首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,4(1H)-Diarylimidazoles have been previously shown to inhibit hNa(V)1.2 sodium (Na) channel currents. Since many of the clinically used anticonvulsants are known to inhibit Na channels as an important mechanism of their action, these compounds were tested in two acute rodent seizure models for anticonvulsant activity (MES and scMet) and for sedative and ataxic side effects. Compounds exhibiting antiepileptic activity were further tested to establish a dose response curve (ED(50)). The experimental data identified four compounds with anticonvulsant activity in the MES acute seizure rodent model (compound 10, ED(50)=61.7mg/kg; compound 13, ED(50)=46.8mg/kg, compound 17, ED(50)=129.5mg/kg and compound 20, ED(50)=136.7mg/kg). Protective indexes (PI=TD(50)/ED(50)) ranged from 2.1 (compound 10) to greater than 3.6 (compounds 13, 17 and 20). All four compounds were shown to inhibit hNa(V)1.2 in a dose dependant manner. Even if a correlation between sodium channel inhibition and anticonvulsant activity was unclear, these studies identify four Na channel antagonists with anticonvulsant activity, providing evidence that these derivatives could be potential drug candidates for development as safe, new and effective antiepileptic drugs (AEDs).  相似文献   

2.
N-Acetyl-2-carboxybenzenesulfonamide (11), and a group of analogues possessing an appropriately substituted-phenyl substituent (4-F, 2,4-F(2), 4-SO(2)Me, 4-OCHMe(2)) attached to its C-4, or C-5 position, were synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 inhibition studies showed that 11 is a more potent inhibitor (COX-1 IC(50)=0.06microM; COX-2 IC(50)=0.25microM) than aspirin (COX-1 IC(50)=0.35microM; COX-2 IC(50)=2.4microM), and like aspirin [COX-2 selectivity index (S.I.)=0.14], 11 is a nonselective COX-2 inhibitor (COX-2 S.I.=0.23). Regioisomers having a 2,4-difluorophenyl substituent attached to the C-4 (COX-2 IC(50)=0.087microM; COX-2 S.I. >1149), or C-5 (COX-2 IC(50)=0.77microM, SI>130), position of 11 exhibited the most potent and selective COX-2 inhibitory activity relative to the reference drug celecoxib (COX-1 IC(50)=33.1microM; COX-2 IC(50)=0.07microM; COX-2 S.I.=472). N-Acetyl-2-carboxybenzenesulfonamide (11, ED(50)=49 mg/kg), and its C-4 2,4-difluorophenyl derivative (ED(50)=91 mg/kg), exhibited superior antiinflammatory activity (oral dosing) in a carrageenan-induced rat paw edema assay compared to aspirin (ED(50)=129 mg/kg). These latter compounds exhibited comparable analgesic activity to the reference drug diflunisal, and superior analgesic activity compared to aspirin, in a 4% NaCl-induced abdominal constriction assay. A molecular modeling (docking) study indicated that the SO(2)NHCOCH(3) substituent present in N-acetyl-2-carboxy-4-(2,4-fluorophenyl)benzenesulfonamide, like the acetoxy substituent in aspirin, is suitably positioned to acetylate the Ser(530) hydroxyl group in the COX-2 primary binding site. The results of this study indicate that the SO(2)NHCOCH(3) pharmacophore present in N-acetyl-2-carboxybenzenesulfonamides is a suitable bioisostere for the acetoxy (OCOMe) group in aspirin.  相似文献   

3.
Themisone, also known as Atrolactamide, was found, in the 1950s, to be a very potent anticonvulsant. It was hypothesized that the -CF(3) substitution would maintain the anticonvulsant activity. Anticonvulsant testing of our novel compounds by the National Institute of Health's Anticonvulsant Screening Project of the Antiepileptic Drug Discovery Program identified analogue 1, 3,3,3-trifluoro-2-hydroxy-2-phenyl-propionamide, to have potent anticonvulsant activity (MES ED(50) of 9.9 mg/kg, ScMET ED(50) of 34 mg/kg and TD(50) of 100 mg/kg). Therefore, a diverse range of analogues were synthesized utilizing multiple synthetic pathways to explore the structure-activity relationship. Patch clamp electrophysiology experiments demonstrate that compound 1 is an effective T-type calcium channel blocker. Altogether, these results suggest these compounds as a class of orally available anticonvulsants.  相似文献   

