首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Usin gintracellular microelectrode technique, the response of the voltageV across the plasma membrane of cultured bovine corneal endothelial cells to changes in sodium and bicarbonate concentrations was investigated. (1) The electrical response to changes in [HCO 3 ] o (depolarization upon lowering and hyperpolarization upon raising [HCO 3 ] o ) was dependent on sodium. Lithium could fairly well be substituted for sodium, whereas potassium or choline were much less effective. (2) Removal of external sodium caused a depolarization, while a readdition led to a hyperpolarization, which increased with time of preincubation in the sodium-depleted medium. (3) The response to changes in [Na+] o was dependent on bicarbonate. In a nominally bicarbonate-free medium, its amplitude was decreased or even reversed in sign. (4) Application of SITS or DIDS (10–3 m) had a similar effect on the response to sodium as bicarbonate-depleted medium. (5) At [Na+] o =151mm and [HCO 3 ] o =46mm, the transients ofV depended, with 39.0±9.0 (sd) mV/decade, on bicarbonate and, with 15.3±5.8 (sd) mV/decade, on sodium. (6) After the preincubation of cells with lithium, replacement of Li by choline led to similar effects as the replacement of sodium by choline, though the response ofV was smaller with Li. This response could be reduced or reversed by the removal of bicarbonate or by the application of SITS. (7) Amiloride (10–3 m) caused a reversible hyperpolarization of the steady-state potential by 8.5±2.6 mV (sd). It did not affect the immediate response to changes in [Na+] o or [HCO 3 ] o , but reduced the speed of regaining the steady-state potential after a change in [HCO 3 ] o . (8) Ouabain (10–4 m) caused a fast depolarization of –6.8±1.1 (sd) mV, which was followed by a continuing slower depolarization. The effect was almost identical at 10–5 m. (9) It is suggested, that corneal endothelial cells possess a cotransport for sodium and bicarbonate, which transports net negative charage with these ions. It is inhibitable by stilbenes, but not directly affected by amiloride or ouabain. Lithium is a good substitute for sodium with respect to bicarbonate transport and is transported itself. In addition, the effect of amiloride provides indirect evidence for the existence of a Na+/H+-antiport. A model for the transepithelial transport of bicarbonate across the corneal endothelium is proposed.  相似文献   

2.
Summary Experiments were performed in intact proximal tubules of the doubly perfused kidney and in fused proximal tubule cells ofRaha esculenta to evaluate the dependence of intracellular pH (pHi) on cell membrane potential applying pH-sensitive and conventional microelectrodes. In proximal tubules an increase of the K concentration in the peritubular perfusate from 3 to 15 mmol/liter decreased the peritubular cell membrane potential from –55±2 to –38±1 mV paralleled by an increase of pH i , from 7.54±0.02 to 7.66±0.02. The stilbene derivative DIDS hyperpolarized the cell membrane potential from –57 ± 2 to –71 ±4 mV and led to a significant increase of the K-induced cell membrane depolarization, but prevented the K-induced intracellular alkalinization. Fused proximal tubule cells were impaled by three microelectrodes simultaneously and cell voltage was clamped stepwise while pH i changes were monitored. Cell membrane hyperpolarization acidified the cell cytoplasm in a linear relationship. This voltage-induced intracellular acidification was reduced to about one-third when HCO3 ions were omitted from the extracellular medium. We conclude that in proximal tubule cells pH i depends on cell voltage due to the rheogenicity of the HCO 3 transport system.  相似文献   

3.
Summary Radiosodium efflux from barnacle muscle fibers is a function of pH e , the threshold pH e for stimulation of Na efflux into HCO 3 -artificial sea water (ASW) being 6.8 and the fixed thresholdpCO2 (in an open CO2 system) being approximately 30 mm Hg. Acidification of ASW containing non-HCO 3 buffer is without effect on the Na efflux. The Na efflux following stimulation by reducing the pH of 10mM HCO 3 -ASW from 7.8 to 6.3 is reduced by 17.3% as the result of microinjecting 100mM EGTA, and increased by 32.6% as the result of microinjecting 0.5M ATP. The Na efflux into K-free HCO 3 -ASW is markedly stimulated by external acidification. Ouabain-poisoned fibers are more responsive to a low pH e than unpoisoned fibers. Applying the 2-14C-DMO technique, it is found that fibers bathed in 10mM HCO 3 -ASW at pH 7.8 have an internal pH of 7.09±0.106 (mean±SD), whereas fibers bathed in 25mM TRIS-ASW at pH 7.8 have a pH i of 7.28±0.112. The relationship between pH i and pH e as external pH is varied by adding H+ is linear. Measurements of the resting membrane potential indicate that external acidification in the presence of HCO 3 as buffer is accompanied by a fall inE m , the threshold pH e being 7.3 both at 24 and 0°C. This sensitivity amounts to 8.2 mV per pH unit (at 24°C) over a wide range of pH e . Membrane resistance following external acidification remains unchanged. Microinjection of the protein inhibitor of Walsh before external acidification fails to stop depolarization from occurring. Cooling to 0°C also fails to abolish depolarization following acidification. Whereas external ouabain and ethacrynic acid reduceE m in the absence or presence of acidification, DPH hyperpolarizes the membrane or arrests depolarization both at 24 and 0°C. This effect of DPH at 0°C is seen in the absence or presence of acidification. It is suggested that depolarization following acidification of a HCO 3 -containing medium is due to activation of a Cl-and/or HCO 3 -pump and that ouabain and ethacrynic acid reducesE m by abolishing uncoupled Na transport.  相似文献   

