首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年,在表型及基因型上均发现存在药物氧化代谢多态性,特别是对于人类细胞色素P450氧化酶与药氧化代谢遗传多态性的关系进行了深入的研究。有关CYP2D6、CYP2C19等的突变已大多被鉴定;CYP1A1、CYP1A2等在表型存在多态性而确切的遗传机制尚不清楚。  相似文献   

2.
3.
Cytochrome P450s (CYPs) hold a balance in studying pharmacokinetics, toxico-kinetics, drug metabolism, and drug-drug interactions, which require association with cytochrome P450 reductase (CPR) to achieve optimal activity. A novel system of Saccharomyces cerevisiae useful for expression studies of mammalian microsomal CYPs was established. Human CPR (hCPR) was co-expressed with human CYP3A4 (hCYP3A4) in this system, and two expression plasmids pTpLC and pYeplac195-3A4 containing the cDNA of hCPR and hCYP3A4 were constructed, respectively. The two plasmids were applied first and controlled by phosphoglycerate kinase (PGK) promoter. S. cerevisiae BWG1-7alpha transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-hCYP3A4 immunoglobulin (Ig) and anti-hCPR Ig. The activity of hCPR in yeast BWG-CPR was 443.2 nmol reduced cytochrome c/min/mg, which was about three times the CPR activity of the microsome prepared from the parental yeast. The protein amount of hCYP3A4 in BWG-CPR/3A4 was 35.53 pmol/mg, and the 6beta-hydroxylation testosterone formation activity of hCYP3A4 expressed was 7.5 nmol/min/nmol CYP, 30 times higher than the activity of hCYP3A4 expressed in the parental yeast, and almost two times the activity of hCYP3A4 from homologous human liver microsome. Meanwhile, BWG-CPR/3A4 retained 100 generations under nonselective culture conditions, indicating this yeast was a mitotically stable transformant. BWG-CPR was further tested daily by the PCR amplification of hCPR of yeast genome, Western blot analysis, and the activity assay of hCPR of yeast microsome. This special expression host for CYPs was validated to be stable and efficient for the expression of CYPs, applying as an effective selection model for the drug metabolism in vitro.  相似文献   

4.
Flavocytochrome P450BM‐3 is a soluble bacterial reductase composed of two flavin (FAD/FMN) and one HEME domains. In this article, we have performed molecular dynamics simulations on both the isolated FMN and HEME domains and their crystallographic complex, with the aim to study their binding modes and to garner insight into the interdomain electron transfer (ET) mechanism. The results evidenced an interdomain conformational rearrangement that reduces the average distance between the FMN and HEME cofactors from 1.81 nm, in the crystal structure, to an average value of 1.41 ± 0.09 nm along the simulation. This modification is in agreement with previously proposed hypotheses suggesting that the crystallographic FMN/HEME complex is not in the optimal arrangement for favorable ET rate under physiological conditions. The calculation of the transfer rate along the simulation, using the Pathways Path method, demonstrated the occurrence of seven ET pathways between the two redox centers, with three of them providing ET rates (KET) comparable with the experimental one. The sampled ET pathways comprise the amino acids N319, L322, F390, K391, P392, F393, A399, C400, and Q403 of the HEME domain and M490 of the FMN domain. The values of KET closer to the experiment were found along the pathways FMN(C7) → F390 → K391 → P392 → HEME(Fe) and FMN(C8) → M490 → F393 → HEME(Fe). Finally, the analysis of the collective modes of the protein complex evidences a clear correlation of the first two essential modes with the activation of the most effective ET pathways along the trajectory. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 197–209, 2014.  相似文献   

5.
The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1–BMR, contains the N-terminally modified residues 22–493 of the human P450 2E1 fused at the C-terminus to residues 473–1049 of the P450 BM3 reductase (BMR). The P450 2E1–BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (K M=1.84±0.09 mM and k cat of 2.98±0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (K M=0.65±0.08 mM and k cat of 0.95±0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.  相似文献   