4.
A hitherto unknown class of celecoxib analogs was designed for evaluation as dual inhibitors of the 5-lipoxygenase/cyclooxygenase-2 (5-LOX/COX-2) enzymes. These compounds possess a SO(2)Me (11a), or SO(2)NH(2) (11b) COX-2 pharmacophore at the para-position of the N(1)-phenyl ring in conjunction with a 5-LOX N-hydroxypyrid-2(1H)one iron-chelating moiety in place of the celecoxib C-5 tolyl group. The title compounds 11a-b are weak inhibitors of the COX-1 and COX-2 isozymes (IC(50)=7.5-13.2 microM range). In contrast, the SO(2)Me (11a, IC(50)=0.35 microM), and SO(2)NH(2) (11b, IC(50)=4.9 microM), compounds are potent inhibitors of the 5-LOX enzyme comparing favorably with the reference drug caffeic acid (5-LOX IC(50)=3.47 microM). The SO(2)Me (11a, ED(50)=66.9 mg/kg po), and SO(2)NH(2) (11b, ED(50)=99.8 mg/kg po) compounds exhibited excellent oral anti-inflammatory (AI) activities being more potent than the non-selective COX-1/COX-2 inhibitor drug aspirin (ED(50)=128.9 mg/kg po) and less potent than the selective COX-2 inhibitor celecoxib (ED(50)=10.8 mg/kg po). The N-hydroxypyridin-2(1H)one moiety constitutes a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of chelating 5-LOX iron for exploitation in the design of 5-LOX inhibitory AI drugs.  相似文献   

5.
Epilepsy is one of the most common neurological diseases, with between 34 and 76 per 100,000 people developing epilepsy annually. Epilepsy therapy for the past 100+ years is based on the use of antiepileptic drugs (AEDs). Despite the availability of more than twenty old and new AEDs, approximately 30% of patients with epilepsy are not seizure-free with the existing medications. In addition, the clinical use of the existing AEDs is restricted by their side-effects, including the teratogenicity associated with valproic acid that restricts its use in women of child-bearing age. Thus, there is an unmet clinical need to develop new, effective AEDs. In the present study, a novel class of carbamates incorporating phenethyl or branched aliphatic chains with 6–9 carbons in their side-chain, and 4-benzenesulfonamide-carbamate moieties were synthesized and evaluated for their anticonvulsant activity, teratogenicity and carbonic anhydrase (CA) inhibition. Three of the ten newly synthesized carbamates showed anticonvulsant activity in the maximal-electroshock (MES) and 6 Hz tests in rodents. In mice, 3-methyl-2-propylpentyl(4-sulfamoylphenyl)carbamate(1), 3-methyl-pentan-2-yl-(4-sulfamoylphenyl)carbamate (9) and 3-methylpentyl, (4-sulfamoylphenyl)carbamate (10) had ED50 values of 136, 31 and 14 mg/kg (MES) and 74, 53, and 80 mg/kg (6 Hz), respectively. Compound (10) had rat-MES-ED50?=?13 mg/kg and ED50 of 59 mg/kg at the mouse-corneal-kindling test. These potent carbamates (1,9,10) induced neural tube defects only at doses markedly exceeding their anticonvuslnat-ED50 values. None of these compounds were potent inhibitors of CA IV, but inhibited CA isoforms I, II and VII. The anticonvulsant properties of these compounds and particularly compound 10 make them potential candidates for further evaluation and development as new AEDs.  相似文献   