4.
Secretion of bicarbonate has been described for distal nephron epithelium and attributed to apical Cl/HCO 3 exchange in beta-intercalated cells. We investigated the presence of this mechanism in cortical distal tubules by perfusing these segments with acid (pH 6) 10 mm phosphate Ringer. The kinetics of luminal alkalinization was studied in stationary microperfusion experiments by double-barreled pH (ion-exchange resin)/1 m KCl reference microelectrodes. Luminal alkalinization may be due to influx (into the lumen) of HCO 3 or OH, or efflux of H+. The magnitude of the Cl/ HCO 3 exchange component was measured by perfusing the lumen with solutions with or without chloride, which was substituted by gluconate. This component was not different from zero in control and alkalotic (chronic plus acute) Wistar rats. Homozygous Brattleboro rats (BRB), genetically devoid of antidiuretic hormone, were used since this hormone has been shown to stimulate H+ secretion, which could mask bicarbonate secretion. In these rats, no evidence for Cl/HCO 3 exchange was found in control BRB and in early distal segments of alkalotic animals, but in late distal tubule a significant component of 0.14±0.033 nmol/cm2 · sec was observed, which, however, is small when compared to the reabsorptive flow found in control Wistar rats, of 0.95±0.10 nmol/cm2 · sec. In addition, 5×10–4 m SITS had no effect on distal bicarbonate reabsorption in controls as well as on secretion in alkalotic Wistar and Brattleboro rats, which is compatible with the absence of effect of this drug on the apical Cl/HCO 3 exchange in other tissues. It is concluded that most distal alkalinization is not Cl dependent, and that Cl/HCO 3 exchange may be found in cortical distal tubule, but its magnitude is, even in alkalosis, markedly smaller than the reabsorptive flux, which predominates in the rats studied in this paper, keeping luminal pH lower than that of blood.  相似文献   

5.
Summary The effects of stepwise concentration changes of K+ and HCO 3 in the basolateral solution on the basolateral membrane potential (V bl) of proximal tubule cells of the doubly-perfusedNecturus kidney were examined using conventional microelectrodes. Apparent transference numbers were calculated from changes inV bl after alterations in external K+ concentration from 1.0 to 2.5mm (t K, 1.0–2.5), 2.5 to 10, and in external HCO 3 concentration (at constant pH) from 5 to 10mm (t HCO3, 5–10), 10 to 20, or 10 to 50.t K, 2.5–10 was 0.38±0.02 under control conditions but was sharply reduced to 0.08±0.03 (P>0.001) by 4mm Ba++. This concentration of Ba++ reducedV bl by 9±1 mV (at 2.5 external K+). Perfusion with SITS (5×10–4 m) for 1 hr hyperpolarizedV bl by 10±3 mV and increasedt K, 2.5–10 significantly to 0.52±0.01 (P<0.001). Ba++ application in the presence of SITS depolarizedV bl by 22±3 mV. In control conditionst HCO3, 10–50 was 0.63±0.05 and was increased to 0.89±0.07 (P<0.01) by Ba++ but was decreased to 0.14±0.02 (P<0.001) by SITS. In the absence of apical and basolateral chloride, the response ofV bl to bicarbonate was diminished but still present (t HCO3, 10–20 was 0.35±0.03). Intracellular pH, measured with liquid ion-exchange microelectrodes, increased from 7.42±0.19 to 7.57±0.17 (P<0.02) when basolateral bicarbonate was increased from 10 to 20mm at constant pH. These data show that the effects of bicarbonate onV bl are largely independent of effects on the K+ conductance and that there is a significant current-carrying bicarbonate pathway in the basolateral membrane. Hence, both K+ and HCO 3 gradients are important in the generation ofV bl, and their relative effects vary reciprocally.  相似文献   

