首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the expression, localization, and function of beta 1 integrins on cultured human epidermal keratinocytes using polyclonal and monoclonal antibodies against the beta 1, alpha 2, alpha 3, and alpha 5 integrin subunits. The beta 1 polypeptide, common to all class 1 integrins, was localized primarily in areas of cell-cell contacts of cultured keratinocytes, as were alpha 2 and alpha 3 polypeptides, suggesting a possible role in cell-cell adhesion for these integrin polypeptides. In contrast, the fibronectin receptor alpha 5 subunit showed no such accumulations in regions of cell-cell contact but was more diffusely distributed in the keratinocyte plasma membrane, consistent with the absence of fibronectin at cell-cell contact sites. Colonies of cultured keratinocytes could be dissociated by treatment with monoclonal antibody specific to the beta 1 polypeptide. Such dissociation of cell-cell contacts also occurred under conditions where the monoclonal antibody had no effect on cell-substrate adhesion. Therefore, beta 1 integrin-dependent cell-cell adhesion can be inhibited without affecting other cell-adhesive interactions. Antibody treatment of keratinocytes maintained in either low (0.15 mM) or high (1.2 mM) CaCl2 also resulted in the loss of organization of intracellular F-actin filaments and beta 1 integrins, even when the anti-beta 1 monoclonal antibody had no dissociating effect on keratinocyte colonies at the higher calcium concentration. Our results indicate that beta 1 integrins play roles in the maintenance of cell-cell contacts between keratinocytes and in the organization of intracellular microfilaments. They suggest that in epithelial cells integrins can function in cell-cell interactions as well as in cell-substrate adhesion.  相似文献   

2.
Although integrins are known to mediate connections between extracellular adhesion molecules and the intracellular actin cytoskeleton, the mechanisms that are responsible for coupling ligand binding to intracellular signaling, for generating diversity in signaling, and for determining the efficacy of integrin signaling in response to ligand engagement are largely unknown. By characterizing the class of anti-integrin monoclonal antibodies (mAbs) that stimulate integrin activation and ligand binding, we have identified integrin-ligand-mAb complexes that exhibit differential signaling properties. Specifically, addition of 12G10 mAb to cells adhering via integrin alpha4beta1 was found to trigger disruption of the actin cytoskeleton and prevent cell attachment and spreading, whereas mAb addition to cells adhering via alpha5beta1 stimulated all of these processes. In contrast, soluble ligand binding to either alpha4beta1 or alpha5beta1 was augmented or unaffected by 12G10. The regions of the integrin responsible for differential signaling were then mapped using chimeras. Surprisingly, a chimeric alpha5 integrin containing the beta-propeller domain from the ligand binding pocket of alpha4 exhibited the same signaling properties as the full-length alpha4 integrin, whereas exchanging or removing cytoplasmic domains had no effect. Thus the mAb 12G10 demonstrates dual functionality, inhibiting cell adhesion and spreading while augmenting soluble ligand binding, via a mechanism that is determined by the extracellular beta-propeller domain of the associating alpha-subunit. These findings therefore demonstrate a direct and variable agonistic link between the ligand binding pocket of integrins and the cell interior that is independent of the alpha cytoplasmic domains. We propose that either ligand-specific transmembrane conformational changes or ligand-specific differences in the kinetics of transmembrane domain separation underlie integrin agonism.  相似文献   

3.
The ligand-binding region of integrin beta subunits contains a von Willebrand factor type A-domain: an alpha/beta "Rossmann" fold containing a metal ion-dependent adhesion site (MIDAS) on its top face. Although there is evidence to suggest that the betaA-domain undergoes changes in tertiary structure during receptor activation, the identity of the secondary structure elements that change position is unknown. The mAb 12G10 recognizes a unique cation-regulated epitope on the beta(1) A-domain, induction of which parallels the activation state of the integrin (i.e. competency for ligand recognition). The ability of Mn(2+) and Mg(2+) to stimulate 12G10 binding is abrogated by mutation of the MIDAS motif, demonstrating that the MIDAS is a Mn(2+)/Mg(2+) binding site and that occupancy of this site induces conformational changes in the A-domain. The cation-regulated region of the 12G10 epitope maps to Arg(154)/Arg(155) in the alpha1 helix. Our results demonstrate that the alpha1 helix undergoes conformational alterations during integrin activation and suggest that Mn(2+) acts as a potent activator of beta(1) integrins because it can promote a shift in the position of this helix. The mechanism of beta subunit A-domain activation appears to be distinct from that of the A-domains found in some integrin alpha subunits.  相似文献   

