首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epstein-Barr virus lacking glycoprotein gp85 cannot infect B-cells and epithelial cells. The gp85 belongs to the molecular complex required for virus invasion of B-lymphocyte or epithelial cells. Moreover, there is evidence that gp85 is necessary for virus attachment to epithelial cells. Thirty-six peptides from the entire gp85-sequence were tested in epithelial and lymphoblastoid cell line binding assays to identify gp85-regions involved in virus-cell interaction. Five of these peptides presented high binding activity to Raji, Ramos, P3HR-1, and HeLa cells, but not to erythrocytes; Raji-cell affinity constants were between 80 and 140nM. Of these five peptides, 11435 ((181)TYKRVTEKGDEHVLSLVFGK(200)), 11436 ((201)TKDLPDLRGPFSYPSLTSAQ(220)), and 11438 ((241)YFVPNLKDMFSRAVTMTAAS(260)) bound to a 65kDa protein on Raji-cell surface. These peptides and antibodies induced by them (recognising live EBV-infected cells) inhibited Epstein-Barr virus interaction with cord blood lymphocytes. It is thus probable that gp85-regions defined by peptides 11435, 11436, and 11438 are involved in EBV invasion of B-lymphocytes.  相似文献   

2.
Epstein-Barr virus (EBV) codes for at least three glycoproteins, gp350, gp220, and gp85. The two largest glycoproteins are thought to be involved in the attachment of the virus to its receptor on B cells, but despite the fact that gp85 induces neutralizing antibody, no function has been attributed to it. As an indirect approach to understanding the role of gp85 in the initiation of infection, we determined the point at which a neutralizing, monoclonal antibody that reacted with the glycoprotein interfered with virus replication. The antibody had no effect on virus binding. To examine the effect of the antibody on later stages of infection, the fusion assay of Hoekstra and colleagues (D. Hoekstra, T. de Boer, K. Klappe, and J. Wilshaut, Biochemistry 23:5675-5681, 1984) was adapted for use with EBV. The virus was labeled with a fluorescent amphiphile that was self-quenched at the high concentration obtained in the virus membrane. When the virus and cell membrane fused, there was a measurable relief of self-quenching that could be monitored kinetically. Labeling had no effect on virus binding or infectivity. The assay could be used to monitor virus fusion with lymphoblastoid lines or normal B cells, and its validity was confirmed by the use of fixed cells and the Molt 4 cell line, which binds but does not internalize the virus. The monoclonal antibody to gp85 that neutralized virus infectivity, but not a second nonneutralizing antibody to the same molecule, inhibited the relief of self-quenching in a dose-dependent manner. This finding suggests that gp85 may play an active role in the fusion of EBV with B-cell membranes.  相似文献   

3.
目的:利用大肠杆菌BL21诱导表达GST-gp85融合蛋白,进行动物免疫制备多克隆抗体。方法:通过PCR反应从EB病毒转染的绒猴淋巴细胞系B95-8细胞中获得了gp85BXLF2基因,将此基因克隆到大肠杆菌表达载体pGEX-5T,得到阳性克隆pGEX5T-85。转化大肠杆菌BL21,IPTG诱导表达重组蛋白,表达产物经SDS-PAGE分析、尿素变性、复性和亲和层析纯化,并用初步纯化的蛋白免疫BALB/c小鼠。结果:SDS-PAGE可见在相对分子质量约100000处有蛋白条带,Western印迹表明该蛋白可与免疫的BALB/c小鼠血清及鼻咽癌血清起特异性反应。结论:在大肠杆菌细胞中成功表达了GST-gp85融合蛋白,该蛋白具有较好的抗原性和免疫原性。  相似文献   

4.
The gene encoding the Epstein-Barr virus envelope glycoproteins gp350 and gp220 was inserted downstream of the cytomegalovirus immediate-early, Moloney murine leukemia virus, mouse mammary tumor virus, or varicella-zoster virus gpI promoters in vectors containing selectable markers. Host cell and recombinant vector systems were defined which enabled the isolation of rodent or primate cell clones which expressed gp350/220 in substantial quantities. Continued expression of gp350/220 required maintenance of cells under positive selection for linked markers and periodic cloning. gp350/220 expressed in various host cells varied slightly in electrophoretic mobility, probably reflecting differences in glycosylation. Insertion of a stop codon into the gp350/220 open reading frame, upstream of the putative membrane anchor sequence, resulted in efficient secretion of truncated gp350 and gp220 from rat pituitary (GH3) cells. gp350/220 expressed in mammalian cells is highly immunogenic and elicits virus-neutralizing antibodies when administered to mice.  相似文献   