6.
Summary Conventional microelectrodes were used to study the effects of SITS (4-acetamido-4-isothiocyanostilbene-2,2-disulfonate) on the basolateral membrane potentialVbl of the superficial proximal straight tubule (PST) of the rabbit kidney perfusedin vitro. Addition of 0.1mm SITS to the bathing solution resulted in a slow and irreversible hyperpolarization ofVbl from –42.5±1.17 (37) mV to –77.3±0.83 (52) mV. The new steady-state potential was reached in 10 to 15 min and was accompanied by visible cell swelling. Associated with thisVbl hyperpolarization was: 1) an increased steady-state depolarization (from 6.2±0.77 (17) mV to 25.7±0.83 (29) mV) in response to increasing bath potassium concentration from 5 to 16.7mm (HK); 2) a decreased transient depolarization (from 19.8±1.88 (8) mV to 0.43±0.37 (8) mV) in response to decreasing bath bicarbonate concentration from 22 to 6.6mm at constant bath pH (L-HCO3); and 3) inhibition of a depolarizing overshoot and a decreased steady-state depolarization (from 35.9±1.84 (12) mV to 4.7±1.37 (13) mV) in response to reducing bath sodium concentration from 144 to zero (0-Na). Sodium, chloride and NMDG (N-methyl-d-glucamine) were used as the substituting ions, respectively. These results are consistent with the presence of a coupled sodium-bicarbonate carrier in the basolateral membrane which is electrogenic and SITS inhibitable. Comparison of the time course of SITS effects on these ion-substitution responses suggests that the inhibition of the bicarbonate exit pathway(s) is the primary event and that the changes inVbl and in the steady-stateVbl responses to HK and 0-Na are secondary events which may be related to changes in intracellular composition and/or basolateral membrane properties.  相似文献   

7.
Summary The apical membrane of the rabbit corneal endothelium contains a potassium-selective ionic channel. In patch-clamp recordings, the probability of finding the channel in the open state (P o) depends on the presence of either HCO 3 or Cl in the bathing medium. In a methane sulfonate-containing bath,P o is <0.05 at all physiologically relevant transmembrane voltages. With 0mm [HCO 3 ] o at +60 mV,P o was 0.085 and increased to 0.40 when [HCO 3 ] o was 15mm. With 4mm [Cl] o at +60 mV,P o was 0.083 and with 150mm Cl,P o increased to 0.36. LowP o's are also found when propionate, sulphate, bromide, and nitrate are the primary bath anions. The mechanism of action of the anion-stimulated K+ channel gating is not yet known, but a direct action of pH seems unlikely. The alkalinization of cytoplasm associated with the addition of 10mm (NH4)2SO4 to the bath and the acidification accompanying its removal do not result in channel activation nor does the use of Nigericin to equilibrate intracellular pH with that of the bath over the pH range of 6.8 to 7.8. Channel gating also is not affected by bathing the internal surface of the patch with cAMP, cGMP, GTP--s, Mg2+ or ATP. Blockers of Na/H+ exchange, Na+–HCO 3 cotransport, Na+–K+ ATPase and carbonic anhydrase do not block the HCO 3 stimulation ofP o. Several of the properties of the channel could explain some of the previously reported voltage changes that occur in corneal endothelial cells stimulated by extracellular anions.  相似文献   

8.
The aim of this work was to examine the effects of changes in external K+ concentration (K o ) around its physiological value, of various K+ channels blockers, including internal Cs+, of vacuolar H+-ATPase inhibitors and of the protonophore CCCP on the resting potential and the voltage-dependent K+ current of differentiated neuroblastoma x glioma hybrid NG108-15 cells using the whole-cell patch-clamp technique. The results are as follows: (i) under standard conditions (K o =5 mm) the membrane potential was –60±1 mV. It was unchanged when K o was decreased to 1 mm and was depolarized by 4±1 mV when Ko was increased to 10 mm. (ii) Internal Cs+ depolarized the membrane by 21±3 mV. (iii) The internal application of the vacuolar H+-ATPase inhibitors N-ethylmaleimide (NEM), NO 3 and bafilomycin A1 (BFA) depolarized the membrane by 15±2, 18±2 and 16±2 mV, respectively, (iv) When NEM or BFA were added to the internal medium containing Cs+, the membrane was depolarized by 45±1 and 42±2 mV, respectively. (v) The external application of CCCP induced a transient depolarization followed by a prolonged hyperpolarization. This hyperpolarization was absent in BFA-treated cells. The voltage-dependent K+ current was increased at negative voltages and decreased at positive voltages by NEM, BFA and CCCP. Taken together, these results suggest that under physiological conditions, the resting potential of NG108-15 neuroblastoma cells is maintained at negative values by both voltage-dependent K+ channels and an electrogenic vacuolar type H+-ATPase.This work was supported by a grant from INSERM (CRE 91 0906).  相似文献   

