC for these computations is included in Appendix material. The half-maximal rate constant for mitochondrial calcium uptake has been found to occur at a free calcium ion concentration of 6.5 μm. The interaction or Hill coefficient for the process is 2.3, indicating positive cooperativity.  相似文献   

14.
The kinetics of porin incorporation into black lipid membranes (BLM) made of phosphatidylinositol (PI) or oxidized cholesterol (Ox Ch) were studied by means of alternating current; the set-up was able to acquire resistance and capacitance simultaneously by means of a mixed double-frequency approach at 1 Hz and 1 KHz, respectively. Conductance was dependent on the interaction between protein-forming pores and lipids. For PI membranes below a porin concentration of 12.54 ng/ml, there was no membrane conductivity, whereas at 200 ng/ml a steady-state value was reached. Different behavior was displayed by Ox Ch membranes, in which a concentration of 12.54 ng/ml was sufficient to reach a steady state. The incorporation kinetics when porin was added after membrane formation were sigmoidal. When porin was present in the medium before membrane formation, the kinetics were sigmoidal for PI membranes but became exponential for Ox Ch membranes. Furthermore, for BLM made of PI, the conductance-versus-porin concentration relationship is sigmoidal, with a Hill coefficient of 5.6 +/- 0.07, which is functional evidence corroborating the six-channel repeating units seen previously. For BLM made of Ox Ch, this relationship followed a binding isotherm curve with a Hill coefficient of 0.934 +/- 0.129.  相似文献   

15.
Fluorescein mercuric acetate causes the unwinding of DNA and binds to the separated bases. This unwinding process can be followed by measuring absorption changes of this reagent. For untreated calf thymus DNA, the initial rate was very slow, and the shape of the kinetic curve was sigmoidal. When double-strand breaks of DNA were produced by DNase II treatment or sonication, the initial rate increased and the sigmoidal character disappeared. The initial rate was shown to be proportional to the concentration of helix ends. From this relation the rate of unwinding was estimated to be 2.0 base pairs/sec at 1.0 × 10?5M fluorescein mercuric acetate and 25°C. DNase I treatment, which produces single-strand breaks and a smaller number of double-strand breaks, also increased the initial rate. However, this increase was due only to the double-strand breaks, that is, single-strand breaks had no significant effect on the initial rate. Also, uv irradiation increased the initial rate linearly with uv dose, at least up to 2 × 105 erg/mm2, suggesting that this increase is due to photoproducts other than usual pyrimidine dimers. We discuss the usefulness of this kinetic method in structural studies of DNA.  相似文献   

16.
17.
Okuno D  Asaumi M  Muneyuki E 《Biochemistry》1999,38(17):5422-5429
The capacitive photoelectric current responses of the halorhodopsins from Halobacterium salinarum (shR) and from Natronobacterium pharaonis (phR) were studied using membrane fragments adsorbed onto a thin polyester film. The electric current of shR was not much affected by ionic strength or cations present in the medium (Na+, K+, Li+, Mg2+, or Ca2+), but was greatly influenced by the Cl- concentration. It increased biphasically as the Cl- concentration increased from 0 to 5 M, then decreased and almost vanished at around 10 or 12 M. Apparent Kd's of about 0.1 and 6 M were deduced for the Kd of Cl- uptake sites. We had to assume a sigmoidal increase of Cl- binding with a Hill coefficient of about 8 at the cytoplasmic, Cl- release site(s). The half-maximum Cl- concentration for the sigmoidal binding was about 7.5 M. The electric current of phR had a maximum around 30 mM Cl- and biphasically decreased at higher Cl- concentrations. The apparent Kd for the Cl- uptake site was 5 mM. The biphasic decrease in the transport activity was explained by assuming a sum of simple hyperbolic type binding (Kd = 0.2 M) and sigmoidally increasing binding with a Hill coefficient of 10 on the cytoplasmic side. The half-maximum concentration of the latter cooperative binding was 5.6 M. This great difference between the apparent affinity of the release site of shR and that of phR can explain the previously reported difference between the Cl- dependency of their photocycles. These results also suggest that there may be multiple Cl- binding sites in the Cl- transport pathway. A simple sequence of Cl- transport steps based on a multiion channel model is proposed.  相似文献   