5.
Entry of an enveloped virus such as Epstein-Barr virus (EBV) into host cells involves fusion of the virion envelope with host cell membranes either at the surface of the cell or within endocytic vesicles. Previous work has indirectly implicated the EBV glycoprotein gp85 in this fusion process. A neutralizing monoclonal antibody to gp85, F-2-1, failed to inhibit binding of EBV to its receptor but interfered with virus fusion as measured with the self-quenching fluorophore octadecyl rhodamine B chloride (R18) (N. Miller and L. M. Hutt-Fletcher, J. Virol. 62:2366-2372, 1988). To test further the hypothesis that gp85 functions as a fusion protein, EBV virion proteins including or depleted of gp85 were incorporated into lipid vesicles to form virosomes. Virosomes were labeled with R18, and those that were made with undepleted protein were shown to behave in a manner similar to that of R18-labeled virus. They bound to receptor-positive but not to receptor-negative cells and fused with Raji cells but not with receptor-positive, fusion-incompetent Molt 4 cells; monoclonal antibodies that inhibited binding or fusion of virus inhibited binding and fusion of virosomes, and virus competed with virosomes for attachment to cells. In contrast, virosomes made from virus proteins depleted of gp85 by immunoaffinity chromatography remained capable of binding to receptor-positive cells but failed to fuse. These results are compatible with the hypothesis that gp85 is actively involved in the fusion of EBV with lymphoblatoid cell lines and suggest that the ability of antibody F-2-1 to neutralize infectivity of EBV represents a direct effect on the function of gp85 as a fusion protein.  相似文献   

6.
D T Rowe  L Hall  I Joab    G Laux 《Journal of virology》1990,64(6):2866-2875
The terminal protein (TP) gene produces two overlapping mRNAs in latently infected lymphocytes that are predicted to encode the similar polypeptides TP1 (497 amino acids) and TP2 (378 amino acids), with TP1 exon 1 providing 119 extra unique residues at the N terminus. Rabbit antisera were raised to procaryotic fusion proteins and used to detect expression of a predicted 53-kilodalton (kDa) TP product in transfected 293 cells and latently infected lymphocytes. Fractionation of transfected 293 cells showed this protein to be localized to an integral membrane preparation. The same fraction of latently infected lymphocytes contained proteins of 53 and 27 to 39 kDa as determined by Western immunoblotting with the TP-specific rabbit antisera. Immunoprecipitation of TP products from 35S-labeled human lymphoblastoid cells (CR/B95-8) was used in pulse-chase experiments and showed that TP1 was a labile protein with a half-life of approximately 2 to 4 h. The anti-fusion protein serum detected a 53-kDa TP1 and degradation products in the range of 25 to 35 kDa. A panel of Burkitt's lymphoma cell lines and cell lines established with virus recovered from the BL cells were analyzed by Western immunoblotting and found to contain the 53-kDa TP1 product, its degradation products, or both. Only two EBV-positive BL cell lines (BL72 and Wewak II) were negative in this assay. The results suggest that a labile TP1 protein may be expressed by most, if not all, EBV-infected cell lines.  相似文献   

7.
Subgroup J Avian leucosis virus (ALV-J) strain NX0101 was inoculated into chicken embryo fibroblasts (CEF) monolayers in 6-well plates. The six wells of CEF inoculated with NX0101 were divided into groups A (without anti-ALV-J serum in the medium) and B (with anti-ALV-J serum in the medium), then viruses from each well of both groups were separately passed in CEF every 6 d and formed their independent passage lineages. For each lineage of both groups, gp85 genes of the viruses in the 10th, 20th and 30th passages were amplified, cloned and sequenced. The sequence data indicated that the homologies of gp85 at aa level between the primary virus and the passed viruses of different passages of 3 lineages in group A were 97.7%–99.7%; and the homologies of gp85 between the primary virus and the passed viruses of different passages of 3 lineages in group B were 93.8%–96.1%. Analysis of the ratios of nonsynonium (NS) vs synonium (S) mutations of nucleic acids demonstrated that NS/S in 3 highly variable (hr-) regions at aa#110–120, aa#141–151 and aa#189–194 of gp85 in 3 lineages of group A were 2 (8/4), 1(3/3) and 1.3 (4/3), however, NS/S in the same 3 hr-regions of group B were 4.1 (13/3), 4.7 (14/3) and 3.3 (11/3). This study is the first demonstration of influence of immune selective pressure on evolution of ALV-J gp85 by specific antibodies under the controlled in vitro experiments.  相似文献   