6.
The ability of acute environmental or intraperitoneal (i.p.) ethanol to influence morphine antinociceptive effect was studied in mice. In order to induce tolerance to morphine analgesia, mice received daily injections of 10 mg/Kg morphine over a period of 10 days. Mice were divided into three groups: i.p. ethanol (E), environmental ethanol (E*), and control saline (M). During the induction of tolerance these groups were treated identically except on days 1 and 11. On these days, 10 minutes prior to morphine injection, mice received either i.p. ethanol (1g/Kg), environmental ethanol (a bottle of 10% ethanol placed next to the animals cage during the experiments), or an equivalent volume of saline. Analgesia was assessed using a standard hot plate protocol and dose-response cumulative curves for morphine analgesia were obtained on days 1 and 11. On day 1, both the i.p. and environmental administration of ethanol showed similar morphine-potentiation effects [Mean Effective Dose: ED50 (M1)=4.5 mg/kg; ED50 (E1)=2.4 mg/kg; ED50 (E*1)=2.1 mg/kg]. On day 11, control group mice showed a reduction of morphine analgesia at test [ED50 (M11)=14.1 mg/kg]. Mice receiving i.p. and environmental ethanol again showed a leftward shift in dose-response cumulative curves for morphine antinociception with respect to controls [ED50 (E11)=9.1 mg/kg; ED50 (E*11)=4.7 mg/kg]. I.p. ethanol administration at non-antinociceptive doses enhances the morphine antinociception effect similarly in tolerant and non-tolerant (naive) mice. The presence of environmental ethanol can also induce a similar pattern of increase in morphine antinociception effect.  相似文献   

7.
The overstimulation of excitatory amino acid receptors such as the glutamate AMPA receptor has been implicated in the physiopathogenesis of epilepsy as well as in acute and chronic neurodegenerative disorders. An original series of readily water soluble 4-oxo-10-substituted-imidazo[1,2-a]indeno[1,2-e]pyrazin-2-carboxylic acid derivatives was synthesized. The most potent derivative 6a exhibited nanomolar binding affinity (IC50 = 35nM) and antagonist activity (IC50 = 6nM) at ionotropic AMPA receptor. This compound also demonstrated potent anticonvulsant properties in MES in mice and rats with long durations of action with ED50 values in the 1-3 mg/kg dose range following ip and iv administration.  相似文献   

8.
Discovery of novel, orally active dual NK1/NK2 antagonists   总被引:1,自引:0,他引:1  
Exploration of the SAR around selective NK2 antagonists, SR48968 and ZD7944, led to the discovery that naphth-1-amide analogues provide potent dual NK1 and NK2 antagonists. ZD6021 inhibited binding of [3H]-NKA or [3H]-SP to human NK1 and NK2 receptors, with high-affinity (K(i)=0.12 and 0.62nM, respectively). In functional assays ZD6021 had, at 10(-7)M, in human pulmonary artery pK(B)=8.9 and in human bronchus pK(B)=7.3, for NK1 and NK2, respectively. Oral administration of ZD6021 to guinea pigs dose-dependently attenuated ASMSP induced extravasation of plasma proteins, ED(50)=0.5mg/kg, and NK2 mediated bronchoconstriction, ED(50)=13mg/kg.  相似文献   

9.
A novel series of 2- and 9-disubstituted heterocyclic-fused 4-oxo-indeno[1,2-e]pyrazin derivatives was synthesized. One of them, the 9-(1H-tetrazol-5-ylmethyl)-4-oxo-5,10-dihydroimidazo[1,2-a]indeno[1,2-e]pyrazin-2-yl phosphonic acid 4i exhibited a strong and a selective binding affinity for the AMPA receptor (IC50 = 13 nM) and demonstrated potent antagonist activity (IC50 = 6nM) at the ionotropic AMPA receptor. This compound also displayed good anticonvulsant properties against electrically-induced convulsions after ip and iv administration with ED50 values between 0.8 and 1 mg/kg. Furthermore, a strong increase in potency was observed when given iv 3 h before test (ED50 = 3.5 instead of 25.6 mg/kg for the corresponding 9-carboxymethyl-2-carboxylic acid analogue). These data confirmed that there is an advantage in replacing the classical carboxy substituents by their bioisosteres such as tetrazole or phosphonic acid groups.  相似文献   

