首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using X-ray photography and flow cytometry, the internal morphologyand DNA replication activity of wild type (wt), GA- (gib-1 )and ABA-deficient (sitw ) tomato (Lycopersicon esculentum Mill.cv. Moneymaker) mutant seeds were studied. During seed formation,from 30 to 45 d after pollination (DAP) the endosperm becomessolid and the seed starts to gain desiccation tolerance. Atthis time significant changes occur in the amounts of DNA inradicle tip cells. At 30 DAP, radicle tip cells of the threegenotypes manifest about 60% of 2C, 30% of 4C and 10% of 8Camounts of DNA. Upon maturation (45 DAP onwards), most cellsin the seeds of the three genotypes arrest in the G1phase ofthe cell-cycle with 2C amounts of DNA. However, a relativelyhigh proportion of cells with 4C amounts of DNA was detectedin the radicle tip cells ofsitw compared with wild type andgib-1. At the well-matured stage (60 DAP), there were about 2% ofseeds with free space in wild type andgib-1 , and about 13%insitw . At the over-matured stage (75 DAP), even more seedswith free space were found insitw , whereas no increase in theproportion of the seeds with free space was detected in theother two genotypes. In -1.0 MPa PEG-6000 with or without 10µM GA4+7, no germination occurred in well-matured wildtype andgib-1 seeds, whether or not they were dried after harvest.However,sitw seeds were able to germinate both in over-maturefruit and in -1.0 MPa PEG-6000. Priming of dried seeds in -1.0MPa PEG induced a large amount of free space in almost all seedsof the three genotypes, and nuclear DNA synthesis in the radicletip cells of wild type andsitw seeds. However, PEG priming offresh (non-dried) seeds had no effect on the amount of freespace and 2C/4C DNA ratios in wild type orgib-1 seeds, but didinduce free space in about 20–25% ofsitw seeds and provoked4C signals insitw seeds. Removal of the endosperm and testaopposite the radicle tip of seeds resulted in root protrusion,the induction of free space and an increase of 4C DNA signalsin the three genotypes. It is concluded that ABA is crucialfor the efficient arrest of tomato embryo radicle tip cellsin G1phase upon maturation, whereas GAs play an important rolein re-initiating 4C DNA levels upon germination. Dormancy; flow cytometry; free space; Lycopersicon esculentum ; maturation; priming; seed; tomato  相似文献   

2.
Using flow cytometric analyses of the nuclear DNA content, westudied the effects of various conditions of osmopriming onthe activation of the cell cycle in embryo root tips of tomato(Lycopersicon esculentum‘Elko’) seeds. In dry untreatedseeds, 90.7% of the nuclei revealed 2C signals. Priming of seedsin polyethylene glycol-8000 (PEG) improved the germination rateof seeds transferred onto water at 15 °C. This was associatedwith an increase in 4C signals when priming was carried outat -1.0 and -1.5 MPa. Priming at -2.0 MPa enhanced subsequentgermination but had no effect on DNA replication. For temperaturesduring priming up to 25 °C, a positive linear correlationexisted between the efficiency of the treatment, evaluated bythe reciprocal of time to obtain 50% germination at 15 °C,and the frequency of 4C nuclei or the 4C/2C values. Such a correlationdid not exist when priming was performed at higher temperatures.At least 5% oxygen in the atmosphere was required during primingfor the induction of DNA replication and for the enhancementof subsequent germination. In the presence of 5x10-4M and 10-3MNaN3during priming, most of the cells were maintained with 2CDNA levels and the treatment had no stimulatory effect on germination.The results show a positive linear relationship between thefrequency of 4C DNA nuclei or the 4C/2C ratio and the improvingeffect of priming. However, in suboptimal conditions of priming(-2.0 MPa or temperatures higher than 25 °C), the improvementof seed germination was not associated with the onset of DNAreplication.Copyright 1999 Annals of Botany Company Cell cycle, germination, osmopriming, oxygen, temperature, Lycopersicon esculentum, tomato.  相似文献   

