首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosoma cruzi can infect and replicate in macrophages. During invasion, T. cruzi interacts with different macrophage receptors to induce its own phagocytosis. However, the nature of those receptors and the molecular mechanisms involved are poorly understood. In this study, we demonstrate that T. cruzi metacyclic trypomastigotes but not epimastigotes were able to induce Rab5 activation and binding to the early endosomes in peritoneal macrophages. In this process, active Rab5 colocalized with parasites in the phagosome and with the Rab5A effector molecule early endosomal antigen 1. Phagosome formation and T. cruzi internalization were inhibited in Raw 264.7 macrophages expressing a dominant-negative form of Rab5 [(S34N)Rab5]. Using T. cruzi membrane extracts, we verified that the Rab5 activation depends on the interaction between parasite surface molecules and macrophages surface molecule. In addition, during infection of macrophages, phosphatidylinositol 3-kinase (PI3K) pathway was activated. Assays carried out using a selective PI3K inhibitor (LY294002) showed that the PI3K activation is essential for Rab5 activation by T. cruzi infection and for the entrance and intracellular replication of T. cruzi in macrophages. Moreover, using macrophages from knockout mice, we found that activation of Rab5, fusion of early endosomes and phagocytosis induced by T. cruzi infection involved Toll-like receptor (TLR)2 but were independent of TLR4 receptors.  相似文献   

2.
Listeria monocytogenes (LM) modifies the phagocytic compartment by targeting Rab5a function through an unknown mechanism. Inhibition of Rab5a exchange by LM can be considered the main virulence mechanism as it favours viability of the parasite within the phagosome as well as the exclusion of putative listericidal lysosomal proteases such as cathepsin-D. The significance of this survival mechanism is evidenced by the overexpression of Rab5a mutants in CHO cells that promoted GDP exchange on Rab5a and eliminated pathogenic LM. The following mutants showed listericidal effects: Rab5a:Q79L, a constitutively active mutant with accelerated GDP exchange and Rab5a GEF, Vps9, which overactivates the endogenous protein. Clearance of LM from these phagosomes was controlled by the hydrolytic action of cathepsin-D as suggested by the lysosomal protease inhibitor chloroquine, or the cathepsin-D inhibitor, pepstatin A, which caused a reversion of listericidal activity. Moreover, the effects of LM on Rab5a phagocytic function mimics those reported for the GDP locked dominant negative Rab5a mutant, S34N. Transfection of these mutants into CHO cells increased pathogen survival as they showed higher numbers of viable bacteria, complete inhibition of GDP exchange on Rab5a and impairment of the listericidal action probably exerted by cathepsin-D. We cotransfected functional Rab5a GEF into this dominant negative mutant and restored normal LM intraphagosomal viability, Rab5a exchange and listericidal action of cathepsin-D.  相似文献   

3.
Huntingtin regulates post-Golgi trafficking of secreted proteins. Here, we studied the mechanism by which mutant huntingtin impairs this process. Colocalization studies and Western blot analysis of isolated Golgi membranes showed a reduction of huntingtin in the Golgi apparatus of cells expressing mutant huntingtin. These findings correlated with a decrease in the levels of optineurin and Rab8 in the Golgi apparatus that can be reverted by overexpression of full-length wild-type huntingtin. In addition, immunoprecipitation studies showed reduced interaction between mutant huntingtin and optineurin/Rab8. Cells expressing mutant huntingtin produced both an accumulation of clathrin adaptor complex 1 at the Golgi and an increase of clathrin-coated vesicles in the vicinity of Golgi cisternae as revealed by electron microscopy. Furthermore, inverse fluorescence recovery after photobleaching analysis for lysosomal-associated membrane protein-1 and mannose-6-phosphate receptor showed that the optineurin/Rab8-dependent post-Golgi trafficking to lysosomes was impaired in cells expressing mutant huntingtin or reducing huntingtin levels by small interfering RNA. Accordingly, these cells showed a lower content of cathepsin D in lysosomes, which led to an overall reduction of lysosomal activity. Together, our results indicate that mutant huntingtin perturbs post-Golgi trafficking to lysosomal compartments by delocalizing the optineurin/Rab8 complex, which, in turn, affects the lysosomal function.  相似文献   