4.
In addition to its recognition by alpha3beta1 and alpha4beta1 integrins, the N-terminal pentraxin module of thrombospondin-1 is a ligand for alpha6beta1 integrin. alpha6beta1 integrin mediates adhesion of human microvascular endothelial and HT-1080 fibrosarcoma cells to immobilized thrombospondin-1 and recombinant N-terminal regions of thrombospondin-1 and thrombospondin-2. alpha6beta1 also mediates chemotaxis of microvascular cells to thrombospondin-1 and thrombospondin-2. Using synthetic peptides, LALERKDHSG was identified as an alpha6beta1-binding sequence in thrombospondin-1. This peptide inhibited alpha6beta1-dependent cell adhesion to thrombospondin-1, thrombospondin-2, and the E8 fragment of murine laminin-1. The Glu residue in this peptide was required for activity, and the corresponding residue (Glu90) in the N-terminal module of thrombospondin-1 was required for its recognition by alpha6beta1, but not by alpha4beta1. alpha6beta1 was also expressed in human umbilical vein endothelial cells; but in these cells, only certain agonists could activate the integrin to recognize thrombospondins. Selective activation of alpha6beta1 integrin in microvascular endothelial cells by the anti-beta1 antibody TS2/16 therefore accounts for their adhesion responses to thrombospondins and explains the distinct functions of alpha4beta1 and alpha6beta1 integrins as thrombospondin receptors in microvascular and large vessel endothelial cells.  相似文献   

5.
Modulation of integrin affinity and/or avidity provides a regulatory mechanism by which leukocyte adhesion to endothelium is strengthened or weakened at different stages of emigration. In this study, we demonstrate that binding of high-affinity alpha 4 beta 1 integrins to VCAM-1 strengthens alpha L beta 2 integrin-mediated adhesion. The strength of adhesion of Jurkat cells, a human leukemia T cell line, or MnCl2-treated peripheral blood T cells to immobilized chimeric human VCAM-1/Fc, ICAM-1/Fc, or both was quantified using parallel plate flow chamber leukocyte detachment assays in which shear stress was increased incrementally (0.5-30 dynes/cm2). The strength of adhesion to VCAM-1 plus ICAM-1, or to a 40-kDa fragment of fibronectin containing the CS-1 exon plus ICAM-1, was greater than the sum of adhesion to each molecule alone. Treatment of Jurkat or blood T cells with soluble cross-linked VCAM-1/Fc or HP2/1, a mAb to alpha 4, significantly increased adhesion to ICAM-1. These treatments induced clustering of alpha L beta 2 integrins, but not the high-affinity beta 2 integrin epitope recognized by mAb 24. Up-regulated adhesion to ICAM-1 was abolished by cytochalasin D, an inhibitor of cytoskeletal rearrangement. Taken together, our data suggest that the binding of VCAM-1 or fibronectin to alpha 4 beta 1 integrins initiates a signaling pathway that increases beta 2 integrin avidity but not affinity. A role for the cytoskeleton is implicated in this process.  相似文献   

6.
Satellite cells are myogenic precursor cells, participating in growth, and regeneration of skeletal muscles. The proteins that play a role in myogenesis are integrins. In this report, we show that the integrin alpha3 subunit is expressed in quiescent satellite cells and activated myoblasts. We also find that in myoblasts the integrin alpha3 subunit is localized at cell-cell and cell-extracellular matrix contacts. We notice that increase in protein and mRNA encoding the integrin alpha3 subunit accompanies myoblast differentiation. Using double immunofluorescence and immunoprecipitation experiments, we demonstrate that the integrin alpha3 subunit co-localizes with actin, and binds the integrin beta1 subunit and ADAM12, suggesting that the complex alpha3beta1/ADAM12 is probably involved in myoblast fusion. Importantly, overexpression of the full-length integrin alpha3 subunit increases myoblast fusion whereas an antibody against its extracellular domain inhibits fusion. These data demonstrate that the integrin alpha3 subunit may contribute to satellite cell activation and then myoblast adhesion and fusion.  相似文献   