3.
The Effects of Priming and Ageing on Seed Vigour in Tomato   总被引:1,自引:0,他引:1  
A comparison was made of the effects of seed priming or ageingtreatments on the performance of tomato (Lycopersicon esculentumMill. cv. UC204C) seeds according to a number of indices ofseed vigour. A single lot of tomato seeds was primed in 120mol m–3 K2HPO4 + 150 mol m–3 KNO3 for 5 d at 20?C, or aged at 13% moisture content (dry weight basis) and 50?C for 6 d. Germination percentage (>98%) was unaffectedby priming and reduced to 85% by ageing. X-ray photographs andlongitudinal sections revealed the formation of free space surroundingthe embryo in dry primed seeds, which was not evident in controlor aged seeds. Priming increased the rate of germination atall temperatures above the base temperature (Tb), while ageingdecreased it. Tb was unaffected by priming and only slightlyincreased by ageing. The variation in individual times to germinationwas approximately doubled in both primed and aged seed comparedto the control, based upon the slopes of probit germinationpercentage versus log thermal time curves. Root growth aftergermination tests and seedling growth in both greenhouse andfield tests were not influenced by either priming or ageing.The conductivity test was found to be unreliable as a vigourtest for tomato seeds. The results identify several indiceswhich can be used to quantify seed vigour in tomato. They alsoillustrate that seed priming can enhance seed performance accordingto some criteria, while having no effect or decreasing qualityaccording to other criteria. Seed vigour can apparently be separatedinto various components which can be independently influencedby seed enhancement treatments. Key words: Tomato, seed germination rate, seed priming, seed vigour  相似文献   

4.
Damage and degradation of cellular proteins is observed duringage-induced seed deterioration. L-Isoaspartyl protein methyltransferase(EC 2.1.1.77 [EC] ) is an enzyme hypothesized to play a role in limitingand repairing age-induced damage to proteins. Tomato (Lycopersiconesculentum Mill. ‘New Yorker’) seeds were assayedfor changes in L-isoaspartyl methyl-transferase activity duringaccelerated ageing and after osmotic priming. Accelerated ageingof seeds for 1–4 d at 45C and 100% relative humidityreduced germination from 94% to 71%, increased the mean timeof germination (MTG) from 2.4 to 5.8 d, and was accompaniedby a correlative decrease in L-isoaspartyl methyltransferaseactivity (r2=0.90). Aged and untreated seeds were primed for7 d at 20C in darkness using aerated solutions of 3% KNO3 orpolyethylene glycol 8000 (PEG) with equivalent osmotic potential(–1.25 MPa). Priming with KNO3 decreased the MTG, butdid not improve germination percentage for untreated seeds.Priming did not affect L-isoaspartyl methyltransferase activityin untreated seeds, but restored activity in aged seeds primedin KNO3 to levels near that of untreated seeds. Priming withPEG did not effectively improve the MTG or increase L-isoaspartylmethyltransferase activity. During germination, L-isoaspartylmethyltransferase activity remained constant for 48 h post-imbibitionand then declined, suggesting that the enzyme was developmentallyregulated and inactivated or degraded as radicle emergence occurred. Key words: L-Isoaspartyl methyltransferase, protein repair, seed priming, accelerated ageing, Lycopersicon esculentum  相似文献   

5.
The bases of differences in germination rates (GRg = inverseof time to germination [tg] of percentage g) among three cold/salt-toleranttomato (Lycopersicon esculentum Mill.) accessions (PI 341988,PI 120256, and PI 174263) and one cold/salt-sensitive tomatocultivar (T5) were investigated. The effects of seed priming(6 d imbibition in aerated –1.2 MPa polyethylene glycolsolution at 20 ?C followed by redrying) and of removing theendosperm/testa cap covering the radicle on the temperaturesensitivity of GRg, and the interaction of these treatmentswith genotypes, were also examined. GRg decreased linearly withdecreasing temperature for all genotypes and seed treatments.The minimum or base temperatures for germination (Tb) variedby 1 ?C among the tomato lines, so genotypic differences inGRg were due to differing thermal time requirements for germination.The mean thermal time requirement for germination of T5 seeds was 22% and 19% greater than that of PI 341988 andPI 120256 seeds, respectively, but only 9% greater than thatof PI 174263 seeds. Seed priming did not lower Tb of any genotype,but significantly reduced by 24, 49, 41, and 49% in T5, PI 341988, PI 120256, and PI 174263, respectively,indicating that priming increased the rate at which the seedsprogressed towards germination when T>Tb, but did not lowerthe minimum temperature at which germination could occur. Primingincreased the GRg of T5 seeds to equal or exceed those of control(non-primed) seeds of the cold/salt-tolerant genotypes at anyT>Tb, but the PI lines exhibited an even greater responseto priming. Times to germination within each seed lot were normallydistributed on a logarithmic scale. Priming increased the variancein tg within a seed lot when compared to control seeds. However,the variation in thermal time for germination between the 10thand 90th percentiles of the seed population (T(10–90))was relatively unaffected by priming due to the reduction in in primed seeds. Removing the endosperm cap and testa opposite the radicle tip decreased almost 6-fold and and reduced Tb by 5 ?C in T5 and PI 341988,implicating processes in the endosperm/testa as the limitingfactors in germination at suboptimal temperatures. Key words: Lycopersicon esculentum Mill., tomato, genetic variation, seed priming, thermal time, germination rate  相似文献   