10.
A series of 5-, 6-, 7- and 8-aza analogues of 3-aryl-4-hydroxyquinolin-2(1H)-one was synthesized and assayed as NMDA/glycine receptor antagonists. The in vitro potency of these antagonists was determined by displacement of the glycine site radioligand [(3)H]5,7-dicholorokynurenic acid ([(3)H]DCKA) in rat brain cortical membranes. Selected compounds were also tested for functional antagonism using electrophysiological assays in Xenopus oocytes expressing cloned NMDA receptor (NR) 1A/2C subunits. Among the 5-, 6-, 7-, and 8-aza-3-aryl-4-hydroxyquinoline-2(1H)-ones investigated, 5-aza-7-chloro-4-hydroxy-3-(3-phenoxyphenyl)quinolin-2-(1H)-one (13i) is the most potent antagonist, having an IC(50) value of 110 nM in [(3)H]DCKA binding and a K(b) of 11 nM in the electrophysiology assay. Compound 13i is also an active anticonvulsant when administered systemically in the mouse maximum electroshock-induced seizure test (ED(50)=2.3mg/kg, IP).  相似文献   

11.
Synthesis, physicochemical and anticonvulsant properties of new N-Mannich bases derived from 5-cyclopropyl-5-phenyl- and 5-cyclopropyl-5-(4-chlorophenyl)-imidazolidine-2,4-diones have been described. Initial anticonvulsant screening was performed using intraperitoneal (ip.) maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) seizure tests. The neurotoxicity was determined applying the rotarod test. The in vivo results in mice showed that all compounds were effective especially in the MES screen. The quantitative evaluation after oral administration in rats showed that the most active was 5-cyclopropyl-5-phenyl-imidazolidine-2,4-dione (1) with ED(50) values of 5.76 mg/kg (MES) and 57.31 mg/kg (scPTZ). This molecule was more potent than phenytoin and ethosuximide which were used as reference antiepileptic drugs. Additionally compound 1 with ED(50) of 26.06 mg/kg in psychomotor seizure test (6-Hz) in mice showed comparable activity to new generation anticonvulsant - levetiracetam.  相似文献   

12.
A novel central nervous system (CNS) selective neurokinin-1 (NK(1)) receptor antagonist, (2S,3S)-3-[(1R)-6-methoxy-1-methyl-1-trifluoromethylisochroman-7-yl]-methylamino-2-phenylpiperidine 'CJ-17,493' (compound (+)-1), was synthesized stereoselectively using a kinetic resolution by lipase-PS as a key step. Compound (+)-1 displayed high and selective affinity (K(i)=0.2 nM) for the human NK(1) receptor in IM-9 cells, potent activity in the [Sar(9), Met(O(2))(11)]SP-induced gerbil tapping model (ED(50)=0.04 mg/kg, s.c.) and in the ferret cisplatin (10mg/kg, i.p.)-induced anti-emetic activity model (vomiting: ED(90)=0.07 mg/kg, s.c.), all levels of activity comparable with those of CP-122,721. In addition, compound (+)-1 exhibited linear pharmacokinetics rather than the super dose-proportionality of CP-122,721 and this result provides a potential solution for the clinical issue observed with CP-122,721.  相似文献   

13.
The pharmacological profile of PD117302 was studied in three rat models of experimental seizures. It was determined that PD117302 is a potent and efficacious anticonvulsant against NMDA (ED50 = 0.27 mg/kg, i.v.) and MES (ED50 = 16.3 mg/kg, s.c.), but not flurothyl, convulsions. Its anticonvulsant profile was dose- and time-dependent, stereospecific and sensitive to naloxone and the selective kappa opioid antagonist nor-binaltorphimine. Given these findings, we suggest that PD117302 acts via the kappa receptor to modulate seizure protection. Furthermore, in view of its marked ability to block NMDA excitotoxicity (including lethality) it seems possible that this drug, or related compounds, may have potential therapeutic utility as a neuroprotective agent.  相似文献   

