首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Damage to the plasma membrane of rabbit epididymal spermatozoa during spontaneous lipid peroxidation was examined by means of trypan blue uptake and expression of activity of the intracellular enzymes, lactate dehydrogenase and pyruvate kinase. Both the dye uptake and the expression of enzyme activity probe cell damage from lipid peroxidation as loss of integrity of the plasma membrane. A linear correlation was obtained between trypan blue staining of the cells and malondialdehyde production, a quantifiable measure of the extent of lipid peroxidation. At the point of trypan blue staining of all cells, 0.5 nmol malondialdehyde/10(8) cells was produced. This is the same amount produced at the point of complete loss of motility and superoxide dismutase activity. We have defined this as the "lipoperoxidative lethal end point." Expression of lactate dehydrogenase and pyruvate kinase activities increased with time of aerobic incubation. In the high Na+ medium, NTP, in which lipid peroxidation is slow, there is a linear correlation between increase in expressed enzyme activities and malondialdehyde production. But in the high K+ medium, KTP, in which lipid peroxidation is rapid, there is an initial rapid rise in expressed enzyme activity over 3 h, followed by a slower increase. Activities of rabbit sperm lactate dehydrogenase, pyruvate kinase, and flagellar ATPase were unaffected by aerobic incubations for up to 48 h, double the incubation period used for the assay of enzymatic activities for the first two. The activity of glyceraldehyde-3-phosphate dehydrogenase decreased during aerobic incubation, the time course matching the loss of motility. The subcellular distribution of lactate dehydrogenase in rabbit spermatozoa was determined: 4% in the mitochondrial matrix, 10% in the plasma membrane and 85% in the cytosolic compartment.  相似文献   

2.
The relation between oxygen consumption and motility of Ciona spermatozoa has been measured by using pH stats to measure the acid production of spermatozoa swimming in dilute suspensions where their motility can be analyzed accurately, and calibrating the acid production by measuring it simultaneously with measurements of oxygen consumption, using more concentrated sperm suspensions. When the motility of the spermatozoa is inhibited by thiourea or by increased viscosity, their oxygen consumption decreases in proportion to the decrease in beat frequency. 80–85 % of their oxygen consumption appears to be tightly coupled to motility. The amount of movement-coupled oxidative metabolism per beat remains nearly constant, even when there are significant changes in the energy required per beat for movement against the viscous resistance of the medium. This implies that under these conditions, where the radius of curvature of flagellar bending remains constant, the amount of ATP used is determined by a stoichiometric relation to bending rather than by the energy requirement. The movement-coupled oxidative metabolism appears to be sufficient to generate approximately two molecules of ATP per beat for each molecule of the flagellar ATPase, dynein.  相似文献   

3.
The initiation of motility and modification of energy metabolism of rat caudal epididymal spermatozoa can be induced by dilution in a saline medium. We have investigated in these cells the relationships between the energy reserve (sperm ATP content measured by bioluminescence) and flagellar movement (high speed videomicrography, 200 frames/sec). A steady state was observed in sperm ATP content, progressive velocity (Vp) and flagellar beat frequency (F) with sperm dilution in a medium with glucose, lactate, pyruvate and acetate substrates after 30 minutes of incubation. Without these substrates, changes in metabolic pathways occurred immediately and initially disturbed the relationship between ATP levels and F, suggesting differences in motility initiation when energy is from an endogenous origin via mitochondrial oxidative phosphorylation. This "energy crisis" was reversed by the addition of substrates to the medium. The three-dimensional flagellar movement observed in the presence of substrates quickly became two-dimensional in their absence. The flagellar beat envelope became more splayed, the mean amplitude of lateral head displacement increased and F decreased. The resulting high flagellar beat efficiency can be compared to that observed during hyperactivation which is a physiological event related to a fall in intracellular ATP level. In both media, the displacement of the flagellum in relation to the wave axis varied sinusoidally. The sine period increased with time when the spermatozoa were incubated in the medium without substrates. These results suggest a gradual slowing-down of the velocity of wave formation in the proximal part of the flagellum.  相似文献   