6.
Cytochrome P450 monooxygenases (CYPs) are important enzymes in the metabolism of xenobiotics. Therefore, several approaches to clone and overexpress the human isoforms have been made. In addition to microsomes or S9 preparations, these recombinant human isoforms have found diverse application in drug development. We discuss and give examples of the use of bacterial whole cell systems with rec. human CYPs for the preparative scale synthesis of drug metabolites. Biotechnol. Bioeng. 2010;106: 699–706. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
In order to identify the cytochrome P450-binding domain for NADPH-cytochrome P450 reductase, synthetic peptide mimics of predicted surface regions of rat cytochrome P450 2B1 were constructed and evaluated for inhibition of the P450-reductase interaction. A peptide corresponding to residues 116–134, which includes the C helix, completely inhibited reductase-mediated benzphetamine demethylation by purified P450 2B1. Replacement of Arg-125 by Glu yielded a noninhibitory peptide, suggesting that this residue significantly contributes to the reductase-P450 interaction. Additional P450 peptides were prepared which correspond to combinations of regions distant in primary sequence, but predicted to be spatially proximate. A peptide derived from segments of the C and L helices was a more potent inhibitor than peptides derived from either segment alone. This topographically designed peptide not only inhibited P450 2B1 in its purified form, but also when membrane-bound in rat liver microsomes. The peptide also inhibited microsomal aryl hydrocarbon hydroxylase, aniline hydroxylase, and erythromycin demethylase activities derived from other P450s. These results indicate that the C and L helices contribute to a reductase-binding site common to multiple P450s, and present a peptide mimic for this region that is useful for inhibition of P450-mediated microsomal activities.  相似文献   

8.
Enzymatic transformation of most chemical carcinogens is requisite to the formation of electrophiles that cause genotoxicity, and the cytochrome P450 (P450) enzymes are the most prominent enzymes involved in such activation reactions. During the past 15 years the human P450 enzymes have been extensively characterized. Considerable evidence exists that the variation in activity of these enzymes can have important consequences in the actions of drugs. Other studies have been concerned with the activation of procarcinogens by human P450s. Assignments of roles of particular P450s in the metabolism of chemical carcinogens are discussed, along with the current state of evidence for relationships of particular P450s with human cancer.  相似文献   

9.
Models capable of predicting the possible involvement of cytochromes P450 in the metabolism of drugs or drug candidates are important tools in drug discovery and development. Ideally, functional information would be obtained from crystal structures of all the cytochromes P450 of interest. Initially, only crystal structures of distantly related bacterial cytochromes P450 were available-comparative modeling techniques were used to bridge the gap and produce structural models of human cytochromes P450, and thereby obtain some useful functional information. A significant step forward in the reliability of these models came four years ago with the first crystal structure of a mammalian cytochrome P450, rabbit CYP2C5, followed by the structures of two human enzymes, CYP2C8 and CYP2C9, and a second rabbit enzyme, CYP2B4. The evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism, is presented as a case study.  相似文献   

10.
MycG is a multifunctional P450 monooxygenase that catalyzes sequential hydroxylation and epoxidation or a single epoxidation in mycinamicin biosynthesis. In the mycinamicin-producing strain Micromonospora griseorubida A11725, very low-level accumulation of mycinamicin V generated by the initial C-14 allylic hydroxylation of MycG is observed due to its subsequent epoxidation to generate mycinamicin II, the terminal metabolite in this pathway. Herein, we investigated whether MycG can be engineered for production of the mycinamicin II intermediate as the predominant metabolite. Thus, mycG was subject to random mutagenesis and screening was conducted in Escherichia coli whole-cell assays. This enabled efficient identification of amino acid residues involved in reaction profile alterations, which included MycG R111Q/V358L, W44R, and V135G/E355K with enhanced monohydroxylation to accumulate mycinamicin V. The MycG V135G/E355K mutant generated 40-fold higher levels of mycinamicin V compared to wild-type M. griseorubida A11725. In addition, the E355K mutation showed improved ability to catalyze sequential hydroxylation and epoxidation with minimal mono-epoxidation product mycinamicin I compared to the wild-type enzyme. These approaches demonstrate the ability to selectively coordinate the catalytic activity of multifunctional P450s and efficiently produce the desired compounds.  相似文献   

11.
Boar taint is the unfavourable odour and taste from pork fat, which results in part from the accumulation of skatole (3-methylindole, 3MI). The key enzymes in skatole metabolism are thought to be cytochrome P450 2E1 (CYP2E1) and cytochrome 2A (CYP2A); however, the cytochrome P450 (CYP450) isoform responsible for the production of the metabolite 6-hydroxy-3-methylindole (6-OH-3MI, 6-hydroxyskatole), which is thought to be involved in the clearance of skatole, has not been established conclusively. The aim of this study was to characterize the role of porcine CYP450s in skatole metabolism by expressing them individually in the human embryonic kidney HEK293-FT cell line. This system eliminates the problems of the lack of specificity of antibodies, inhibitors and substrates for CYP450 isoforms in the pig, and contributions of any other CYP450s that would be present. The results show that pig CYP1A1, CYP2A19, CYP2C33v4, CYP2C49, CYP2E1 and CYP3A and human CYP2E1 (hCYP2E1) are all capable of producing the major skatole metabolite 3-methyloxyindole (3MOI), as well as indole-3-carbinol (I3C), 5-hydroxy-3-methylindole (5-OH-3MI), 6-OH-3MI, 2-aminoacetophenone (2AAP) and 3-hydroxy-3-methyloxindole. CYP2A19 produced the highest amount of the physiologically important metabolite 6-OH-3MI, followed by porcine CYP2E1 and CYP2C49; CYP2A19 also produced more 6-OH-3MI than hCYP2E1. Co-transfection with CYB5A increased the production of skatole metabolites by some of the CYP450s, suggesting that CYB5A plays an important role in the metabolism of skatole. We also show the utility of this expression system to check the specificity of selected substrates and antibodies for porcine CYP450s. Further information regarding the abundance of different CYP450 isoforms is required to fully understand their contribution to skatole metabolism in vivo in the pig.  相似文献   