4.
Previous studies have demonstrated that the interaction of the angiotensin II type 1A receptor (AT(1A)R) carboxyl-terminal tail with Rab5a may modulate Rab5a activity, leading to the homotypic fusion of endocytic vesicles. Therefore, we have investigated whether AT(1A)R/Rab5a interactions mediate the retention of AT(1A)R.beta-arrestin complexes in early endosomes and whether the overexpression of Rab7 and Rab11 GTPases influences AT(1A)R lysosomal degradation and plasma membrane recycling. We found that internalized AT(1A)R was retained in Rab5a-positive early endosomes and was neither targeted to lysosomes nor recycled back to the cell surface, whereas a mutant defective in Rab5a binding, AT(1A)R-(1-349), was targeted to lysosomes for degradation. However, the loss of Rab5a binding to the AT(1A)R carboxyl-terminal tail did not promote AT(1A)R recycling. Rather, it was the stable binding of beta-arrestin to the AT(1A)R that prevented, at least in part, AT(1A)R recycling. The overexpression of wild-type Rab7 and Rab7-Q67L resulted in both increased AT(1A)R degradation and AT(1A)R targeting to lysosomes. The Rab7 expression-dependent transition of "putative" AT(1A)R.beta-arrestin complexes to late endosomes was blocked by the expression of dominant-negative Rab5a-S34N. Rab11 overexpression established AT(1A)R recycling and promoted the redistribution of AT(1A)R.beta-arrestin complexes from early to recycling endosomes. Taken together, our data suggest that Rab5, Rab7, and Rab11 work in concert with one another to regulate the intracellular trafficking patterns of the AT(1A)R.  相似文献   

5.
Plasma membrane proteins that are internalized independently of clathrin, such as major histocompatibility complex class I (MHCI), are internalized in vesicles that fuse with the early endosomes containing clathrin-derived cargo. From there, MHCI is either transported to the late endosome for degradation or is recycled back to the plasma membrane via tubular structures that lack clathrin-dependent recycling cargo, e.g., transferrin. Here, we show that the small GTPase Rab22a is associated with these tubular recycling intermediates containing MHCI. Expression of a dominant negative mutant of Rab22a or small interfering RNA-mediated depletion of Rab22a inhibited both formation of the recycling tubules and MHCI recycling. By contrast, cells expressing the constitutively active mutant of Rab22a exhibited prominent recycling tubules and accumulated vesicles at the periphery, but MHCI recycling was still blocked. These results suggest that Rab22a activation is required for tubule formation and Rab22a inactivation for final fusion of recycling membranes with the surface. The trafficking of transferrin was only modestly affected by these treatments. Dominant negative mutant of Rab11a also inhibited recycling of MHCI but not the formation of recycling tubules, suggesting that Rab22a and Rab11a might coordinate different steps of MHCI recycling.  相似文献   

6.
Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa.  相似文献   

7.
Recently, we identified an ADP-ribosylating and vacuolating cytotoxin in Mycoplasma pneumoniae designated Community Acquired Respiratory Distress Syndrome (CARDS) toxin. In this study we show that vacuoles induced by recombinant CARDS (rCARDS) toxin are acidic and derive from the endocytic pathway as determined by the uptake of neutral red and the fluid-phase marker, Lucifer yellow, respectively. Also, we demonstrate that the formation of rCARDS toxin-associated cytoplasmic vacuoles is inhibited by the vacuolar ATPase inhibitor, bafilomycin A1, and the ionophore, monensin. To examine the ontogeny of these vacuoles, we analyzed the distribution of endosomal and lysosomal membrane markers during vacuole formation and observed the enrichment of the late endosomal GTPase, Rab9, around rCARDS toxin-induced vacuoles. Immunogold-labeled Rab9 and overexpression of green fluorescent-tagged Rab9 further confirmed vacuolar association. The late endosomal- and lysosomal-associated membrane proteins, LAMP1 and LAMP2, also localized to the vacuolar membranes, while the late endosomal protein, Rab7, and early endosomal markers, Rab5 and EEA1, were excluded. HeLa cells expressing dominant-negative (DN) Rab9 exhibited markedly reduced vacuole formation in the presence of rCARDS toxin, in contrast to cells expressing DN-Rab7, highlighting the importance of Rab9 function in rCARDS toxin-induced vacuolation. Our findings reveal the unique Rab9-association with rCARDS toxin-induced vacuoles and its possible relationship to the characteristic histopathology that accompanies M. pneumoniae infection.  相似文献   