4.
The mitochondrion of sea urchin sperm is located at the base of the sperm head, and the flagellum extends from the mitochondrion for approximately 40 microM. These sperm have two known flagellar, non-mitochondrial, enzymatic systems to rephosphorylate ADP. The first involves the phosphocreatine shuttle, where flagellar creatine kinase (Sp-CK) uses phosphocreatine to rephosphorylate ADP. The second system, studied in this report, is adenylate kinase (Sp-AK), which uses 2 ADP to make ATP + AMP. Cloning of Sp-AK shows that, like Sp-CK, Sp-AK has three catalytic domains. Sp-AK localizes along the entire flagellum, and most of it is tightly bound to the axoneme. Sp-AK activity and flagellar motility were studied using demembranated sperm. The specific Sp-AK inhibitor Ap5A blocks enzyme activity with an IC50 of 0.41 microM. In 1 mm ADP, flagella reactivate motility in 5 min; 1 microM Ap5A completely inhibits this reactivation. No inhibition of motility occurs in Ap5A when 1 mm ATP is added to the reactivation buffer. The pH optimum for Sp-AK is 7.7, an internal pH at which sperm are fully motile. The pH optimum for Sp-CK is 6.7, an internal pH at which sperm are immotile. In isolated, detergent-permeabilized flagella, assayed at pH 7.6, the Km for Sp-AK is 0.32 mm and the Vmax is 2.80 microM ATP formed/min/mg of protein. When assayed at pH 7.6, the Sp-CK Km is 0.25 mm and the Vmax 5.25. At the measured in vivo concentrations of ADP of 114 microM, at pH 7.6, the axonemal Sp-AK could contribute approximately 31%, and Sp-CK 69%, of the total non-mitochondrial ATP synthesis associated with the demembranated axoneme. Thus, Sp-AK could contribute substantially to ATP synthesis utilized for motility. Alternatively, Sp-AK could function in the removal of ADP, which is a potent inhibitor of dynein ATPase.  相似文献   

5.
The apparently inconsistent reports on flagellar ATPase properties may be resolved by elimination of adenylate kinase from the system. Removal of the adenylate kinase from alkaline M/2 KCl extracts of bull sperm flagella yields a spermosin-ATPase which liberates only the terminal phosphate of ATP. In any case spermosin is preferentially activated by calcium. However, combination of spermosin with flactin (e.g., by addition of digitonin and MgCl2 to the extraction medium) produces an ATPase much more highly activated by magnesium. But flactospermosin has so far resisted purification from its adenylate kinase contaminant. In divalent cation activation, pH optima and nature of ATP hydrolysis, the flagellar contractile protein system closely parallels the muscle system.  相似文献   

6.
Loss of forward motility of rabbit epididymal spermatozoa in high K+ phosphate buffer is inhibited by taurine, hypotaurine, epinephrine and bovine serum albumin. Pyruvate and lactate also show this effect. The rate of lipid peroxidation in these spermatozoa, as measured by rate of formation of malondialdehyde, is also inhibited by these agents. A close linear correlation between percent inert spermatozoa and malondialdehyde was found, which was independent of the rate of peroxidation. Complete cessation of motility was observed at 0.5 nmol malondialdehyde/10(8) cells in the absence or presence of these agents, which is the same value found in other suspending media in a previous study [Alvarez and Storey (1982) Biol. Reprod. 27:1102-1108]. Albumin was the most effective agent in preventing loss of motility and inhibiting lipid peroxidation. Hypotaurine was the next most effective, followed by taurine, epinephrine, pyruvate and lactate. Hypotaurine reduces the amount of rate of superoxide production, as measured by the rate of reduction of acetylated ferricytochrome c by O(2), from rabbit sperm under these conditions and concomitantly reduces inactivation of the superoxide dismutase in these cells. Since superoxide seems to be the major inducer of lipid peroxidation in rabbit sperm, the protective effect of hypotaurine, which should be readily permeant to the plasma membrane, may be ascribed to scavenging of intracellular superoxide. The mechanism of the protective action of albumin is not known. Rabbit epididymal spermatozoa lose motility over time if Ca2+ or Mg2+ are omitted from the suspending medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Energy coupling in flagellar motility was investigated using demembranated, reactivated sea urchin spermatozoa (Arbacia punctulata). The ATP-dependence of ATPase activity was investigated for ATP concentrations ranging from 4 microM to 600 microM ATP. Using Eadie-Scatchard plot analysis, we identified two axonemal dynein ATPase activities. Their apparent Michaelis constants were calculated to be equal to 4 microM and 161 microM ATP, and they were referred to, respectively, as the high-affinity dynein ATPase (HADA) and the low-affinity dynein ATPase (LADA). Investigation of movement-coupled ATPase activity (difference between the ATPase activities of reactivated and broken, immotile spermatozoa) indicated that HADA and LADA were both 65% movement-coupled. The apparent Michaelis constants of movement-coupled HADA and LADA, 12 microM and 271 microM ATP, respectively, were two- to four-fold greater than the apparent Michaelis constants of movement-uncoupled HADA and LADA. The apparent Michaelis constants for force generation and beat frequency of reactivated spermatozoa were determined to be 24 microM and 290 microM ATP, respectively. These results raise the possibility that flagellar force generation is controlled primarily by movement-coupled HADA, and that flagellar beat frequency is controlled primarily by movement-coupled LADA. Thus, mechanochemical activity in flagellar motility may be divided between two enzymatically and functionally distinct classes of flagellar dyneins.  相似文献   