12.
李众  张伟  李盛英 《微生物学报》2016,56(3):496-515
细胞色素P450酶广泛存在于动植物和微生物体内,具有底物结构多样性和催化反应类型多样性,在天然产物生物合成中扮演重要作用。P450酶可在温和条件下高选择性地催化结构复杂有机化合物中惰性C-H键的氧化反应,具备化学催化剂难以比拟的优势,因此在微生物制药领域具有广阔的应用空间。本文综述了参与天然产物生物合成的P450酶近年来的研究进展;P450酶的酶工程改造、生物转化实践及其在微生物药物创制方面的应用现状;探讨了P450酶的工业应用瓶颈及其解决途径;并对P450酶未来的应用前景进行了展望。  相似文献   

13.
Beauvericin is a secondary metabolite natural product from microorganisms and has been shown to have a new potential antifungal activity. In this study, the metabolism and inhibition of beauvericin in human liver microsomes (HLM) and rat liver microsomes (RLM) were investigated. The apparent Km and Vmax of beauvericin in HLM were determined by substrate depletion approach and its inhibitory effects on cytochromes P450 (CYP) activities were evaluated using probe substrates, with IC50 and the (Ki) values were 1.2 μM (0.5 μM) and 1.3 μM (1.9 μM), respectively for CYP3A4/5 (midazolam) and CYP2C19 (mephenytoin). Similarly, beauvericin was also a potent inhibitor for CYP3A1/2 (IC50: 1.3 μM) in RLM. Furthermore, the pharmacokinetics of beauvericin in the rat were studied after p.o administration alone and co-administration with ketoconazole, which indicated a pharmacodynamic function may play a role in the synergistic effect on antifungal activity.  相似文献   

14.
The atomic structure of human P450 1B1 was determined by x-ray crystallography to 2.7 Å resolution with α-naphthoflavone (ANF) bound in the active site cavity. Although the amino acid sequences of human P450s 1B1 and 1A2 have diverged significantly, both enzymes exhibit narrow active site cavities, which underlie similarities in their substrate profiles. Helix I residues adopt a relatively flat conformation in both enzymes, and a characteristic distortion of helix F places Phe231 in 1B1 and Phe226 in 1A2 in similar positions for π-π stacking with ANF. ANF binds in a distinctly different orientation in P450 1B1 from that observed for 1A2. This reflects, in part, divergent conformations of the helix B′-C loop that are stabilized by different hydrogen-bonding interactions in the two enzymes. Additionally, differences between the two enzymes for other amino acids that line the edges of the cavity contribute to distinct orientations of ANF in the two active sites. Thus, the narrow cavity is conserved in both P450 subfamily 1A and P450 subfamily 1B with sequence divergence around the edges of the cavity that modify substrate and inhibitor binding. The conservation of these P450 1B1 active site amino acid residues across vertebrate species suggests that these structural features are conserved.  相似文献   

15.
Camels bear unique genotypes and phenotypes for adaptation of their harsh environment. They have unique visual systems, sniffing, water metabolism, and heat-control mechanisms that are different from other creatures. The recent announcement for the complete sequence of camel genome will allow for the discovery of many secrets of camel life. In this context, the genetic bases of camel drug-metabolizing enzymes are still unknown. Furthermore, the genomic content of camel that rendered it highly susceptible to some drugs (as monensin and salinomycin) and became easily intoxicated needs to be investigated. The objectives of this work are the annotation of camel genome and retrieval of camel for cytochrome P450 (CYP) 1A1, 2C, and 3A enzymes. This is followed by comprehensive phylogenetic, evolution, molecular modeling, and docking studies. In comparison with the human enzymes, camel CYPs showed lower evolution rate, especially CYP1A1. Furthermore, the binding of monensin, salinomycin, alfa-naphthoflavone, felodepine, and ritonavir was weaker in camel enzymes. Interestingly, rerank score indicated instable binding of monensin and salinomycin with camel CYP1A1 as well as salinomycin with camel CYP2C. The results of this work suggest that camels are more susceptible to toxicity with compounds undergoing metabolic oxidation. This conclusion was based on lower evolution rate and lower binding potency of camels compared with the human enzymes.  相似文献   