8.
The small GTPases Rab4, Rab5 and Rab7 are endosomal proteins which play important roles in the regulation of various stages of endosomal trafficking. Rab4 and Rab5 have both been localized to early endosomes and have been shown to control recycling and endosomal fusion, respectively. Rab7, a marker of the late endosomal compartment, is involved in the regulation of the late endocytic pathway. Here, we compare the role of Rab4, Rab5 and Rab7 in early and late endosomal trafficking in HeLa cells monitoring ligand uptake, recycling and degradation. Expression of the Rab4 dominant negative mutant (Rab4AS22N) leads to a significant reduction in both recycling and degradation while, as expected, Rab7 mutants exclusively affect epidermal growth factor (EGF) and low density lipoprotein degradation. As also expected, expression of the dominant negative Rab5 mutant perturbs internalization kinetics and affects both recycling and degradation. Expression of Rab4WT and dominant positive mutant (Rab4AQ67L) changes dramatically the morphology of the transferrin compartment leading to the formation of membrane tubules. These transferrin positive tubules display swellings (varicosities) some of which are positive for early endosomal antigen-1 and contain EGF. We propose that the Rab4GTPase is important for the function of the early sorting endosomal compartment, affecting trafficking along both recycling and degradative pathways.  相似文献   

9.
The etiologic agent of Q fever Coxiella burnetii, is an intracellular obligate parasite that develops large vacuoles with phagolysosomal characteristics, containing multiple replicating bacteria. We have previously shown that Phase II C. burnetii replicative vacuoles generated after 24-48 h post infection are decorated with the autophagic protein LC3. The aim of the present study was to examine, at earlier stages of infection, the distribution and roles of the small GTPases Rab5 and Rab7, markers of early and late endosomes respectively, as well as of the protein LC3 on C. burnetii trafficking. Our results indicate that: (i) Coxiella phagosomes (Cph) acquire the two Rab proteins sequentially during infection; (ii) overexpression of a dominant negative mutant form of Rab5, but not of Rab7, impaired Coxiella entry, whereas both Rab5 and Rab7 dominant negative mutants inhibited vacuole formation; (iii) Cph colocalized with the protein LC3 as early as 5 min after infection; acquisition of this protein appeared to be a bacterially driven process, because it was inhibited by the bacteriostatic antibiotic chloramphenicol and (iv) C. burnetii delayed the arrival of the typical lysosomal protease cathepsin D to the Cph, which delay is further increased by starvation-induced autophagy. Based on our results we propose that C. burnetii transits through the normal endo/phagocytic pathway but actively interacts with autophagosomes at early times after infection. This intersection with the autophagic pathway delays fusion with the lysosomal compartment possibly favouring the intracellular differentiation and survival of the bacteria.  相似文献   

10.
Two dominant negative mutants of Rab3D, N135I and T36N were recently reported to inhibit the early phase of regulated amylase secretion from mouse pancreatic acini (Chen, X., Edwards, J. A., Logsdon, C. D., Ernst, S. A., and Williams, J. A. (2002) J. Biol. Chem. 277, 18002-18009). Immunocytochemical studies showed that while the wild-type Rab3D localized to zymogen granules, the two dominant negative mutants did not localize to granules and were primarily in the basolateral regions of the cell. The present study, therefore, evaluated the potential mechanisms by which the dominant negative mutants might act. An affinity precipitation assay based on the property of the Rab3 effector Rim1 to interact only with GTP-bound Rab3D was developed. 78.9 +/- 4.5% of total endogenous Rab3D was found in the GTP-bound form. Overexpression of HA-tagged Rab3D, and its Q81L, N135I, and T36N mutants had no effect on the total amount of endogenous Rab3D. However, the dominant negative mutants, T36N and N135I, reduced GTP-bound endogenous Rab3D by 70.0 +/- 3.5% and 72.7 +/- 1.2%, respectively, while the wild-type Rab3D and Q81L mutant had no effect. Triton X-114 phase separation and cell fractionation studies showed that dominant negative Rab3D mutants did not alter isoprenylation or membrane association of endogenous Rab3D. The dominant negative Rab3D did not affect the amount of endogenous Rab3D on purified zymogen granules as assessed by either Western blotting or immunocytochemistry, but reduced the GTP-bound form by 78.6 +/- 3.3%. The two dominant negative Rab3D mutants, therefore, interfere with endogenous Rab3D function by blocking the GDP/GTP exchange but not zymogen granule targeting of endogenous Rab3D.  相似文献   