9.
Summary The modulation of ion transport pathways in filtergrown monolayers of the Cl-secreting subclone (19A) of the human colon carcinoma cell line HT-29 by muscarinic stimulation was studied by combined Ussing chamber and microimpalement experiments.Basolateral addition of 10–4 m carbachol induced a complex poly-phasic change of the cell potential consisting of (i) a fast and short (30-sec) depolarization of 15±1 mV from a resting value of –52±1 mV and an increase of the fractional resistance of the apical membrane (first phase), (ii) a repolarization of 22±1 mV leading to a hyperpolarization of the cell (second phase), (iii) a depolarization of 11±1 mV and a decrease of the fractional resistance of the apical membrane (the third phase), (iv) and sometimes, a hyperpolarization of 6±1 mV and an increase of the fractional resistance of the apical membrane (fourth phase). The transepithelial potential increased with a peak value of 2.4±0.3 mV (basolateral side positive). The transepithelial PD started to increase (serosa positive), coinciding with the start of the second phase of the intracellular potential change, and continued to increase during the third phase. Ion replacements and electrical circuit analyses indicate that the first phase is caused by increase of the Cl conductance in the apical and basolateral membrane, the second phase by increased K+ conductance of the basolateral membrane, and the third phase and the fourth phase by increase and decrease, respectively, of an apical Cl conductance. The first and second phase of the carbachol effect could be elicited also by ionomycin. They were strongly reduced by EGTA. Phorbol dibutyrate (PDB) induced a sustained depolarization of the cell and a decrease of the apical fractional resistance. The results suggest that two different types of Cl channels are involved in the carbachol response: one Ca2+ dependent and a second which may be PKC sensitive.In the presence of a supramaximal concentration of forskolin, carbachol evoked a further increase of the apical Cl conductance.It is concluded that the short-lasting carbachol/Ca2+-dependent Cl conductance is different from the forskolin-activated conductance. The increase of the Cl conductance in the presence of forskolin by carbachol may be due to activation of different Cl channels or to modulation of the PKA-activated Cl channels by activated PKC.The authors are grateful to Drs. Laboisse and Augeron for providing the cell clone, and we thank Prof. Dr. F.H. Lopes da Silva for his comments. This work was supported by a grant from the Dutch Organization for Scientific Research, NWO.  相似文献   

10.
Summary Enhanced cellular cAMP levels have been shown to increase apical membrane Cl and HCO 3 conductances in epithelia. We found that the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX) increases cAMP levels inNecturus gallbladder. We used conventional open-tip and double-barreled Cl-selective microelectrodes to study the effects of IBMX on membrane conductances and intracellular Cl activities in gallbladders mounted in a divided chamber and bathed with Ringer's solutions at 23°C and pH 7.4. In HCO 3 -free media, 0.1mM IBMX added to the mucosal medium depolarized the apical membrane potentialV a , decreased the fractional resistanceF R , and significantly reduced intracellular Cl activity (a Cl i ). Under control conditions,a Cl i was above the value corresponding to passive distribution across the apical cell membrane. In media containing 25mM HCO 3 , IBMX caused a small transient hyperpolarization ofV a followed by a depolarization not significantly different from that observed in HCO 3 -free Ringer's. Removal of mucosal Cl, Na+ or Ca2+ did not affect the IBMX-induced depolarization inV a . The basolateral membrane ofNecturus gallbladder is highly K+ permeable. Increasing serosal K+ from 2.5 to 80mM, depolarizedV a . Mucosal IBMX significantly reduced this depolarization. Addition of 10mM Ba2+, a K+ channel blocker, to the serosal medium depolarizedV a and, essentially, blocked the depolarization induced by IBMX. These results indicate that mucosal IBMX increases apical HCO 3 conductance and decreases basolateral K+ conductance in gallbladder epithelial cells via a cAMP-dependent mechanism. The latter effect, not previously reported in epithelial tissues, appears to be the major determinant of the IBMX-induced depolarization ofV a .  相似文献   