16.
This article describes a simple and quick in silico method for the prediction of cytochrome P450 (CYP)-mediated hydroxylation of drug-like compounds. Testosterone and progesterone, two known substrates of CYP3A4, are used to test the method. Further, we apply the procedure to predict sites of hydroxylation of isomers of the flame retardant hexabromocyclododecane by CYP3A4. Within the method, the compound is rotated in the binding pocket of the cytochrome, so that each hydrogen under consideration is placed near the active centre. Afterwards, short molecular dynamics simulations are provided for each step of the rotation. All steps of the simulation are compared concerning the distances between the hydrogens and the active centre and the corresponding energies. The computational results correlate well with experimental results.  相似文献   

17.
The respiratory tract is a portal of entry for many environmental chemicals. The respiratory tract plays an important role in the detoxification or metabolic activation of these chemicals, e.g., via cytochrome P450 enzymes. Alterations in the capabilities of these enzymes to metabolize inhaled compounds can, therefore, affect the toxicity of the chemicals. The pulmonary cytochrome P450 activity has been studied in many species, but relatively little is known about this activity in the human lung tissue. In this limited study, we have investigated the possibility of modulating in vitro the P450 activity in lung slices from hamsters and humans. The alkoxyresorufin-O-dealkylase activity was measured in the S9 fraction of lung slices incubated for 24 h with 106 mol/L 20-methylcholanthrene (3MC) or -naphthoflavone (N). The ethoxyresorufin-O-deethylase (EROD) activity was increased by 3MC and N in lung slices of both species. The benzyloxyresorufin-O-deethylase (BROD) activity was decreased after incubation with 3MC but increased with N. These data show that in vitro modulation in lung slices is feasible, although technical improvement is still needed, particularly in relation to the viability of the slices.  相似文献   

18.
The human genome has now been established to contain 57 cytochrome P450 genes. The proteins can be grouped into categories of types of substrates, including sterols, fatty acids, eicosanoids, and fat-soluble vitamins. Some P450s have also been demonstrated to have significant roles in the metabolism of drugs and chemicals. In addition to these, at least 13 can be considered to still be without apparent function with endogenous or xenobiotic substrates. The current list includes P450s 2A7, 2S1, 2U1, 2W1, 3A43, 4A22, 4F11, 4F22, 4V2, 4X1, 4Z1, 20A1, and 27C1. Limited information is available about the sites of mRNA expression of some of these orphans. Some strategies for characterization are discussed.  相似文献   

19.
Two catalytic domains, bearing FMN and FAD cofactors, joined by a connecting domain, compose the core of the NADPH cytochrome P450 reductase (CPR). The FMN domain of CPR mediates electron shuttling from the FAD domain to cytochromes P450. Together, both enzymes form the main mixed‐function oxidase system that participates in the metabolism of endo‐ and xenobiotic compounds in mammals. Available CPR structures show a closed conformation, with the two cofactors in tight proximity, which is consistent with FAD‐to‐FMN, but not FMN‐to‐P450, electron transfer. Here, we report the 2.5 Å resolution crystal structure of a functionally competent yeast–human chimeric CPR in an open conformation, compatible with FMN‐to‐P450 electron transfer. Comparison with closed structures shows a major conformational change separating the FMN and FAD cofactors from 86 Å.  相似文献   

20.
细胞色素P450酶在自然界中广泛存在,能催化多种类型的氧化反应,在有机合成和生物化工方面具有重要的应用潜力。尽管大多数P450酶通常需要辅酶和复杂的电子传递体系协助活化氧分子,一些P450酶也可以利用过氧化氢作为末端氧化剂,这极大地简化了催化循环,为P450酶的合成应用提供了一条新的简便途径。本文系统地介绍了几类过氧化氢驱动的P450酶催化体系,包括脂肪酸羟化酶P450SPα和P450BSβ、脂肪酸脱羧酶P450OleTJE、人工改造的羟化酶P450BM3和P450cam突变体、以及基于底物误识别策略的P450-H2O2体系。通过分析催化反应机制,本文探讨了P450-H2O2催化体系在目前存在的挑战和可能的解决途径,并对其进一步应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号