14.
The anti-inflammatory properties of three flavanones isolated from Inula viscosa, sakuranetin, 7-O-methylaromadendrin, and 3-acetyl-7-O-methylaromadendrin, have been tested both in vitro and in vivo. Acute inflammation in vivo was induced by means of topical application of 12-O-tetradecanoylphorbol 13-acetate (TPA) to mouse ears or by subcutaneous injection of phospholipase A(2) (PLA(2)) into mouse paws. The test compounds were evaluated in vitro for their effect on both the metabolism of arachidonic acid and on the release and/or activity of enzymes involved in the inflammatory response such as elastase, myeloperoxidase (MPO), and protein kinase C (PKC). The most active compounds in vivo against PLA(2)-induced paw oedema were 7-O-methylaromadendrin (ED(50)=8 mg/kg) and sakuranetin (ED(50)=18 mg/kg). In contrast, the most potent compound against TPA-induced ear oedema was 3-acetyl-7-O-methylaromadendrin (ED(50)=185 microg/ear), followed by sakuranetin (ED(50)=205 microg/ear). In vitro, the latter compound was the most potent inhibitor of leukotriene (LT) B(4) production by peritoneal rat neutrophils (IC(50)=9 microM) and it was also the only compound that directly inhibited the activity of 5-lipoxygenase (5-LOX). 3-Acetyl-7-O-methylaromadendrin also inhibited LTB(4) production (IC(50)=15 microM), but had no effect on 5-LOX activity. The only flavanone that inhibited the secretory PLA(2) activity in vitro was 7-O-methylaromadendrin. This finding may partly explain the anti-inflammatory effect observed in vivo, although other mechanisms such as the inhibition of histamine release by mast cells may also be implicated. Sakuranetin at 100 microM was found to inhibit elastase release, although this result is partly due to direct inhibition of the enzyme itself. At the same concentration, 7-O-methylaromadendrin only affected the enzyme release. Finally, none of the flavanones exhibited any effect on MPO or PKC activities. Taken together, these findings indicate that sakuranetin may be a selective inhibitor of 5-LOX.  相似文献   

15.
We recently reported that the ED50 value for (R,S)-2,3-dimethoxypropionamide (1) in the maximal electroshock (MES)-induced seizure test in mice was 30 mg/kg (Choi, D.; Stables, J.P., Kohn, H. Bioorg. Med. Chem. 1996, 4, 2105). This value is comparable to that observed for phenobarbital (ED50 = 22 mg/kg). Compound 1 is structurally similar to a class of MES-selective anticonvulsant agents, termed functionalized amino acids (2), that were developed in our laboratory. The distinguishing feature of 2 is the differential activities observed for enantiomers. In this study, we asked whether comparable differences in activities were observed in the MES-induced seizure test for (R)- and (S)-1. We developed stereospecific syntheses for these enantiomers and showed that both compounds exhibit nearly equal anticonvulsant activity in mice (i.p.) (MES ED50 = 79-111 mg/kg). The surprisingly high ED50 values for (R)- and (S)-1 required our redetermining the ED50 value for (R,S)-1. We revised this value to 79 mg/kg. A limited structure-activity relationship study for 1 was conducted. Special attention was given to the C(2) methoxy unit in 1. We found that replacement of this moiety led to only modest differences in the MES activities upon ip administration to mice. Significantly, we observed an enhancement in the anticonvulsant activity for (R,S)-N-benzyl 2-hydroxy-3-methoxypropionamide ((R,S)-6) upon oral administration to rats ((R,S)-6: mice (i.p.) ED50 > 100, < 300 mg/kg; rat (oral) ED50 = 62 mg/kg). The activities of 3-methoxypropionamides, functionalized amino acids, and related compounds are discussed.  相似文献   