8.
Phosphoprotein phosphatase prepared from bovine cardiac muscle was used to study the roles of axonemal phosphoproteins in the flagellar motility of sea urchin spermatozoa. When isolated axonemes were incubated with cyclic AMP-dependent protein kinase, gamma-[32P]ATP and cyclic AMP, more than 15 polypeptides were phosphorylated. Most were dephosphorylated by treatment with phosphoprotein phosphatase. When Triton models of sea urchin spermatozoa were treated with phosphoprotein phosphatase followed by an addition of ATP, the flagellar motility of the models was drastically reduced in comparison with that of the untreated models. The motility of the phosphatase-treated Triton models was partially restored by an addition of cyclic AMP and cyclic AMP-dependent protein kinase. These data give strong support to the idea that the motility of eukaryotic flagella is controlled by a protein phosphorylation-dephosphorylation system.  相似文献   

9.
Studying sperm motility in marine fish: an overview on the state of the art   总被引:3,自引:0,他引:3  
This contribution reviews existing literature and some new own findings on teleost sperm motility and factors controlling it, emphasizing selected marine species. In marine teleosts with external fertilization (halibut, turbot, sea bass, hake, cod and tuna serving as examples), mainly the osmolality controls sperm motility: movement is activated by transfer from the seminal fluid into sea water, representing a large upward step in osmolality. The exception are flatfishes (such as halibut or turbot) where CO2 is responsible for flagellar immotility in seminal fluid. In all cases, the duration of motility is short and limited to minutes ranges due to partial exhaustion of the ATP energy and to increase of internal ionic concentration as suggested by studies with de‐membranated/ATP reactivated flagellae. In this overview, we compare motility characteristics (percentage of active spermatozoa, velocity, linearity), flagellar waves parameters (wave length and amplitude, number of waves) and energy content (respiration and ATP concentration) within species where these data have been established. All parameters show a rapid decrease after activation; therefore progressive forward movement needed by the sperm to effectively reach the egg surface, is limited to a short initial period following activation. In two species (turbot and sea bass) the rapid decrease of sperm motility is reflected by a corresponding decrease of the fertilizing ability. Exposure to external environments (sea water) at activation also leads to local defects of the sperm flagella posing additional limitations on motility duration. However, minor flagellar damages as well as energetic exhaustion are reversible: after a resting period in a non‐swimming solution at the end of the motility period, spermatozoa can be re‐activated for a second motility period. From these results and from additional data obtained from de‐membranated/ATP re‐activated spermatozoa, a paradigm has been developed which establishes a link between external osmolality (sea water), internal ionic concentration and control of axonemal activity.  相似文献   