8.
9.
Subgroup J Avian leucosis virus (ALV-J) strain NX0101 was inoculated into chicken embryo fibroblasts (CEF) monolayers in 6-well plates. The six wells of CEF inoculated with NX0101 were divided into groups A (without anti-ALV-J serum in the medium) and B (with anti-ALV-J serum in the medium), then viruses from each well of both groups were separately passed in CEF every 6 d and formed their independent passage lineages. For each lineage of both groups, gp85 genes of the viruses in the 10th, 20th and 30th passages were amplified, cloned and sequenced. The sequence data indicated that the homologies of gp85 at aa level between the primary virus and the passed viruses of different passages of 3 lineages in group A were 97.7%-99.7%; and the homologies of gp85 between the primary virus and the passed viruses of different passages of 3 lineages in group B were 93.8%-96.1%. Analysis of the ratios of nonsynonium (NS) vs synonium (S) mutations of nucleic acids demonstrated that NS/S in 3 highly variable (hr-) regions at aa#110-120, aa#141-151 and aa#189-194 of gp85 in 3 lineages of group A were 2 (8/4), 1(3/3) and 1.3 (4/3), however, NS/S in the same 3 hr-regions of group B were 4.1 (13/3), 4.7 (14/3) and 3.3 (11/3). This study is the first demonstration of influence of immune selective pressure on evolution of ALV-J gp85 by specific antibodies under the controlled in vitro experiments.  相似文献   

10.
Epstein-Barr virus (EBV) invasion of B-lymphocytes involves EBV gp350/220 binding to B-lymphocyte CR2. The anti-gp350 monoclonal antibody (mAb)-72A1 Fab inhibits this binding and therefore blocks EBV invasion of target cells. However, gp350/220 regions interacting with mAb 72A1 and involved in EBV invasion of target cells have not yet been identified. This work reports three gp350/220 regions, defined by peptide 11382, 11389, and 11416 sequences, that are involved in EBV binding to B-lymphocytes. Peptides 11382, 11389, and 11416 bound to CR2(+) but not to CR2(-) cells, inhibited EBV invasion of cord blood lymphocytes (CBLs), were recognized by mAb 72A1, and inhibited mAb 72A1 binding to EBV. Peptides 11382 and 11416 binding to peripheral blood lymphocytes (PBLs) induced interleukin-6 protein synthesis in these cells, this phenomenon being inhibited by mAb 72A1. The same behavior has been reported for gp350/220 binding to PBLs. Anti-peptide 11382, 11389, and 11416 antibodies inhibited EBV binding and EBV invasion of PBLs and CBLs. Peptide 11382, 11389, and 11416 sequences presented homology with the C3dg regions coming into contact with CR2 (C3dg and gp350 bound to similar CR2 regions). These peptides could be used in designing strategies against EBV infection.  相似文献   

11.
We previously located two 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive enhancers, MSTRE-I and MSTRE-II, in the upstream sequence of the MS gene of Epstein-Barr virus (Liu, Q., and Summers, W.C. (1989) J. Virol. 63, 5062-5068). The core sequence of the MSTRE-I enhancer is now determined to be between -718 and -708 of the upstream sequence of the MS gene. The activity of the enhancer is also sensitive to its immediate surrounding sequence on either side. A single copy of a 30-base pair (bp) fragment containing the MSTRE-I sequence was able to confer TPA responsiveness upon the MS promoter even in the absence of an AP-1 binding site. Multiple tandem copies of this 30-bp fragment, regardless of their relative orientations to each other, could function synergistically to enhance the MS promoter activity. At least two copies of the 30-bp fragment were required to bestow TPA induction upon the thymidine kinase gene promoter of herpes simplex virus type 1. The MSTRE-I sequence could also be bound by a Fos-GCN4 chimeric protein but with an affinity much lower than that between the chimeric protein and the AP-1 binding site. This MSTRE-I region has strong homology to one of the TPA-responsive elements (the ZII domain) in the upstream sequence of the EBV BZLF1 gene. In addition, a putative negative regulatory region or silencer was found immediately downstream of the MSTRE-I enhancer. This potential silencer region contains a 14-bp sequence that is homologous to the silencer consensus sequence of the BZLF1 gene. Therefore, the regulation of the MS gene may share the same pathway with the immediate early gene BZLF1.  相似文献   