7.
The pluripotential hematopoietic cell line K562 was studied as a model of inducible integrin expression accompanying differentiation. Differentiation along the megakaryocytic pathway was induced with phorbol 12,13-dibutyrate and differentiation along the erythroid pathway with hemin. Induction of megakaryocytic differentiation was associated with changes in cell morphology and with increased cell-cell and cell-substrate adhesion and spreading. Erythroid differentiation was not associated with changes in morphology or adhesion. Cell surface expression of the IIb-IIIa and alpha 2 beta 1 integrins increased markedly with phorbol treatment but decreased with hemin treatment. Phorbol-treated K562 cells, but not control cells or hemin-treated cells, adhered to collagen substrates in a Mg(2+)-dependent manner which was specifically inhibited by a monoclonal antibody directed against the alpha 2 beta 1 integrin. Northern blot analysis revealed that megakaryocytic differentiation of K562 cells was accompanied by de novo expression of the alpha 2 integrin mRNA with no change in the level of mRNA for the beta 1 subunit. K562 cells provide a model of differentiation-dependent, regulated integrin expression in which expression is up- or down-regulated depending upon the differentiation pathway selected.  相似文献   

8.
E-cadherin is a 120-kDa transmembrane glycoprotein expressed mainly on the surface of epithelial cells. The best characterised function of E-cadherin is homotypic, calcium-dependent cell-cell adhesion; however, the observation that E-cadherin is also capable of interacting with the alphaEbeta7 integrin to mediate leukocyte cell-cell adhesion [Nature 372 (1994) 190] suggests that it also participates in heterotypic interactions. To investigate the possibility that E-cadherin may interact with integrins expressed on non-leukocytic cells, cell adhesion and solid-phase receptor-ligand binding experiments were performed using a pentameric E-cadherin construct designed to detect low affinity, high avidity interactions. HT1080 human fibrosarcoma cells specifically adhered to pentameric E-cadherin, and this adhesion was inhibited by anti-functional monoclonal antibodies directed against the integrin alpha2 and beta1 subunits, but not by a series of antibodies recognising other subunits. This suggested that the E-cadherin receptor was alpha2beta1, a previously characterised collagen/laminin receptor. Pentameric E-cadherin, but not monomeric E-cadherin, specifically bound, in a divalent cation-dependent manner, to both purified alpha2beta1 and to a recombinant form of the A-domain of the alpha2 subunit, which has been shown to be a major ligand-binding site within this and other integrins. These findings demonstrate that E-cadherin can interact with alpha2beta1 and suggest that heterotypic interactions between E-cadherin and integrins may be more common than originally thought.  相似文献   

9.
R-Ras regulates integrin function, but its effects on integrin signaling pathways have not been well described. We demonstrate that activation of R-Ras promoted focal adhesion formation and altered localization of the alpha2beta1 integrin from cell-cell to cell-matrix adhesions in breast epithelial cells. Constitutively activated R-Ras(38V) dramatically enhanced focal adhesion kinase (FAK) and p130(Cas) phosphorylation upon collagen stimulation or clustering of the alpha2beta1 integrin, even in the absence of increased ligand binding. Signaling events downstream of R-Ras differed from integrins and K-Ras, since pharmacological inhibition of Src or disruption of actin inhibited integrin-mediated FAK and p130(Cas) phosphorylation, focal adhesion formation, and migration in control and K-Ras(12V)-expressing cells but had minimal effect in cells expressing R-Ras(38V). Therefore, signaling from R-Ras to FAK and p130(Cas) has a component that is Src independent and not through classic integrin signaling pathways and a component that is Src dependent. R-Ras effector domain mutants and pharmacological inhibition suggest a partial role for phosphatidylinositol 3-kinase (PI3K), but not Raf, in R-Ras signaling to FAK and p130(Cas). However, PI3K cannot account for the Src-independent pathway, since simultaneous inhibition of both PI3K and Src did not completely block effects of R-Ras on FAK phosphorylation. Our results suggest that R-Ras promotes focal adhesion formation by signaling to FAK and p130(Cas) through a novel mechanism that differs from but synergizes with the alpha2beta1 integrin.  相似文献   