10.
Cyclic AMP has been shown essential for activation of sperm motility. When immotile hamster caudal epididymal spermatozoa were suspended in a Ca2+-deficient solution, they showed a sluggish motility. Spermatozoa were demembranated and transferred to an ATP-containing reactivation solution. Demembranated spermatozoa did not exhibit reactivated flagellar movement unless cAMP was added. Conversely, when the immotile epididymal spermatozoa were suspended in a Ca2+-containing solution, they were immediately activated to display a vigorous motility; demembranated spermatozoa also exhibited reactivated flagellar movement in the reactivation solution without cAMP. Further investigation of microtubule sliding properties revealed that the effects of Ca2+ on live spermatozoa were identical with the effects of cAMP on demembranated spermatozoa both in microtubule sliding velocity and sliding disintegration pattern. Moreover, a 36-kDa flagellar protein was found to be phosphorylated in a cAMP-dependent manner and coupled to the motility activation. A polyclonal antibody against this protein was developed and showed specific immunolocalization and significant inhibitory effects on microtubule sliding disintegration. These results indicate that extracellular Ca2+ owes its effect to triggering intracellular cAMP production, and cAMP-dependent phosphorylation of a 36-kDa phosphoprotein activates hamster sperm motility through regulation of microtubule sliding properties.  相似文献   

11.
As metabolism of motile fish sperm is not well understood, the current study examined the metabolism of saline-activated zebrafish (Danio rerio) sperm. Activation of sperm with inhibitors of oxidative phosphorylation (potassium cyanide, 2,4 dinitrophenol or carbonyl cyanide 3-cholorophenylhydrazone) negatively impacted sperm motility by 60-90 s postactivation. Incubation of quiescent sperm with 2,4 dinitrophenol prior to activation resulted in a 67% decrease in the percent motile sperm assessed 15s postactivation. Thus, production of ATP in quiescent sperm is important for motility upon activation and nascent ATP production via oxidative phosphorylation by motile sperm appears important at 60-90 s postactivation. Exposure of sperm to iodoacetamide, an inhibitor of creatine kinase, at activation was without effect. However, incubation of quiescent sperm with iodoacetamide prior to activation resulted in a 77% reduction in percent motile sperm and decreased velocity and wobble at 15s postactivation. These results suggest that creatine kinase and phosphocreatine shuttle are physiologically important at, or shortly after the initiation of motility. Finally, sperm were exposed to lactate, pyruvate, or acetate as well as to several monosaccharides upon activation. The results provided no evidence supporting any metabolic role of exogenous organics (potentially from the female via ovarian fluid) in sperm once motility has begun.  相似文献   

12.
Sperm motility is a process which involves a cascade of events mediated by cAMP and Ca2+, cAMP in the initiation of flagellar movement, and Ca2+ in the regulation of beat asymmetry, and it has been suggested that these two messengers act through phosphorylation/dephosphorylation of axonemal proteins. Only a few studies on human sperm protein phosphorylation have been reported and no relation of this process with motility or other function has been established. In the present study, phosphorylation of human sperm proteins was performed using detergent-demembranated spermatozoa, in which motility is reactivated by the addition of ATP. This system allows direct accessibility of intracellular kinases to [32P]-γATP and allows some relation between protein phosphorylation and flagellar movements. After electrophoresis and autoradiography, numerous phosphoproteins were detected. Phosphorylation of 2 proteins (36 and 51 kDa) was stimulated by cAMP in a concentration-dependent manner, and this increase was prevented by inhibitors of cAMP-dependent protein kinase. In order to characterize phosphoproteins originating from the cytoskeleton or axoneme, detergent extracted spermatozoa were also subjected to phosphorylation. Three major phosphorylated proteins (14.8, 15.3, and 16.2 kDa) were detected, the first two expressing cAMP-dependency according to their cAMP concentration-dependent increase in phosphorylation and the reversal of this effect by inhibitors of cAMP-dependent protein kinase. Proteins phosphorylation during the reactivation of demembranated spermatozoa previously immobilized H2O2, xanthine + xanthine oxidase-generated reactive oxygen species, or the oxidative phosphorylation uncoupler rotenone, revealed increases in cAMP-independent phosphorylation of proteins of 16.2, 46, and 93 kDa. These results documenting human sperm phosphoproteins form a base for further studies on the role of protein phosphorylation in sperm functions. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Complexes of the oxocation of vanadyl(IV), VO2+, with pyruvate kinase from rabbit muscle have been investigated by steady-state kinetic assays and by EPR spectroscopy. Pyruvate kinase requires 2 eq of divalent cation for activity. VO2+ alone is a poor activator of the normal physiological reaction catalyzed by the enzyme and of the enzyme-catalyzed exchange of the methyl protons of pyruvate with solvent. VO2+ alone is, however, an activator of the enzyme-catalyzed phosphorylation of glycolate by ATP. VO2+ is more effective than Mg2+ in activation of the bicarbonate-dependent ATPase reaction of pyruvate kinase, and in the enzyme-catalyzed hydrolysis of phosphoenolpyruvate. EPR data show that VO2+ binds to the divalent cation site on the protein competitively with respect to Mg2+. The VO2+-enzyme complex has a high affinity for bicarbonate. Direct coordination of pyruvate, oxalate, and glycolate to the enzyme-bound VO2+ has been established by EPR measurements with specifically 17O-labeled forms of these compounds.  相似文献   