6.
The activation of the cell cycle in embryo root tips of imbibing tomato (Lycopersicon esculentum Mill. cv Lerica) seeds was studied by flow cytometric analyses of the nuclear DNA content and by immunodelection of [beta]-tubulin. With dry seeds, flow cytometric profiles indicated that the majority of the cells were arrested at the G1 phase of the cell cycle. In addition, [beta]-tubulin was not detectable on western blots. Upon imbibition of water, the number of cells in G2 started to increase after 24 h, and a 55-kD [beta]-tubulin signal was detected between 24 and 48 h. Two-dimensional immunoblots revealed at least three different [beta]-tubulin isotypes. Thus, [beta]-tubulin accumulation and DNA replication were induced during osmotic priming. These processes, as well as seed germination rate, were enhanced upon subsequent imbibition of water, compared with control seeds that imbibed but were not primed. By contrast, when aged seeds imbibed, DNA replication, [beta]-tubulin accumulation, and germination were delayed. In all cases studied, both DNA replication and [beta]-tubulin accumulation preceded visible germination. We suggest that activation of these cell-cycle-related processes is a prerequisite for tomato seed germination. Furthermore, [beta]-tubulin expression can be used as a parameter for following the initial processes that are activated during seed imbibition.  相似文献   

7.
The role of cis-abscisic acid (ABA) and gibberellins (GAs) in the induction of cell-cycle activities has been studied during imbibition and subsequent germination of tomato seeds. Using flow cytometry, nuclear replication activity was investigated in embryo root tips isolated from seeds of the ABA-deficient mutant sit w , the GA-deficient mutant gib-1, and the wild-type (MM) tomato (Lycopersicon esculentum Mill. cv. Moneymaker) upon imbibition in water, 10 μM GA4+7, 5 μM ABA or 5 μM ABA+10 μM GA4+7. The nuclei of fully matured dry MM, sit w and gib-1 seeds predominantly showed 2C DNA signals, indicating that the cell-cycle activity of most root-tip cells had been arrested at the G1 phase of nuclear division. However, ABA-deficient sit w seeds contained a significantly higher amount of G2 cells (4C DNA) compared with the other genotypes, suggesting that, during maturation, cell-cycle activity in sit w seeds is less efficiently arrested in G1. Upon imbibition in water, an induction of the 4C signal, indicating nuclear replication, was observed in the root tip cells of both MM and sit w embroys. The augmentation in the 4C signal occurred before visible germination. Gib-1 seeds did not show cell-cycle activity and did not germinate in water. Upon imbibition in GA4+7, both cell-cycle activity and subsequent germination were enhanced in MM and sit w seeds, and were induced in gib-1. In ABA, the germination of MM and sit w seeds was inhibited while nuclear replication of these seeds was not affected. It is concluded that GA influences germination by acting upon processes that precede cell-cycle activation, while ABA affects growth by acting upon processes that follow cell-cycle activation.  相似文献   