12.
M Gong  E Kieff 《Journal of virology》1990,64(4):1507-1516
The processing and intracellular localization of the two predominant Epstein-Barr virus glycoproteins expressed in late lytic infection were investigated. Immune light or electron microscopy of frozen fixed sections revealed that gp110 colocalized to the endoplasmic reticulum and to the nuclear membrane with the endoplasmic reticulum-resident protein, heavy-chain-binding protein (BiP), while gp350/220 accumulated in low abundance in the endoplasmic reticulum and was present in higher abundance in cytoplasmic structures presumed to be Golgi and in plasma membranes. Consistent with endoplasmic reticulum and nuclear membrane localization, the bulk of gp110 was sensitive to endoglycosidase H, indicating high-mannose, pre-Golgi, N-linked glycosylation; while consistent with Golgi and plasma membrane localization, gp350/220 was mostly resistant to endoglycosidase H because of complex N- and O-linked glycosylation. gp350/220 was as abundant in extracellular enveloped virus as in the plasma membrane but was much less abundant or undetected in internal cytoplasmic or nuclear membranes. In contrast, gp110-specific antibodies did not label extracellular or intracellular virus. These data indicate that the major antigenic components of gp110 are not incorporated into or are occluded in virions and that gp350/220 is added to virus in cytoplasmic transit through a process of de-envelopment and re-envelopment at the plasma membrane or at post-Golgi vesicles. Consistent with cytoplasmic de-envelopment and re-envelopment at the plasma membrane was the finding of some free nucleocapsids in the cytoplasm of cells with intact nuclear membranes and nucleocapsids which appeared to bud through the plasma membrane.  相似文献   

13.
14.
Epstein-Barr virus codes for at least three envelope glycoproteins, one of which, gp85, has not yet been mapped to the viral genome. The publication and analysis of the entire Epstein-Barr virus DNA sequence has allowed identification of open reading frames with potential for encoding membrane glycoproteins. To determine whether one of these candidate open reading frames, BXLF2, codes for gp85, an antibody was made to a 17-residue peptide derived from positions 518 to 533 of the predicted BXLF2 protein. The reactivity of the antipeptide antibody was then compared with that of the monoclonal antibody F-2-1, which was originally used to define and characterize gp85. Antipeptide antibody and F-2-1 immunoprecipitated glycosylated molecules with identical electrophoretic mobilities; digestion of the two immunoprecipitated proteins with V8 protease generated comparable peptides; and the antipeptide antibody reacted in Western immunoblots with the gp85 glycoprotein that had been immunoprecipitated by F-2-1 before transfer to nitrocellulose. In addition, a monospecific rabbit antibody, made against native gp85, reacted with the peptide used for immunization. These results are compatible with the hypothesis that the BXLF2 open reading frame codes for gp85.  相似文献   

15.
Subgroup D avian sarcoma and leukosis viruses can penetrate a variety of mammalian cells in addition to cells from their natural host, chickens. Sequences derived from the gp85-coding domain within the env gene of a mammal-tropic subgroup D virus (Schmidt-Ruppin D strain of Rous sarcoma virus [SR-D RSV]) and a non-mammal-tropic subgroup B virus (Rous-associated virus type 2) were recombined to map genetic determinants that allow penetration of mammalian cells. The following conclusions were based on host range analysis of the recombinant viruses. (i) The determinants of gp85 that result in the mammal tropism phenotype of SR-D RSV are encoded within the 160 codons that lie 3' of codon 121 from the corresponding amino terminus of the gp85 protein. (ii) Small linear domains of the SR-D RSV gp85-coding domain placed in the subgroup B background did not yield viruses with titers equal to that of the subgroup D virus in a human cell line. (iii) Recombinant viruses that contained subgroup D sequences within the hr1 variable domain of gp85 showed modest-to-significant increases in infectivity on human cells relative to chicken cells. A recombinant virus that contained three fortuitous amino acid substitutions in the gp85-coding domain was found to penetrate the human cell line and give a titer similar to that of the subgroup D virus. In addition, we found that the subgroup D virus, the mutant virus, and recombinant viruses with an increased mammal tropism phenotype were unstable at 42 degrees C. These results suggest that the mammal tropism of the SR-D strain is not related to altered receptor specificity but rather to an unstable and fusogenic viral glycoprotein. A temperature sensitivity phenotype for infectivity of mammalian cells was also observed for another mammal-tropic avian retrovirus, the Bratislava 77 strain of RSV, a subgroup C virus, but was not seen for any other avian retrovirus tested, strengthening the correlation between mammal tropism and temperature sensitivity.  相似文献   

16.
The Epstein-Barr virus membrane antigen gene gp340 was isolated, inserted into several strains of vaccinia virus and expressed under the control of a vaccinia virus promoter. The EBV-derived protein which was produced by the recombinant vaccinia viruses was heavily glycosylated, readily labelled with threonine, could be detected at the surface of infected cells and had a mol. wt. of approximately 340 kd, all of which are properties of the authentic gp340. Polyclonal rabbit antisera against gp340 and an EBV-neutralising anti-gp340 monoclonal antibody both recognised cells infected with the recombinant vaccinia viruses. Moreover, rabbits vaccinated with one of the recombinants produced antibodies that recognised EBV-containing lymphoblastoid cells and neutralised EBV.  相似文献   