11.
Summary We have measured the intracellular potassium activity, [K+]i and the mechanisms of transcellular K+ transport in reabsorptive sweat duct (RSD) using intracellular ion-sensitive microelectrodes (ISMEs). The mean value of [K+]i in RSD is 79.8±4.1mm (n=39). Under conditions of microperfusion, the [K+]i is above equilibrium across both the basolateral membrane, BLM (5.5 times) and the apical membrane, APM (7.8 times). The Na+/K+ pump inhibitor ouabain reduced [K+]i towards passive distribution across the BLM. However, the [K+]i is insensitive to the Na+/K+/2 Cl cotransport inhibitor bumetanide in the bath. Cl substitution in the lumen had no effect on [K+]i. In contrast, Cl substitution in the bath (basolateral side) depolarized BLM from –26.0±2.6 mV to –4.7*±2.4 mV (n=3;* indicates significant difference) and decreased [K+]i from 76.0±15.2mm to 57.7* ±12.7mm (n=3). Removal of K+ in the bath decreased [K+]i from 76.3±15.0mm to 32.3*±7.6mm (n=4) while depolarizing the BLM from –32.5±4.1 mV to –28.3*±3.0 mV (n=4). Raising the [K+] in the bath by 10-fold increased [K+]i from 81.7±9.0mm to 95.0*±13.5mm and depolarized the BLM from –25.7±2.4 mV to –21.3*±2.9 mV (n=4). The K+ conductance inhibitor, Ba2+, in the bath also increased [K+]i from 85.8±6.7mm to 107.0*±11.5mm (n=4) and depolarized BLM from –25.8±2.2 mV to –17.0*±3.1 mV (n=4). Amiloride at 10–6 m increased [K+]i from 77.5±18.8mm to 98.8*±21.6mm (n=4) and hyperpolarized both the BLM (from –35.5±2.6 mV to –47.8*±4.3 mV) and the APM (from –27.5±1.4 mV to –46.0* ±3.5 mV,n=4). However, amiloride at 10–4 m decreased [K+]i from 64.5±0.9mm to 36.0*±9.9mm and hyperpolarized both the BLM (from –24.7±1.4 mV to –43.5*±4.2 mV) and APM (from –18.3±0.9 mV to –43.5*±4.2 mV,n=6). In contrast to the observations at the BLM, substitution of K+ or application of Ba2+ in the lumen had no effect on the [K+]i or the electrical properties of RSD, indicating the absence of a K+ conductance in the APM. Our results indicate that (i) [K+]i is above equilibrium due to the Na+/K+ pump; (ii) only the BLM has a K+ conductance; (iii) [K+]i is subject to modulation by transport status; (iv) K+ is probably not involved in carrier-mediated ion transport across the cell membranes; and (v) the RSD does not secrete K+ into the lumen.  相似文献   

12.
The responses of the cytosolic pH of hepatocytes in suspension to agents affecting the activity of vacuolar adenosine triphosphatase (V-ATPase) and Na/H exchange have been studied. Changes of cytosolic pH were determined both with dual-wavelength excitation (500/440 nm) of the fluorescence of 2,7-bis-(2-carboxyethyl)-5(and 6)-carboxyfluorescein and from the distribution of 14C-dimethyloxazolidinedione; both methods gave very similar results. Changes of vesicular pH were determined by comparing the fluorescence of fluorescein isothiocyanate-dextran and rhodamine B isothiocyanate-dextran taken up by endocytosis. Nitrate, which inhibits V-ATPase in isolated organelles, induced a concentration-dependent acidification of the cytosol and alkalinization of vesicles, with maximal effects at 25–37.5 mm in each case, indicating that V-ATPase contributes to removal of cytosolic protons. On continued exposure to nitrate, the acidification underwent an amiloride-inhibitable reversal. At the higher concentrations of NO 3 , both cytosolic acidification and vesicular alkalinization were reduced or absent. Bafilomycin A1 caused alkalinization of vesicular pH; cytosolic acidification was not observed, possibly because of other ionic exchanges. Recovery of cytosolic pH from an acid load (2 min exposure to 5% CO2) was sensitive to both 25 mm NO 3 and to ouabain. The pH dependence of the nitrate effect was tested with media of different pH; the activity was negligible at cytosolic pH 6.2 and rose to a maximum at cytosolic pH 7.3. Treatment of hepatocytes with 0.5–1.0 mm ouabain resulted in an initial alkalinization (0.5–2 min duration) of the cytosol, followed by a spontaneous reversal and, on occasion, further acidification. The alkalinization was blocked by 25 mm NO 3 , but not by 25 mm gluconate. The results suggest that the cytosolic alkalinization is caused by a stimulation of H+ uptake by V-ATPase activity. We conclude that V-ATPases make an important contribution to the regulation of the cytosolic pH of hepatocytes.This work was supported in part by National Institutes of Health B.R.S. Grant 507 RR05417 to Temple University.  相似文献   