8.
Inadequate plant stand establishment due to insufficient germination is an important bottleneck in achieving the potential yields, specifically under uncertain growing conditions. Hydropriming has been publicized as a useful tool to alleviate the stress-induced consequences. Association of DNA biosynthesis in hydroprimed seeds of maize; hybrid, PEHM 5 and its parental lines (CM150 and CM151) was studied. Seeds were hydroprimed at 25 °C for 30 h and half of them were surface dried while the other half were redried back to the original moisture contents. The treated and untreated seeds were evaluated for; germination test, mean germination time, vigour index and DNA levels in embryos of fully matured seeds. Both the treatment strategies significantly enhanced the planting value of maize seeds. Vigour index I revealed significant correlation with G2/G1 ratio whereas significant negative correlation between G2/G1 ratio and mean germination time was observed. Large amounts of 2C DNA signals in flow cytometric analysis divulged that most cells might had arrested in the cell cycle at the pre synthetic G1 phase of nuclear division. Augmentation of 4C signal in the embryonic region was noticed after imbibition that could be ascribed to cells entering the synthetic phase of nuclear division. The embryonic cells showed increased 4C:2C ratios after 30 h of imbibition. Apparently, DNA synthesis preceded germination. In dry seeds, DNA histograms revealed both a 2C signal and a considerable 4C peak. A priming period of 30 h in distilled water considerably enhanced the rate and uniformity of germination in both surface dried and redried treatment strategies. Upon priming, the ratio of 4C:2C increased during the 30 h priming period, though the level in case of redried seeds did not reach the level obtained after hydration in water without drying back. However, the 4C: 2C ratio was constant after redrying the seeds to the original moisture content, indicating that the chromosomal material in the embryonic cells had stably ceased cell cycle activity at the G2 phase. The present results indicate that the beneficial effects of priming on seedling performance could be associated with the action of replicative DNA synthesis processes prior to germination.  相似文献   

9.
Flow Cytometric Determination of Nuclear Replication Stage in Seed Tissues   总被引:2,自引:0,他引:2  
Flow cytometric determination of DNA levels in embryos of fullymatured seeds of various plant species revealed large amountsof 2C DNA signals, indicating that most cells had arrested thecell cycle at the presynthetic G1 phase of nuclear division.The accumulation of cells at G1 was found both in orthodox andin recalcitrant (i.e. Castanea sativa) seed species. As recalcitrantseeds are characterized by the absence of maturation drying,the arrest of the cell cycle in the presynthetic phase may notbe linked to the seed water status. Apart from the 2C signal, 4C values were found in the embryoof some seed species (e.g. Raphanus sativus) indicating thatcells were arrested in G2 Cells arrested in G2 were primarilylocated in the root-tip region of the embryo. In addition, combinationsof higher C values (i.e. 8C, 12C, 16C and 64C) were observedin the endosperm of Solanum melongena and Lycopersicon esculentum,and in the root-tip cells of Phaseolus vulgaris and Spinaciaoleracea. These mixtures of polyploid nuclei (also called 'polysomaty')may arise from a developmentally controlled cellular endoreduplicationand indicates that in each cell type of the seed the amountof DNA is regulated both spatially and temporally.Copyright1993, 1999 Academic Press Endive, Cichorium endiva, lettuce, Lactuca sativa, egg-plant, Solanum melongena, pepper, Capsicum annuum, tomato, Lycopersicon esculentum, radish, Raphanus sativus, bean Phaseolus vulgaris, spinach, Spinacia oleracea, chestnut, Castanea sativa, beech, Fagus sylvatica, pine, Pinus nigra, DNA content, flow cytometry, seed, nuclear replication stage, C levels, storage  相似文献   

10.
Salinity is one of the environmental factors that has a criticalinfluence on the germination of halophyte seeds and plant establishment.Salinity affects imbibition, germination and root elongation.However, the way in which NaCl exerts its influence on thesevital processes, whether it is through an osmotic effect ora specific ion toxicity, is still not resolved. Dimorphic seedsof the halophytesAtriplex prostrataandA. patulawere treatedwith various iso-osmotic solutions of NaCl and polyethyleneglycol (PEG). For each treatment, imbibition, germination rate,percent germination, germination recovery and nuclear area ofroot tip cells were compared. Higher concentrations of NaCl(-1.0 MPa) were more inhibitory to imbibition, germination andseedling root elongation than iso-osmotic PEG solutions. Allseeds recovered from a pre-treatment with -2.0 MPa NaCl andPEG solutions, except large seeds ofA. prostratawhich failedto germinate following transfer from -2.0 MPa NaCl. NaCl causeda greater increase in nuclear volume than iso-osmotic PEG solutions.These data suggest that the influence of NaCl is a combinationof an osmotic effect and a specific ion effect.Copyright 1998Annals of Botany Company Atriplex patula,Atriplex prostrata,cytophotometry, osmotic potential, salinity, seed germination.  相似文献   