17.
Current efforts to develop an Epstein-Barr virus subunit vaccine are based on the major envelope glycoprotein gp340. Given the central role of CD4+ T cells in regulating immune responses to subunit vaccine antigens, the present study has begun the work of identifying linear epitopes which are recognized by human CD4+ T cells within the 907-amino-acid sequence of gp340. A panel of gp340-specific CD4+ T-cell clones from an Epstein-Barr virus-immune donor were first assayed for their proliferative responses to a series of truncated gp340 molecules expressed from recombinant DNA vectors in rat GH3 cells, by using an autologous B lymphoblastoid cell line as a source of antigen-presenting cells. The first four T-cell clones analyzed all responded to a truncated form of gp340 which contained only the first 260 N-terminal amino acids. These clones were subsequently screened for responses to each of a panel of overlapping synthetic peptides (15-mers) corresponding to the primary amino acid sequence of the first 260 N-terminal amino acids of gp340. One clone (CG2.7) responded specifically to peptides from the region spanning amino acids 61 to 81, while three other clones (CG5.15, CG5.24, and CG5.36) responded specifically to peptides from the region spanning amino acids 163 to 183. Work with individual peptides from these regions allowed finer mapping of the T-cell epitopes and also revealed the highly dose-dependent nature of peptide-induced responses, with inhibitory effects apparent when the most antigenic peptides were present at supraoptimal concentrations. Experiments using homozygous typing B lymphoblastoid cell lines as antigen-presenting cells showed that the T-cell clones with different epitope specificities were restricted through different HLA class II antigens; clone CG2.7 recognized epitope 61-81 in the context of HLA DRw15, whereas clones CG5.15, CG5.24, and CG5.36 recognized epitope 163-183 in the context of HLA DRw11. The present protocol therefore makes a systematic analysis of CD4+ T-cell epitopes within gp340 possible; it will be necessary to screen gp340-specific T-cell clones from a variety of donors to assess the wider influence of HLA class II polymorphism upon epitope choice.  相似文献   

18.
We have investigated the specificity of the proteolytic cleavage of the Rous sarcoma virus glycoprotein precursor by introducing two mutations into the putative cleavage region (Arg-Arg-Lys-Arg). We show that neither a deletion of the cleavage sequence nor a glutamic acid for lysine substitution altered intracellular transport or surface expression of the env gene products. However, both the four-amino-acid deletion and the glutamic acid substitution block processing of the env precursor. Susceptibility of the glutamic acid-substituted env precursor to proteases indicated that tertiary protein structure was unaffected. While inhibitor experiments suggested that more than one endopeptidase might be capable of mediating the proteolytic cleavage, the results presented here point to the presence in the Golgi apparatus of a novel endopeptidase, required for retroviral glycoprotein cleavage, that has a high specificity for lysine-containing peptides.  相似文献   

19.
Specific antisera were generated to characterize Epstein-Barr virus proteins reported to have trans-activating properties. Open reading frame BRLF1 was found to be expressed in two modifications in vivo, with molecular sizes ranging from 94 to 98 kilodaltons (kDa) depending on the cell line, whereas only one protein (Raji cells, 96 kDa) was detected by in vitro translation. Open reading frame BZLF1 encoded polypeptides of 38 and 35 kDa and additional smaller forms. A BZLF1-encoded 30-kDa protein could be detected under conditions in which expression was restricted to immediate early genes. Nuclear localization could be detected under conditions in which expression was restricted to immediate early genes. Nuclear localization could be shown for the proteins derived from reading frames BZLF1 and BMLF1. BMLF1 expression gave a heterogeneous protein pattern, with molecular sizes between 45 and 70 kDa, including a predominant 60-kDa protein detected in different B-cell lines.  相似文献   

20.
目的预测EB病毒gp125蛋白的B细胞表位。方法基于EB病毒gp125蛋白的氨基酸序列,采用亲水性参数、可及性参数、极性参数和抗原性指数方案等,辅以对gp125蛋白的二级结构中的柔性区域的分析,预测gp125蛋白的B细胞表位。结果最有可能的B细胞表位位于gp125蛋白N端第403-416、565—574、578—584、618-630和832—843区段及其附近。结论用多参数预测EB病毒gp125蛋白的B细胞表位,为制备具有高灵敏度和高特异性的鼻咽癌诊断试剂及研究抗肿瘤转移靶向治疗的分子免疫学奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号