11.
Newly synthesized lysosomal enzymes bind to mannose 6-phosphate receptors (MPRs) in the TGN, and are carried to prelysosomes, where they are released. MPRs then return to the TGN for another round of transport. Rab9 is a ras-like GTPase which facilitates MPR recycling to the TGN in vitro. We show here that a dominant negative form of rab9, rab9 S21N, strongly inhibited MPR recycling in living cells. The block was specific in that the rates of biosynthetic protein transport, fluid phase endocytosis and receptor-mediated endocytosis were unchanged. Expression of rab9 S21N was accompanied by a decrease in the efficiency of lysosomal enzyme sorting. Cells compensated for the presence of the mutant protein by inducing the synthesis of both soluble and membrane- associated lysosomal enzymes, and by internalizing lysosomal enzymes that were secreted by default. These data show that MPRs are limiting in the secretory pathway of cells expressing rab9 S21N and document the importance of MPR recycling and the rab9 GTPase for efficient lysosomal enzyme delivery.  相似文献   

12.
Nahm MY  Kim SW  Yun D  Lee SY  Cho MJ  Bahk JD 《Plant & cell physiology》2003,44(12):1341-1349
Rab7 is a small GTP-binding protein important in early to late endosome/lysosome vesicular transport in mammalian cells. We have isolated a Rab7 cDNA clone, OsRab7, from a cold-treated rice cDNA library by the subtraction screening method. The cDNA encodes a polypeptide of 206 amino acids with a calculated molecular mass of about 23 kDa. Its predicted amino acid sequence shows significantly high identity with the sequences of other Rab7 proteins. His-tagged OsRab7 bound to radiolabeled GTPgammaS in a specific and stoichiometric manner. Biochemical and structural properties of the Rab7 wild type (WT) protein were compared to those of Q67L and T22N mutants. The detergent 3-([3-cholamidopropyl]dimethylammonio)-1-propane sulfonate (CHAPS) increased the guanine nucleotide binding and hydrolysis activities of Rab7WT. The OsRab7Q67L mutant showed much lower GTPase activity compared to the WT protein untreated with CHAPS, and the T22N mutant showed no GTP binding activity at all. The OsRab7Q67L mutant was constitutively active for guanine nucleotide binding while the T22N mutant (dominant negative) showed no guanine nucleotide binding activity. When bound to GTP, the Rab7WT and the Q67L mutants were protected from tryptic proteolysis. The cleavage pattern of the Rab7T22N mutant, however, was not affected by GTP addition. Northern and Western blot analyses suggested that OsRab7 is distributed in various tissues of rice. Furthermore, expression of a rice Rab7 gene was differentially regulated by various environmental stimuli such as cold, NaCl, dehydration, and ABA. In addition, subcellular localization of OsRab7 was investigated in the Arabidopsis protoplasts by a double-labeling experiment using GFP-fused OsRab7 and FM4-64. GFP-OsRab7 is localized to the vacuolar membrane, suggesting that OsRab7 is implicated in a vesicular transport to the vacuole in plant cells.  相似文献   