13.
Summary It was previously shown that ouabain decreases the potential difference across anin vitro preparation of bullfrog retinal pigment epithelium (RPE) when applied to the apical, but not the basal, membrane and that the net basal-to-apical Na+ transport is also inhibited by apical ouabain. This suggested the presence of a Na+–K+ pump on the apical membrane of the RPE. In the present experiments, intracellular recordings from RPE cells show that this pump is electrogenic and contributes approximately –10 mV to the apical membrane potential (V AP). Apical ouabain depolarizedV AP in two phases. The initial, fast phase was due to the removal of the direct, electrogenic component. In the first one minute of the response to ouabain,V AP depolarized at an average rate of 4.4±0.42 mV/min (n=10, mean ±sem), andV AP depolarized an average of 9.6±0.5 mV during the entire fast phase. A slow phase of membrane depolarization, due to ionic gradients running down across both membranes, continued for hours at a much slower rate, 0.4 mV/min. Using a simple diffusion model and K+-specific microelectrodes, it was possible to infer that the onset of the ouabain-induced depolarization coincided with the arrival of ouabain molecules at the apical membrane. This result must occur if ouabain affects an electrogenic pump. Other metabolic inhibitors, such as DNP and cold, also produced a fast depolarization of the apical membrane. For a decrease in temperature of 10°C, the average depolarization of the apical membrane was 7.1±3.4 mV (n=5) and the average decrease in transepithelial potential was 3.9±0.3 mV (n=10). These changes in potential were much larger than could be explained by the effect of temperature on anRT/F electrodiffusion factor. Cooling the tissue inhibited the same mechanism as ouabain, since prior exposure to ouabain greatly reduced the magnitude of the cold effect. Bathing the tissue in 0mm [K+] solution for 2 hr inhibited the electrogenic pump, and subsequent re-introduction of 2mm [K+] solution produced a rapid membrane hyperpolarization. We conclude that the electrogenic nature of this pump is important to retinal function, since its contribution to the apical membrane potential is likely to affect the transport of ions, metabolites, and fluid across the RPE.  相似文献   

14.
Summary The purpose of this study was to characterize the basolateral membrane of the S3 segment of the rabbit proximal tubule using conventional and ion-selective microelectrodes. When compared with results from S1 and S2 segments, S3 cells under control conditions have a more negative basolateral membrane potential (V bl=–69 mV), a higher relative potassium conductance (t K=0.6), lower intracellular Na+ activity (A Na=18.4mm), and higher intracellular K+ activity (A K=67.8mm). No evidence for a conductive sodium-dependent or sodium-independent HCO 3 pathway could be demonstrated. The basolateral Na–K pump is inhibited by 10–4 m ouabain and bath perfusion with a potassium-free (0-K) solution. 0-K perfusion results inA Na=64.8mm,A K=18.5mm, andV bl=–28 mV. Basolateral potassium channels are blocked by barium and by acidification of the bathing medium. The relative K+ conductance, as evaluated by increasing bath K+ to 17mm, is dependent upon the restingV bl in both S2 and S3 cells. In summary, the basolateral membrane of S3 cells contains a pump-leak system with similar properties to S1 and S2 proximal tubule cells. The absence of conductive bicarbonate pathways results in a hyperpolarized cell and larger Na+ and K+ gradients across the cell borders, which will influence the transport properties and intracellular ion activities in this tubule segment.  相似文献   

15.
Summary The rate of luminal alkalinization in vitro byGillichthys mirabilis posterior intestine as measured by a manual pH stat technique was 0.70±0.05 Equiv/cm2 h; acidification of the mucosal medium was never observed. The rate of HCO 3 secretion (J HCO 3) was reduced by ouabain, serosally-applied DIDS, removal of serosal HCO 3 and replacement of media Cl with gluconate. HCO 3 secretion was enhanced replacement of Cl with isethionate and unaffected by mucosal DIDS, furosemide or acetazolamide.J HCO 3 was reduced at mucosal pH above or below 7.5. These results support active HCO 3 secretion via a Cl/HCO 3 exchange mechanism on the basolateral membrane and a conductive exit pathway for HCO 3 , H+ or OH on the apical membrane.Abbreviations DIDS diisothiocyanostilbene-2,2-disulfonic acid - TEP transepithelial potential - GBR Gillichthyts bicarbonate Ringer - GUR Gillichthys unbuffered, bicarbonate-free Ringer - GER Gillichthys EPPS-buffered, bicarbonate-free Ringer - EPPS N-(2-hydroxyethyl)piperazine-N-3-propanesulfonic acid  相似文献   