18.
Isolated mussel mitochondria produced a less pronounced transient stimulation of respiration upon the addition of Ca2+ in a reaction medium containing Pi and a slower rate of Ca2+ transport compared to rat liver mitochondria. The initial rates of Ca2+ transport in the absence of Pi were more similar and both types of mitochondria possessed a sigmoidal relationship between the initial rate of Ca2+ transport and the free Ca2+ concentration (‘Km’ ? 5μM). Ruthenium red produced an equal maximal inhibition of the initial rate of Ca2+ transport in both types of mitochondria but mussel mitochondria were rather more resistant to the inhibitor. The major difference found was that approximately 15 nmoles La3+ mg protein?1 was required to produce maximal inhibition of the initial rate of Ca2+ transport in mussel mitochondria compared to approximately 1.0 nmole La3+ mg protein?1 in rat liver mitochondria. It is concluded that mussel mitochondria possess a comparable Ca2+ transporter to vertebrate mitochondria and possible reasons for resistance to La3+ are discussed.  相似文献   

19.
We have studied the ability of occupied insulin receptors to activate (or couple to) the glucose transport system in isolated rat adipocytes. Maximal insulin action is seen when only a small proportion (<10%) of the receptors is occupied, and this fraction can be rapidly filled (<5 s) at an insulin concentration of 100 ng/ml. Additionally, control studies show that when the extracellular glucose concentration is tripled, the rate of transport triples within 10 s, indicating that changes in transport activity can be observed nearly instantaneously. Therefore, when cells are exposed to a high insulin concentration (100 ng/ml), any delay in the onset of insulin action beyond this time must be due to the time required for coupling of occupied insulin receptors to the glucose transport system. At 24 °C there is a lag of at least 200 s after insulin addition before a significant stimulation of 2-deoxyglucose transport is seen. The length of this lag phase is temperature dependent, decreasing to 45 s at 37 °C. An Arrhenius plot of the coupling lag is linear, with an activation energy of 25 kcal/mol. After the delay in the onset of initial transport activation the full response appears in a gradual manner, requiring 20 min at 24 °C to attain maximal stimulation. The time required for the full insulin response to appear is also temperature dependent, decreasing to 5 min at 37 °C. Similar results were obtained for the kinetics of insulin activation of 3-O-methyl glucose transport. Thus, the coupling of insulin receptors to the glucose transport system can be divided into two components: an initial absolute time lag followed by a gradual incremental process before the maximal, or full, effect of insulin is achieved. In conclusion, (1) there is an absolute delay in the onset of the insulin's initial action on glucose transport, (2) after an initial delay, activation of transport proceeds in a gradual manner, and (3) the coupling process between insulin receptors and the glucose transport system is temperature dependent and can be described by a linear Arrhenius plot. This suggests that the rate of activation is not limited by membrane fluidity.  相似文献   

20.
The effect of growth temperature on photosynthetic metabolism was studied in the kelp Laminaria saccharina (L.) Lamour. Photosynthesis was subject to phenotypic adaptation, with almost constant photosynthetic rates being achieved at growth temperatures between 0 and 20° C. This response involved: (1) an inverse relationship between growth temperature and photosynthetic capacity, (2) a reduction in the Q10 value for photosynthesis of L. saccharina grown at 0 and 5° C compared with 10, 15 and 20° C grown sporophytes, and (3) an acquired tolerance of photosynthesis to temperatures between 15–25° C (which inhibited photosynthesis in 0 and 5° C grown L. saccharina) in sporophytes grown at 10, 15 and 20° C. The physiological basis of these adaptations is discussed in terms of observed changes in activities and kinetics of the Calvin cycle enzyme ribulose-1, 5-bisphosphate carboxylase (oxygenase) and efficiency of light harvesting-electron transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号