16.
Several studies have demonstrated that N-substituted amino acid derivatives exhibit weak anticonvulsant activities in vivo. In the present study, a series of amides of aminoacids structurally related to aminoacetamide have been synthesised and investigated for anticonvulsant activity. Among the molecules investigated, those containing a bicyclic (tetralinyl, indanyl) group linked to the aminoacetamide chain (40, 47 and 59) were among the most active as anticonvulsants (ED50 > 10, <100 mg/kg after oral administration) against tonic seizures in the mouse maximal electroshock, bicuculline and picrotoxin tests at doses devoid of neurotoxic activity. Altogether, these results suggest the described compounds as a class of orally available anticonvulsants. The ability of these compounds to partially block veratridine-induced aspartate efflux from rat cortical synaptosomes suggests that their anticonvulsant activity may be only partly the consequence of an interaction with neuronal voltage-dependent sodium channels. Some of the most potent compounds appear worthy of a further investigation aimed at assessing their anticonvulsant activity in other models and at elucidating the underlying mechanism of action.  相似文献   

17.
A group of celecoxib analogs having a SO(2)NH(2) (9a-f), or SO(2)Me (12a-f), COX-2 pharmacophore at the para-position of the N-1 phenyl ring in conjunction with a C-5 phenyl ring having a variety of substituents (4-, 3-, 2-OAc; 4-Me,2-OAc, 4-Me,3-OAc, 4-F,2-OAc) was synthesized for evaluation as cyclooxygenase (COX) inhibitors of the COX-1/COX-2 isozymes. Within this group of compounds, 1-(4-aminosulfonylphenyl)-3-trifluoromethyl-5-(2-acetoxy-4-fluorophenyl)pyrazole (9f) emerged as the most potent (COX-1 IC(50)=0.7 μM; COX-2 IC(50)=0.015 μM) and selective (COX-2 selectivity index=47) inhibitor agent that exhibited good anti-inflammatory activity (ED(50)=42.3mg/kg) which was lower than the reference drug celecoxib (ED(50)=10.8 mg/kg), but greater than ibuprofen (ED(50)=67.4 mg/kg) and aspirin (ED(50)=128.7 mg/kg). Molecular modeling studies for 9f showed that the SO(2)NH(2) group assumes a position within the secondary pocket of the COX-2 active site wherein the SO(2)NH(2) oxygen atom is hydrogen bonded to the H90 residue (2.90?), the SO(2)NH(2) nitrogen atom forms a hydrogen bond with L352 (N?O=2.80?), and the acetyl group is positioned in the vicinity of the S530 residue where the acetyl oxygen atom undergoes hydrogen bonding to L531 (2.99?).  相似文献   

18.
A group of trans- and cis-2-(2,6-dimethylphenoxy)-N-(2-hydroxycyclohexyl)acetamides (1-7) and -ethylamines (8-9) have been synthesized and investigated for their anticonvulsant activity. One of them, racemic trans-2-(2,6-dimethylphenoxy)-N-(2-hydroxycyclohexyl)acetamide proved to be the most effective in MES (mice, ip), exhibiting ED(50)=42.97 mg/kg b.w. and TD(50)=105.67 mg/kg b.w. It also proved protection in focal seizures (electric kindling, rats, ip) and it raises seizure threshold. The mechanism of action is inhibition of voltage-gated sodium currents and enhancement of GABA effect. Safety pharmacology assay on threshold tonic extension revealed no lowering of the seizure threshold.  相似文献   

19.
20.
Even after considerable advances in the field of epilepsy treatment, convulsions are inefficiently controlled by standard drug therapy. Herein, a series of pyrimidine-carbothioamide derivatives 4(a-t) was designed as anticonvulsant agents by doing some important structural modifications in well-known anticonvulsant drugs. Two classical animal models were used for the in vivo anticonvulsant screening, maximum electroshock seizure (MES) and subcutaneous pentylenetetrazole (scPTZ) models; followed by motor impairment study by rotarod method. The most active compound 4g effectively suppressed seizure effect in both the animal models with median doses of 15.6 mg/kg (MES ED50), 278.4 mg/kg (scPTZ ED50) and 534.4 mg/kg (TD50) with no sign of neurotoxicity. Furthermore, in vitro GABA-AT enzyme activity assay of 4g showed inhibitory potency (IC50) of 12.23 μM. The docking study also favored the animal studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号