10.
Selective eosinophil recruitment is the result of orchestrated events involving cell adhesion molecules, chemokines, and their receptors. The mechanisms by which chemokines regulate eosinophil adhesion and migration via integrins are not fully understood. In our study, we examined the effect of CCR3-active chemokines on eosinophil adhesion to VCAM-1 and BSA under both static and flow conditions. When eotaxin-2 or other CCR3-active chemokines were added to adherent eosinophils, it induced rapid and sustained eosinophil detachment from VCAM-1 in a concentration-dependent manner. Adhesion was detectably reduced within 3 min and was further reduced at 10-60 min. Simultaneously, eotaxin-2 enhanced eosinophil adhesion to BSA. Preincubation of eosinophils with the CCR3-blocking mAb 7B11 completely prevented chemokine-induced changes in adhesion to VCAM-1 and BSA. Using a different protocol, pretreatment of eosinophils with chemokines for 0-30 min before their use in adhesion assays resulted in inhibition of VCAM-1 adhesion and enhancement of BSA adhesion. By flow cytometry, expression of alpha4 integrins and a beta1 integrin activation epitope on eosinophils was decreased by eotaxin-2. In a flow-based adhesion assay, eotaxin-2 reduced eosinophil accumulation and the strength of attachment to VCAM-1. These results show that eotaxin-2 rapidly reduced alpha4 integrin function while increasing beta2 integrin function. These findings suggest that chemokines facilitate migration of eosinophils by shifting usage away from beta1 integrins toward beta2 integrins.  相似文献   

11.
We investigated in a colon adenocarcinoma cell line, the exclusive role of extracellular matrix (ECM) components in the absence of soluble factors regarding the integrin clustering processes, and their implication in cell adhesion, spreading and organization of the actin cytoskeleton. Caco-2 cells were shown to express at the plasma membrane 11 integrins, some of which (e.g. alpha3beta1, alpha5beta1, alpha6beta1/beta4, alpha8beta1 and alpha(v)beta1/beta5/beta6) were identified for the first time in this cell line. Cell adhesion and spreading processes were governed essentially by lamellipodium, the regulation of which was shown to be induced by two types of integrin clustering processes mediated by ECM proteins alone. During these phenomena, alpha2beta1, alpha(v)beta6 and alpha6beta1 integrins, the Caco-2 cell specific receptors of type IV collagen, fibronectin and laminin, respectively, were clustered in small focal complexes (point contacts), whereas alpha(v)beta5, the vitronectin receptor in this cell line, was aggregated in focal adhesions. The two levels of integrin clustering induced only F-actin cortical web formation organized in thin radial and/or circular filaments. We conclude thus that ECM components per se through their action on integrin clustering are involved in cell adhesion, cortical actin cytoskeleton organization and cell spreading.  相似文献   

12.
Laminin-integrin interactions can in some settings activate the extracellular signal-regulated kinases (ERKs) but the control mechanisms are poorly understood. Herein, we studied ERK activation in response to two laminins isoforms (-1 and -10/11) in two epithelial cell lines. Both cell lines expressed beta1-containing integrins and dystroglycan but lacked integrin alpha6beta4. Antibody perturbation assays showed that both cell lines bound to laminin-10/11 via the alpha3beta1and alpha6beta1 integrins. Although laminin-10/11 was a stronger adhesion complex than laminin-1 for both cell lines, both laminins activated ERK in only one of the two cell lines. The ERK activation was mediated by integrin alpha6beta1 and not by alpha3beta1 or dystroglycan. Instead, we found that dystroglycan-binding domains of both laminin-1 and -10/11 suppressed integrin alpha6beta1-mediated ERK activation. Moreover, the responding cell line expressed the two integrin alpha6 splice variants, alpha6A and alpha6B, whereas the nonresponding cell line expressed only alpha6B. Furthermore, ERK activation was seen in cells transfected with the integrin alpha6A subunit, but not in alpha6B-transfected cells. We conclude that laminin-1 and -10/11 share the ability to induce ERK activation, that this is regulated by integrin alpha6Abeta1, and suggest a novel role for dystroglycan-binding laminin domains as suppressors of this activation.  相似文献   