14.
The possible role of tyrosine kinase in the regulation of fowl sperm motility was investigated by using a stable analogue of erbstatin, methyl 2,5-dihydroxycinnamate (2,5-MeC), a specific inhibitor of tyrosine kinase. This inhibited the motility of intact spermatozoa at 30°C in a dose-dependent manner. In contrast, the motility of demembranated spermatozoa was not inhibited by the same concentrations of 2,5-MeC. At 40°C, both intact and demembranated spermatozoa were almost immotile with or without 2,5-MeC. Additionally, intact spermatozoa, stimulated by the addition of Ca2+ or calyculin A, a specific inhibitor of protein phosphatases, lost their motility with the subsequent addition of 2,5-MeC at 40°C. However, unlike the motility, the ATP concentrations of spermatozoa were maintained in about 30–35 nmol ATP/109 cells during these incubation periods. The activity of tyrosine kinase of spermatozoa at 30°C, estimated by measuring the phosphorylation of a synthetic peptide substrate, RR-SRC, was 0.17 pmol/min per milligram of protein. This activity was lower than that of fowl testes or chick brain but higher than that of chick liver. These results suggest that tyrosine kinase activity, which is not retained in the axoneme and/or accessory cytoskeletal components, may be involved in the maintenance of flagellar movement of fowl spermatozoa at 30°C. Mol. Reprod. Dev. 49:196–202, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Hyperactivated motility was studied in guinea pig spermatozoa. In the presence of the local anesthetic procaine, a high number of sperm cells (64%) showed hyperactivation when incubated in minimal culture medium with pyruvate, lactate, and glucose. Hyperactivated motility was dependent on glucose in the medium. Sperm ATP concentration was increased twofold in hyperactivated sperm when compared to procaine-treated nonhyperactivated cells. cAMP levels were also higher in hyperactivated cells than in control spermatozoa. Thus, in living spermatozoa high levels of ATP appear to be needed to generate hyperactivation. cAMP is present at a high concentration in hyperactivated spermatozoa, therefore a role of cAMP in hyperactivation cannot be excluded. Depletion of external Ca2+ did not inhibit procaine-induced hyperactivated motility. Hence, procaine canceled the requirement of external Ca2+ for sperm to express hyperactivated motility. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation.  相似文献   

17.
Eukaryotic cilia and flagella are long, thin organelles, and diffusion from the cytoplasm may not be able to support the high ATP concentrations needed for dynein motor activity. We discovered enzyme activities in the Chlamydomonas reinhardtii flagellum that catalyze three steps of the lower half of glycolysis (phosphoglycerate mutase, enolase, and pyruvate kinase). These enzymes can generate one ATP molecule for every substrate molecule consumed. Flagellar fractionation shows that enolase is at least partially associated with the axoneme, whereas phosphoglycerate mutase and pyruvate kinase primarily reside in the detergent-soluble (membrane + matrix) compartments. We further show that axonemal enolase is a subunit of the CPC1 central pair complex and that reduced flagellar enolase levels in the cpc1 mutant correlate with the reduced flagellar ATP concentrations and reduced in vivo beat frequencies reported previously in the cpc1 strain. We conclude that in situ ATP synthesis throughout the flagellar compartment is essential for normal flagellar motility.  相似文献   