11.
Seed priming (imbibition in water or osmotic solutions followedby redrying) generally accelerates germination rates upon subsequentre-imbibition, but the response to priming treatments can varyboth within and among seed lots. Seed maturity could influenceresponsiveness to priming, perhaps explaining variable primingeffects among developmentally heterogeneous seed lots. In thecurrent study, muskmelon (Cucumis melo L.) seeds at two stagesof development, maturing (40 d after anthesis (DAA)) and fullymature (60 DAA), were primed in 0?3 M KNO3 for 48 h at 30 ?C,dried, and imbibed in polyethylene glycol 8000 solutions of0 to –1?2 MPa at 15, 20, 25, and 30 ?C. Germination sensitivitiesto temperature and water potential () were quantified as indicatorsof the influence of seed maturity and priming on seed vigour.Germination percentages of 40 and 60 DAA control seeds weresimilar in water at 30 ?C, but the mean germination rate (inverseof time to germination) of 40 DAA seeds was 50% less than thatof 60 DAA seeds. Germination percentages and rates of both 40and 60 DAA seeds decreased at temperatures below 25 ?C. Reductionsin also delayed and inhibited germination, with the 40 DAAseeds being more sensitive to low than the 60 DAA seeds. Primingsignificantly improved the performance of 40 DAA seeds at lowtemperatures and reduced , but had less effect on 60 DAA seeds.Priming lowered both the minimum temperature (Tb) and the minimum (b) at which germination occurred. Overall, priming of 40 DAAseeds improved their germination performance under stress conditionsto equal or exceed that of control 60 DAA seeds, while 60 DAAseeds exhibited only modest improvements due to priming. Asthe osmotic environment inside mature fruits approximates thatof a priming solution, muskmelon seeds may be ‘primed’in situ during the late stage of development after maximum dryweight accumulation. Key words: Cucumis melo L., seed priming, germination, vigour, development, temperature  相似文献   

12.
Flow cytometric determination of cell cycle activation duringimbibition and visible germination in five families of jackpine (Pinus banksiana Lamb.) embryos and megagametophytes revealedthat in seeds that had undergone no imbibition the majorityof cells were in the 2C state. As the imbibition period increased,less of the nuclei were blocked in the G0/G1 state and morebecome active in the cell cycle. The augmentation in the nucleiactive in the 2C–4C cycle as well as those with DNA levelshigher than the 4C state occured gradually and preceeded radicleemergence. In megagametophyte tissue examined at various stagesof imbibition, cell cycle activity became apparent rapidly followingimbibition. In nuclei of green and white embryos examined separatelythe 2frequency distributions were significantly different forall three families after 144h. As imbibition period increased,fewer nuclei from the green embryos were blocked in the 2C state,and more became active in the 2C–4C cell cycle. This wasnot the case for white embryos where no significant linear relationwas noted. Cell cycle activity in the hypocotyl+cotyledons regionand the emerging radicle were examined separately. Functionalrelations found in the hypocotyl+cotyledons region were notevident in the radicle. As visible germination proceeded, cellcycle activity in the hypocotyl + cotyledons region for thisperiod of germination showed a reversal of the activity notedduring imbibition: fewer nuclei were active and once again ahigher proportion were found in the 2C state. cell cycle; C levels; DNA content; flow cytometry; germination; imbibition; jack pine; megagametophyte; Pinus banksiana Lamb  相似文献   

13.
The influence of seed priming and ageing treatments on viabilityand rate of germination of tomato (Lycopersicon esculentum Mill.)seeds was examined under both long-term and controlled-deteriorationstorage conditions. Seeds of a single lot of tomato were eitherprimed or aged to increase or decrease the rate of germination(Argerich and Bradford, 1989). They were then stored at 6% moisturecontent (dry weight basis) at either 4 ?C or 30 ?C for 1 year.Both viability and germination rate were unaffected by eitherstorage temperature in control seeds, or by 4 ?C storage inprimed or aged seeds. At 30 ?C, however, viability and germinationrate of primed and aged seeds was markedly reduced after 6 monthsof storage. The temperature dependence of the germination rateand the spread of germination times within the population wasalso adversely affected by high temperature storage, particularlyfor primed seeds. Under controlled deterioration conditions(13.5% moisture content and 50 ?C), the rate of loss of viabilitywas greater for primed seed than for control or aged seeds.The relationship between seed viability and the mean germinationrate, however, was not influenced by the seed treatments. Thesedata are analysed in relation to current models of seed deteriorationduring storage and seed repair during priming. The results indicatethat enhancement of seed germination rates by priming treatmentssimultaneously lowers the resistance of seeds to deterioration.Primed tomato seeds must, therefore, be considered to be vigorousseeds with a reduced storage life. Key words: Tomato, controlled deterioration, seed germination rate, seed viability  相似文献   