13.
BACKGROUND: Integrin receptors, composed of transmembrane alpha and beta subunits, are essential for the development and functioning of multicellular animals. Agonist stimulation leads cells to regulate integrin affinity ("activation"), thus controlling cell adhesion and migration, controlling extracellular-matrix assembly, and contributing to angiogenesis, tumor cell metastasis, inflammation, the immune response, and hemostasis. A final step in integrin activation is the binding of talin, a cytoskeletal protein, to integrin beta cytoplasmic domains. Many different signaling molecules that regulate integrin affinity have been described, but a pathway that connects agonist stimulation to talin binding and activation has not been mapped. RESULTS: We used forward, reverse, and synthetic genetics to engineer and order an integrin activation pathway in cells expressing a prototype activatable integrin, platelet alphaIIbbeta3. Phorbol myristate acetate (PMA) activated alphaIIbbeta3 only after the increased expression of both recombinant protein kinase Calpha (PKCalpha) and talin to levels approximating those in platelets. Inhibition of Rap1 GTPase reduced alphaIIbbeta3 activation, whereas activated Rap1A(G12V) bypassed the requirement for PKC, establishing that Rap1 is downstream of PKC. Talin binding to integrins mediates Rap1-induced activation because Rap1A(G12V) failed to activate alphaIIbbeta3 in cells expressing integrin binding-defective talin (W359A). Rap1 activated integrins by forming an integrin-associated complex containing talin in combination with the Rap effector, RIAM. Furthermore, siRNA-mediated knockdown of RIAM blocked integrin activation. CONCLUSIONS: We have, for the first time, ordered a pathway from agonist stimulation to integrin activation and established the Rap1-induced formation of an "integrin activation complex," containing RIAM and talin, that binds to and activates the integrin.  相似文献   

14.
A subset of integrin alpha subunits contain an I domain, which is important for ligand binding. We have deleted the I domain from the beta2 integrin lymphocyte function-asssociated antigen-1 (LFA-1) and expressed the resulting non-I domain-containing integrin (DeltaI-LFA-1) in an LFA-1-deficient T cell line. DeltaI-LFA-1 showed no recognition of LFA-1 ligands, confirming the essential role of the I domain in ligand binding. Except for I domain monoclonal antibodies (mAbs), DeltaI-LFA-1 was recognized by a panel of anti-LFA-1 mAbs similarly to wild-type LFA-1. However, DeltaI-LFA-1 had enhanced expression of seven mAb epitopes that are associated with beta2 integrin activation, suggesting that it exhibited an "active" conformation. In keeping with this characteristic, DeltaI-LFA-1 induced constitutive activation of alpha4beta1 and alpha5beta1, suggesting intracellular signaling to these integrins. This "cross-talk" was not due to an effect on beta1 integrin affinity. However, the enhanced activity was susceptible to inhibition by cytochalasin D, indicating a role for the cytoskeleton, and also correlated with clustering of beta1 integrins. Thus, removal of the I domain from LFA-1 created an integrin with the hallmarks of a constitutively active receptor mediating signals into the cell. These findings suggest a key role for the I domain in controlling integrin activity.  相似文献   

15.
Sphingosine 1-phosphate (SPP), a platelet-derived bioactive lysophospholipid, is a regulator of angiogenesis. However, molecular mechanisms involved in SPP-induced angiogenic responses are not fully defined. Here we report the molecular mechanisms involved in SPP-induced human umbilical vein endothelial cell (HUVEC) adhesion and migration. SPP-induced HUVEC migration is potently inhibited by antisense phosphothioate oligonucleotides against EDG-1 as well as EDG-3 receptors. In addition, C3 exotoxin blocked SPP-induced cell attachment, spreading and migration on fibronectin-, vitronectin- and Matrigel-coated surfaces, suggesting that endothelial differentiation gene receptor signaling via the Rho pathway is critical for SPP-induced cell migration. Indeed, SPP induced Rho activation in an adherence-independent manner, whereas Rac activation was dispensible for cell attachment and focal contact formation. Interestingly, both EDG-1 and -3 receptors were required for Rho activation. Since integrins are critical for cell adhesion, migration, and angiogenesis, we examined the effects of blocking antibodies against alpha(v)beta(3), beta(1), or beta(3) integrins. SPP induced Rho-dependent integrin clustering into focal contact sites, which was essential for cell adhesion, spreading and migration. Blockage of alpha(v)beta(3)- or beta(1)-containing integrins inhibited SPP-induced HUVEC migration. Together our results suggest that endothelial differentiation gene receptor-mediated Rho signaling is required for the activation of integrin alpha(v)beta(3) as well as beta(1)-containing integrins, leading to the formation of initial focal contacts and endothelial cell migration.  相似文献   