18.
Plasma membrane Ca2+ATPases (PMCAs) export Ca2+ from cells in a highly regulated manner, providing fine-tuning to the maintenance of intracellular Ca2+ concentrations. There are few studies of PMCAs in spermatozoa, which is surprising considering the importance of this enzyme in all cell types. Here we describe the primary structure and localization of the PMCA of sea urchin spermatozoa (suPMCA). The suPMCA is 1,154 amino acids and has 56% identity and 76% similarity to all 4 human PMCA isoforms. The suPMCA shares the features of a typical PMCA, including domains for calmodulin binding, ATP binding, ATPase phosphorylation, and 10 putative transmembrane segments with two large cytoplasmic loops. Southern blots show that suPMCA is a single copy gene. Treatment of live sea urchin sperm with the PMCA inhibitor, 5-(-6)-carboxyeosin, results in elevations of intracellular Ca2+ and loss of flagellar motility. Immunoblotting and immunoflorescence show that suPMCA is concentrated in the sperm head plasma membrane. In previous work, we showed that a plasma membrane K+ dependent Na+/Ca2+ exchanger (suNCKX), which also keeps Ca2+ low in these cells, is concentrated in the sperm flagellum. Thus, the sperm head and flagellum localize different gene products, both functioning to keep intracellular Ca2+ low, while the sperm swims in seawater containing 10 mM Ca2+.  相似文献   

19.
The relaxation (straightening) of flagellar rigor waves, which is known to be induced by micromolar ATP concentrations was investigated with respect to its dependence on the binding and hydrolysis of ATP. Flagellar rigor waves were formed by the dilution of demembranated, reactivated sea urchin (Lytechinus pictus) spermatozoa into ATP-free buffer. Relaxation in response to nucleotide was quantitated by measuring theta, the mean flagellar bend angle per sperm; this novel assay permitted determination of the rate of relaxation. It was found that (a) the rate of flagellar relaxation induced by 4 X 10(-6) M ATP was inhibited 80% by vanadate concentrations of 3 X 10(-6) M and above; (b) of 16 hydrolyzable and nonhydrolyzable nucleotide di-, tri-, and tetraphosphates tested, only three, each of which was hydrolyzed by the flagellar axonemal ATPase activity (ATP, dATP, and epsilon-ATP) were also capable of effecting relaxation; (c) several hundred ATP molecules were estimated to be hydrolyzed by each dynein of ATP hydrolysis, which defines the efficiency of ATP utilization, increased 30-fold as the ATP relaxation depends on ATP hydrolysis; (b) because it depends on ATP hydrolysis, flagellar relaxation is an inappropriate model system for investigating the role of ATP binding in the mechanochemical cycle of dynein; and (c) the efficiency of mechanochemical coupling in flagellar motility is an ATP-dependent phenomenon. A general model of relaxation is proposed based on active microtubule sliding.  相似文献   

20.
The effect of temperature on sperm motility was investigated in brown trout Salmo trutta, burbot Lota lota and grayling Thymallus thymallus using water and sperm motility prolonging saline solution (SMPS) for motility activation. The effect of temperature (4-20° C) on spermatozoal enzymes for energy supply [malate dehydrogenase (MDH), pyruvate kinase (PK), adenylate kinase (AK)], flagellar movement [Mg(2+) adenosine triposphatase (ATPase)] and oxidative defence [peroxidase (POX)] were measured in S. trutta and L. lota. Temperatures yielding the highest initial sperm motility rates and swimming velocities were 4-6° C for S. trutta [investigated range (IR) = 4-12° C] and L. lota (IR = 2-8° C) and 8-16° C (IR = 4-16° C) for T. thymallus. Motility variables were re-measured after 30 s in S. trutta, after 45 s in T. thymallus and after 60 s in L. lota in water and after 2 min in all investigated species in SMPS. Motility variables were increased by low temperatures and the results differed between water and SMPS. In S. trutta and L. lota, the temperature resulting in highest activities of MDH, PK, AK and ATPase was 4° C. POX had a very narrow temperature optimum at 20° C in both species. This may indicate that the temperature optimum of enzymes of energy supply and flagellar movement are closely related to motility. The present data show that the variables are affected by temperatures in an ecologically relevant range. Too low, as well as too high temperatures affected sperm motility, and the winter spawners (S. trutta and L. lota) have a narrower temperature optimum than the spring spawner T. thymallus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号