14.
一氧化氮对番茄种子抗吸胀冷害的影响   总被引:1,自引:0,他引:1  
以番茄毛粉802种子为材料,通过对比实验,测定分析各处理种子的萌发率及第4天的平均根长、萌发指数、活力指数,以及相对电导率(REC)、丙二醛(MDA)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)含量的变化,以探讨NO对番茄种子吸胀冷害的抵抗作用及其机理.结果显示:(1)外源NO可显著提高番茄种子经12 h吸胀冷害处理后的萌发率、平均根长、萌发指数和活力指数,并显著降低吸胀冷害下REC和MDA含量,同时显著提高SOD和CAT的含量.(2)NO所提高的吸胀冷害处理后种子的SOD和CAT活性不能被RNA合成抑制剂放线菌素D和蛋白质合成抑制剂环己酰亚胺抑制.结果表明,NO可提高番茄种子抵抗吸胀冷害的能力,而且与NO激活了抗氧化系统有关,但NO不是通过促进抗氧化酶的合成来提高其活性.  相似文献   

15.
At 25 °C germination of tomato (Lycopersicon lycopersicum)seeds is inhibited by continuous and intermittent far red illumination.It is also inhibited by a single 30 min far red irradiationgiven 8 h from the start of imbibition. The incubation of seedsin a mannitol solution inhibitory for germination has no effecton the final germination percentage after seeds are subsequentlytransferred to water. A 30 min far red irradiation at the timeof transfer results in partial inhibition of germination. Thisinhibition can be released by the continuation of osmotic incubationfor several days before the transfer to water. At the end ofa 7 d dark period of osmotic incubation, inhibition of subsequentgermination in water can be realized only by continuous farred illumination. Seeds osmotically pretreated for 7 d and afterwardsdried-back show a mean time to 50% germination significantlylower than that of untreated seeds. Moreover, besides singleand intermittent, even continuous far red light has no inhibitoryeffect on the germination of these seeds. It is concluded that,in addition to the already known germination advantages, osmoticpresowing treatment also induces the ability of seeds to germinateunder unfavourable light conditi.  相似文献   

16.
Seed priming is a technique of controlled hydration and drying that results in more rapid gemination when the seeds are reimbibed. Advancement of radicle meristem cells into the S and G2 phases of the cell cycle, increasing the percentage of nuclei having a 4C DNA content, has been reported to occur during priming. It has been suggested that the efficiency of priming is related to the accumulation of 4C nuclei in the radicle meristem, but the extent of cell cycle activity varied among different treatments and seed lots. A wide range of priming treatments across temperatures, water potentials and durations can be compared on a common basis using the hydrothermal priming time model. Flow cytometry was used to monitor cell cycle activity in a number of tomato (Lycopersicon esculentum Mill.) seed lots during priming in relation to the accumulation of hydrothermal priming time and the subsequent germination rate response. In some seed lots, the percentage of 4C nuclei in the radicle meristems prior to emergence increased in proportion to accumulated hydrothermal priming time, while in other lots, no increase in nuclear DNA content was detected. All lots, however, demonstrated rapid radicle emergence following priming. Thus, replicative DNA synthesis in radicle meristem nuclei often occurred during seed priming, but an increase in the percentage of 4C nuclei was not essential for germination advancement.  相似文献   