16.
Hydroxide, bicarbonate and buffer anion permeabilities in semitendinosus muscle fibers of Rana pipiens were measured. In all experiments, the fibers were initially equilibrated in isotonic, high K2SO4 solutions at pH o =7.2 buffered with phosphate. Two different methods were used to estimate permeabilities: (i) membrane potential changes were recorded in response to changes in external ion concentrations, and (ii) intracellular pH changes were recorded in response to changes in external concentrations of ions that alter intracellular pH. Constant field equations were used to calculate relative or absolute permeabilities.In the first method, to increase the size of the membrane potential change produced by a sudden change in anion entry, external K+ was replaced by Cs+ prior to changes of the anion under study. At constant external Cs+ activity, a hyperpolarization results from increasing external pH from 7.2 to 10.0 or higher, using either CAPS (3-[cyclohexylamino]-1-propanesulfonic acid) or CHES (2-[N-cyclohexylamino]-ethanesulfonic acid) as buffer. For each buffer, the protonated form is a zwitterion of zero net charge and the nonprotonated form is an anion. Using reported values of H+ permeability, calculations show that the reduction in [H+] o cannot account for the hyperpolarizations produced by alkaline solutions. Membrane hyperpolarization increases with increasing total external buffer concentration at constant external pH, and with increasing external pH at constant external buffer anion concentration. Taken together, these observations indicate that both OH and buffer anions permeate the surface membrane. The following relative permeabilities were obtained at pHo, 10.0± 0.3: (POH/PK) = 890 ± 150, (PCAPS/PK) = 12 ± 2 (PCHIES/PK) = 5.3 ± 0.9, and (PNO3/PK) = 4.7 ± 0.5 PNO/PK was independent of pH o up to 10.75. At pHo = 9.6, (PHCO3/PK) = 0.49 ± 0.03; at pH o = 8.9, (PCl/PK) = 18± 2 and at pH o = 7.1, (PHEPES/PK) = 20 ± 2.In the second method, on increasing external pH from 7.2 to 10.0, using 2.5 mm CAPS (total buffer concentration), the internal pH increases linearly with time over the next 10 min. This alkalinization is due to the entry of OH and the absorption of internal H+ by entering CAPS anion. The rate of CAPS entry was determined in experiments in which the external CAPS concentration was increased at constant external pH. Such increases invariably produced an increase in the rate of internal alkalinization, which was reversed when the CAPS concentration was reduced to its initial value. From the internal buffer power, the diameter of the fiber under study and the rates of change of internal pH, the absolute permeability for both OH and CAPS were calculated. At external pH = 10.0, the average (±sem) permeabilities were: POH=1.68±0.19×10–4 cm/sec and PCAPS=2.10±0.74×10–6cm/sec.We conclude that OH is about 50 times more permeable than Cl at alkaline pH and that the anionic forms of commonly used buffers have significant permeabilities.This research was supported by a grant from the National Institutes of Health (AR 31814). The authors wish to thank Dr. Peter G. Shrager and Dr. Bruce C. Spalding for reading an early draft of this report and for providing helpful suggestions.  相似文献   

17.
Summary The steady-state, current-voltage (I–V) characteristics of stomatal guard cells fromVicia faba L. were explored by voltage clamp using conventional electrophysiological techniques, but with double-barrelled microelectrodes containing 50mm K+-acetate. Attention was focused, primarily, on guard cell response to metabolic blockade. Exposures to 0.3–1.0mm NaCN and 0.4mm salicylhydroxamic acid (SHAM) lead consistently to depolarizing (positive-going) shifts in guard cell potentials (V m ), as large as +103 mV, which were generally complete within 60–90 sec (mean response half-time, 10.3±1.7 sec); values forV m in NaCN plus SHAM were close or positive to –100 mV and well removed from the K+ equilibrium potential. Guard cell ATP content, which was followed in parallel experiments, showed a mean half-time for decay of 10.8±1.9 ([ATP] t=0, 1.32±0.28mm; [ATP] t=60–180sec, 0.29±0.40mm). In respiring cells, theI–V relations were commonly sigmoid aboutV m or gently concave to the voltage axis positive toV m . Inward- and outward-rectifying currents were also observed, especially near the voltage extremes (nominally –350 and +50 mV). Short-circuit currents (atV=0 mV) were typically about 200–500 mA m–2. The principal effect of cyanide early on was to linearize theI–V characteristic while shifting it to the right along the voltage axis, to decrease the membrane conductance, and to reduce the short-circuit current by approx. 50–75%. The resulting difference-current-voltage (dI–V) curves (±cyanide) showed a marked sensitivity to voltages negative from –100 mV and, when clamp scans had been extended sufficiently, they revealed a distinct minimum near –300 mV before rising at still more negative potentials. The difference currents, along with changes in guard cell potential, conductance and ATP content are interpreted in context of a primary, ATP-consuming ion pump. FittingdI–V curves to reaction kinetic model for the pump [Hansen, U.-P., et al. (1981)J. Membrane Biol. 63:165; Blatt, M.R. (1986)J. Membrane Biol. 92:91] implicates a stoichiometry of one (+) charge transported outward for each ATP hydrolyzed, with pump currents as high as 200 mA m–2 at the free-running potential. The analysis indicates that the pump can comprise more than half of the total membrane conductance and argues against modulations of pump activity alone, as an effective means to controlling K+ transport for stomatal movements.  相似文献   