16.
We have examined cultures of neonatal human foreskin keratinocytes (HFKs) to determine the ligands and functions of integrins alpha 2 beta 1, and alpha 3 beta 1 in normal epidermal stratification and adhesion to the basement membrane zone (BMZ) in skin. We used three assay systems, HFK adhesion to purified extracellular matrix (ECM) ligands and endogenous secreted ECM, localization of integrins in focal adhesions (FAs), and inhibition of HFK adhesion with mAbs to conclude: (a) A new anti-alpha 3 beta 1 mAb, P1F2, localized alpha 3 beta 1 in FAs on purified laminin greater than fibronectin/collagen, indicating that laminin was the best exogeneous ligand for alpha 3 beta 1. However, in long term culture, alpha 3 beta 1 preferentially codistributed in and around FAs with secreted laminin-containing ECM, in preference to exogenous laminin. Anti-alpha 3 beta 1, mAb P1B5, detached prolonged cultures of HFKs from culture plates or from partially purified HFK ECM indicating that interaction of alpha 3 beta 1 with the secreted laminin-containing ECM was primarily responsible for HFK adhesion in long term culture. (b) In FA assays, alpha 2 beta 1 localized in FAs conincident with initial HFK adhesion to exogenous collagen, but not laminin or fibronectin. However, in inhibition assays, anti-alpha 2 beta 1 inhibited initial HFK adhesion to both laminin and collagen. Thus, alpha 2 beta 1 contributes to initial HFK adhesion to laminin but alpha 3 beta 1 is primarily responsible for long-term HFK adhesion to secreted laminin-containing ECM. (c) Serum or Ca2(+)-induced aggregation of HFKs resulted in relocation of alpha 2 beta 1 and alpha 3 beta 1 from FAs to cell-cell contacts. Further, cell-cell adhesion was inhibited by anti-alpha 3 beta 1 (P1B5) and a new anti-beta 1 mAb (P4C10). Thus, interaction of alpha 3 beta 1 with either ECM or membrane coreceptors at cell-cell contacts may facilitate Ca2(+)-induced HFK aggregation. (d) It is suggested that interaction of alpha 3 beta 1 with a secreted, laminin-containing ECM in cultured HFKs, duplicates the role of alpha 3 beta 1 in basal cell adhesion to the BMZ in skin. Further, relocation of alpha 2 beta 1 and alpha 3 beta 1 to cell-cell contacts may result in detachment of cells from the BMZ and increased cell-cell adhesion in the suprabasal cells contributing to stratification of the skin.  相似文献   

17.
ADAM disintegrin domains can support integrin-mediated cell adhesion. However, the profile of which integrins are employed for adhesion to a given disintegrin domain remains unclear. For example, we suggested that the disintegrin domains of mouse sperm ADAMs 2 and 3 can interact with the alpha6beta1 integrin on mouse eggs. Others concluded that these disintegrin domains interact instead with the alpha9beta1 integrin. To address these differing results, we first studied adhesion of mouse F9 embryonal carcinoma cells and human G361 melanoma cells to the disintegrin domains of mouse ADAMs 2 and 3. Both cell lines express alpha6beta1 and alpha9beta1 integrins at their surfaces. Antibodies to the alpha6 integrin subunit inhibited adhesion of both cell lines. An antibody that recognizes human alpha9 integrin inhibited adhesion of G361 cells. VLO5, a snake disintegrin that antagonizes alpha4beta1 and alpha9beta1 integrins, potently inhibited adhesion of both cell lines. We next explored expression of the alpha9 integrin subunit in mouse eggs. In contrast to our ability to detect alpha6beta1, we were unable to convincingly detect alpha9beta1 integrin on the surface of mouse eggs. Moreover, treatment of mouse eggs with 250 nm VLO5, which is 250 fold over its approximately IC(50) for inhibition of somatic cell adhesion, had minimal effect on sperm-egg binding or fusion. We did detect alpha9 integrin protein on epithelial cells of the oviduct. Additional studies showed that antibodies to the alpha6 and alpha7 integrins additively inhibited adhesion of mouse trophoblast stem cells and that an antibody to the alpha4 integrin inhibited adhesion of MOLT-3 cells to these disintegrin domains: Our data suggest that multiple integrins (on the same cell) can participate in adhesion to a given ADAM disintegrin domain and that interactions between ADAMs and integrins may be important for sperm transit through the oviduct.  相似文献   