17.
The effects of CO2 on dormancy and germination were examinedusing seeds of cocklebur (Xanthium pennsylvanicum Wallr.) andgiant foxtail (Setaria faberi Herrm.). The rate of germinationof the giant foxtail seeds as well as cocklebur was promotedby exogenously applied CO2 at a concentration of 30 mmol mol-1regardless of the sowing conditions. However, seeds which failedto germinate in the presence of CO2, entered a secondary phaseof dormancy under unfavourable germination conditions. If CO2was applied to seeds under conditions such as water stress imposedwith a 200 mol m-3 mannitol solution, a hypoxic atmosphere of100 mmol mol-1 O2 or a treatment of 0·1 mol m-3 ABA,development of secondary dormancy was accelerated. These contrastedeffects of CO2 were observed in ecological studies. Under naturalfield conditions germination of buried giant foxtail seeds respondedpositively to CO2 during a period of release from primary dormancyfrom Feb. to May, but CO2 accelerated secondary dormancy commencingin early Jun. In other words, in the presence of CO2, both theenvironmental conditions and the germination states of the seedsclearly showed secondary dormancy-inducing effects. Thus, itseems that CO2 has contrasted effects on regulation of dormancyand germination of seeds depending on the germination conditions.Copyright1995, 1999 Academic Press Xanthium pennsylvanicum, cocklebur, Setaria faberi, giant foxtail, CO2, water stress, hypoxia, ABA, germination, secondary dormancy  相似文献   

18.
We studied cell cycle events in embryos of tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds during imbibition in water and during osmoconditioning ("priming") using both quantitative and cytological analysis of DNA synthesis and beta-tubulin accumulation. Most embryonic nuclei of dry, untreated control seeds were arrested in the G(1) phase of the cell cycle. This indicated the absence of DNA synthesis (the S-phase), as confirmed by the absence of bromodeoxyuridine incorporation. In addition, beta-tubulin was not detected on western blots and microtubules were not present. During imbibition in water, DNA synthesis was activated in the radicle tip and then spread toward the cotyledons, resulting in an increase in the number of nuclei in G(2). Concomitantly, beta-tubulin accumulated and was assembled into microtubular cytoskeleton networks. Both of these cell cycle events preceded cell expansion and division and subsequent growth of the radicle through the seed coat. The activation of DNA synthesis and the formation of microtubular cytoskeleton networks were also observed throughout the embryo when seeds were osmoconditioned. However, this pre-activation of the cell cycle appeared to become arrested in the G(2) phase since no mitosis was observed. The pre-activation of cell cycle events in osmoconditioned seeds appeared to be correlated with enhanced germination performance during re-imbibition in water.  相似文献   

19.
DELTOUR  R.; JACQMARD  A. 《Annals of botany》1974,38(3):529-534
Mitotic index, percent nuclei in DNA synthesis and the relativeDNA content per nucleus were determined from cells of the Zeamays radicle at various times after the beginning of germination.Nuclear DNA synthesis was initiated after 45 h and mitosis wasfirst observed after 74 h from sowing. Most of the dormant nucleiwere in the pre-synthetic or G1 phase of the mitotic cycle.By 72 h most cells were in S and 77 h after the beginning ofgermination, the cells of the primary root were observed inall phases of the mitotic cycle. Dehydration of karyopses after45–74 h of imbibition progressively reduced the percentof germination to zero upon dehydration and subsequent replantingdemonstrating that drought sensitivity was related to the onsetof nuclear DNA synthesis and genome duplication.  相似文献   

20.
Flow cytometric determination of ploidy levels in embryos of GA-deficient, ABA-deficient mutant and isogenic wild type tomato (Lycopersicon esculentum Mill. cv. Moneymaker) seeds revealed that, large amount of 2C DNA signals existed both in wild type and GA-deficient mutant seeds, showing that most cells had arrested in the cell cycle at presynthesis Gl, whereas a relative amount of 4C proportion which is a sign of seed germination was found in ABA-deficient mutant seeds, indicating that endogenous ABA play a role in regulating the switch from development to germination in seeds. DNA replication was stimulated 1 d after the seed was imbibed in water and a visible germination occurred subsequently either in wild type GA-deficient mutant seeds. But it was not the case for ABA-deficient mutant seeds unless an exogenous GA was supplemented. This demonstrated that DNA replication in embryo root tips cells was subjected to be a compulsory factor for seed germination, whereas endogenous GA triggered DNA synthesis. It was evident that exogenous ABA could inhibit seed germination not by suppressing DNA synthesis but by bloking the route leading to mitosis since a great amount of 4C proportion was found in the germinating wild type and GA-deficient mutant seeds in the ABA solution when visible ger mination did not occur. Finally a simple mode of hormonal regulation on cell cycle in high plants was hypothesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号