18.
Summary Vesicles derived from epithelial cells of the colonic mucosa of the rat were fused to planar phospholipid bilayer membranes, revealing spontaneously switching anion-conducting channels of 50 pS conductance (at-30 mV with 200mm Cl each side). The equilibrium selectivity series was I (1.7)/Br (1.3)/Cl (1.0)/F (0.4)/HCO 3 (0.4)/Na (<0.11.). Only one dominant open-state conductance could be resolved, which responded linearly to Cl concentrations up to 600mm. The singlechannel current-voltage curve was weakly rectifying with symmetrical solutions. When 50 mV were exceeded at the highconductance branch of the curve, switching was arrested in the closed state. At more moderate voltages (±40 mV) kinetics were dominated by one open state of about 35-msec lifetime and two closed states of about 2 and 9-msec lifetime. Of these, the more stable closed state occurred less often. At these voltages one additional closed state of significantly longer lifetime (>0.5 sec) was observed.  相似文献   

19.
Summary The effects of bathing solution HCO 3 /CO2 concentrations on baseline cell membrane voltages and resistances were measured inNecturus gallbladder epithelium with conventional intracellular microelectrode techniques. Gallbladders were bathed in either low HCO 3 /CO2 Ringer's solutions (2.4mm HCO 3 /air or 1mm HEPES/air) or a high HCO 3 /CO2 Ringer's (10mm HCO 3 /1% CO2). The principal finding of these studies was that the apical membrane fractional resistance (fR a) was higher in tissues bathed in the 10mm HCO 3 /CO2 Ringer's, averaging 0.87±0.06, whereasfR a averaged 0.63±0.07 and 0.48±0.08 in 2.4mm HCO 3 and 1mm HEPES, respectively. Intraepithelial cable analysis was employed to obtain estimates of the individual apical (R a) and basolateral membrane (R b) resistances in tissues bathed in 10mm HCO 3 /1% CO2 Ringer's. Compared to previous resistance measurements obtained in tissues bathed in a low HCO 3 /CO2 Ringer's, the higher value offR a was found to be due to both an increase inR a and a decrease inR b. The higher values offR a and lower values ofR b confirm the recent observations of others. To ascertain the pathways responsible for these effects, cell membrane voltages were measured during serosal solution K+ and Cl substitutions. The results of these studies suggest that an electrodiffusive Cl transport mechanism exists at the basolateral membrane of tissues bathed in a 10mm HCO 3 /1% CO2 Ringer's, which can explain in part the fall inR b. The above observations are discussed in terms of a stimulatory effect of solution [HCO 3 /PCO2 on transepithelial fluid transport, which results in adaptive changes in the conductive properties of the apical and basolateral membranes.  相似文献   

20.
Summary We have studied current (I Str) through the Na, K pump in amphibian oocytes under conditions designed to minimize parallel undesired currents. Specifically,I Str was measured as the strophanthidin-sensitive current in the presence of Ba2–, Cd2+ and gluconate (in place of external Cl). In addition,I Str was studied only after the difference currents from successive applications and washouts of strophanthidin (Str) were reproducible. The dose-response relationship to Str in four oocytes displayed a meanK 0.5 of 0.4 m, with 2–5 m producing 84–93% pump' block. From baseline data with 12 Na+-preloaded oocytes, voltage clamped in the range [–170, +50 mV] with and without 2–5 m Str, the averageI Str depended directly onV m up to a plateau at 0 mV with interpolated zero current at –165 mV. In three oocytes, lowering the external [Na+] markedly decreased the voltage sensitivity ofI p , while producing only a small change in the maximal outwardI Str. In contrast, decreasing the external [K+] from 25 to 2.5mm reducedI Str at 0 mV without substantially affecting its voltage dependence. At K+ concentrations of 1mm, both the absolute value ofI Str at 0 mV and the slope conductance were reduced. In eight oocytes, the activation of the averagedI Str by [K+] o over the voltage interval [–30, +30 mV] was well fit by the Hill equation, with K=1.7±0.4mm andnH (the minimum number of K+ binding sites) =1.7±0.4. The results unequivocally establish that the cardiotonic-sensitive current ofRana oocytes displays only a positive slope conductance for [K+] o >1mm. There is therefore no need to postulate more than one voltage-sensitive step in the cycling of the Na, K pump under physiologic conditions. The effects of varying external Na+ and K+ are consistent with results obtained in other tissues and may reflect an ion-well effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号