18.
Regulation of integrin affinity and clustering plays a key role in the control of cell adhesion and migration. The protein ICAP-1 alpha (integrin cytoplasmic domain-associated protein-1 alpha) binds to the cytoplasmic domain of the beta(1A) integrin and controls cell spreading on fibronectin. Here, we demonstrate that, despite its ability to interact with beta(1A) integrin, ICAP-1 alpha is not recruited in focal adhesions, whereas it is colocalized with the integrin at the ruffling edges of the cells. ICAP-1 alpha induced a rapid disruption of focal adhesions, which may result from the ability of ICAP-1 alpha to inhibit the association of beta(1A) integrin with talin, which is crucial for the assembly of these structures. ICAP-1 alpha-mediated dispersion of beta(1A) integrins is not observed with beta(1D) integrins that do not bind ICAP. This strongly suggests that ICAP-1 alpha action depends on a direct interaction between ICAP-1 alpha and the cytoplasmic domain of the beta(1) chains. Altogether, these results suggest that ICAP-1 alpha plays a key role in cell adhesion by acting as a negative regulator of beta(1) integrin avidity.  相似文献   

19.
Cell-matrix and cell-cell junctions cross-talk together, and these two junctions cooperatively regulate cell movement, proliferation, adhesion, and polarization. However, the mechanism of this cross-talk remains unknown. An immunoglobulin-like cell-cell adhesion molecule nectin first trans-interacts with each other to form cell-cell adhesion and induces activation of Rap1, Cdc42, and Rac small G proteins through c-Src. Trans-interacting nectin then recruits another cell-cell adhesion molecule cadherin to the nectin-based cell-cell adhesion sites and forms adherens junctions (AJs). Here, we show that integrin alpha(v)beta3 functionally and physically associates with nectin. Integrin alpha(v)beta3 colocalized with nectin at the nectin-based cell-cell adhesion sites. The association of integrin alpha(v)beta3 with nectin was direct and was mediated through their extracellular regions. This interaction was necessary for the nectin-induced signaling. Focal adhesion kinase, which relays the integrin-initiated outside-in signals to the intracellular signaling molecules, was also involved in the nectin-induced signaling. During the formation of AJs, the high affinity form of integrin alpha(v)beta3 co-localized with nectin at the primordial cell-cell contact sites, and then after the establishment of AJs, this high affinity form of integrin alpha(v)beta3 was converted to the low affinity form, which continued to co-localize with nectin. Thus, integrin alpha(v)beta3 and nectin play pivotal roles in the cross-talk between cell-matrix and cell-cell junctions and the formation of cadherin-based AJs.  相似文献   

20.
Integrin affinity is modulated by intracellular signaling cascades, in a process known as "inside-out" signaling, leading to changes in cell adhesion and motility. Protein kinase C (PKC) plays a critical role in integrin-mediated events; however, the mechanism that links PKC to integrins remains unclear. Here, we report that PKCepsilon positively regulates integrin-dependent adhesion, spreading, and motility of human glioma cells. PKCepsilon activation was associated with increased focal adhesion and lamellipodia formation as well as clustering of select integrins, and it is required for phorbol 12-myristate 13-acetate-induced adhesion and motility. We provide novel evidence that the scaffolding protein RACK1 mediates the interaction between integrin beta chain and activated PKCepsilon. Both depletion of RACK1 by antisense strategy and overexpression of a truncated form of RACK1 which lacks the integrin binding region resulted in decreased PKCepsilon-induced adhesion and migration, suggesting that RACK1 links PKCepsilon to integrin beta chains. Altogether, these results provide a novel mechanistic link between PKC activation and integrin-mediated adhesion and motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号