13.
Multiple signal transduction events are triggered in the host cell during invasion by the protozoan parasite Trypanosoma cruzi. Here, we report the regulation of host cell phosphatydilinositol 3-kinase (PI3K) and protein kinase B (PKB/Akt) activities by T. cruzi during parasite-host cell interaction. Treatment of nonphagocytic cells (Vero, L(6)E(9), and NIH 3T3) and phagocytic cells (human and J774 murine macrophages) with the selective PI3K inhibitors Wortmannin and LY294002 significantly impaired parasite invasion in a dose-dependent fashion. A strong activation of PI3K and PKB/Akt activities in Vero cells was detected when these cells were incubated with trypomastigotes or their isolated membranes. Consistently, we were unable to detect activation of PI3K or PKB/Akt activities in host cells during epimastigote (noninfective) membrane-host cell interaction. Infection of transiently transfected cells containing an inactive mutant PKB showed a significant inhibition of invasion compared with the active mutant-transfected cells. T. cruzi PI3K-like activity was also required in host cell invasion since treatment of trypomastigotes with PI3K inhibitors prior to infection reduced parasite entry. Taken together, these results indicate that PI3K and PKB/Akt activation in parasites, as in host cells induced by T. cruzi, is an early invasion signal required for successful trypomastigote internalization.  相似文献   

14.
Endocytosis is a multistep process engaged in extracellular molecules internalization. Several proteins including the Rab GTPases family coordinate the endocytic pathway. The small GTPase Rab7 is present in late endosome (LE) compartments being a marker of endosome maturation. The Rab interacting lysosomal protein (RILP) is a downstream effector of Rab7 that recruits the functional dynein/dynactin motor complex to late compartments. In the present study, we have found Rab24 as a component of the endosome‐lysosome degradative pathway. Rab24 is an atypical protein of the Rab GTPase family, which has been attributed a function in vesicle trafficking and autophagosome maturation. Using a model of transiently expressed proteins in K562 cells, we found that Rab24 co‐localizes in vesicular structures labeled with Rab7 and LAMP1. Moreover, using a dominant negative mutant of Rab24 or a siRNA‐Rab24 we showed that the distribution of Rab7 in vesicles depends on a functional Rab24 to allow DQ‐BSA protein degradation. Additionally, by immunoprecipitation and pull down assays, we have demonstrated that Rab24 interacts with Rab7 and RILP. Interestingly, overexpression of the Vps41 subunit from the homotypic fusion and protein‐sorting (HOPS) complex hampered the co‐localization of Rab24 with RILP or with the lysosomal GTPase Arl8b, suggesting that Vps41 would affect the Rab24/RILP association. In summary, our data strongly support the hypothesis that Rab24 forms a complex with Rab7 and RILP on the membranes of late compartments. Our work provides new insights into the molecular function of Rab24 in the last steps of the endosomal degradative pathway.   相似文献   

15.
Enveloped viruses often enter cells via endocytosis; however, specific endocytic trafficking pathway(s) for many viruses have not been determined. Here we demonstrate, through the use of dominant-negative Rab5 and Rab7, that influenza virus (Influenza A/WSN/33 (H1N1) and A/X-31 (H3N2)) requires both early and late endosomes for entry and subsequent infection in HeLa cells. Time-course experiments, monitoring viral ribonucleoprotein colocalization with endosomal markers, indicated that influenza exhibits a conventional endocytic uptake pattern – reaching early endosomes after approximately 10 min, and late endosomes after 40 min. Detection with conformation-specific hemagglutinin antibodies indicated that hemagglutinin did not reach a fusion-competent form until the virus had trafficked beyond early endosomes. We also examined two other enveloped viruses that are also pH-dependent for entry – Semliki Forest virus and vesicular stomatitis virus. In contrast to influenza virus, infection with both Semliki Forest virus and vesicular stomatitis virus was inhibited only by the expression of dominant negative Rab5 and not by dominant negative Rab7, indicating an independence of late endosome function for infection by these viruses. As a whole, these data provide a definitive characterization of influenza virus endocytic trafficking and show differential requirements for endocytic trafficking between pH-dependent enveloped viruses .  相似文献   

16.
Many mycobacteria are intramacrophage pathogens that reside within nonacidified phagosomes that fuse with early endosomes but do not mature to phagolysosomes. The mechanism by which mycobacteria block this maturation process remains elusive. To gain insight into whether fusion with early endosomes is required for mycobacteria-mediated inhibition of phagosome maturation, we investigated how perturbing the GTPase cycles of Rab5 and Rab7, GTPases that regulate early and late endosome fusion, respectively, would affect phagosome maturation. Retroviral transduction of the constitutively activated forms of both GTPases into primary murine macrophages had no effect on Mycobacterium avium retention in an early endosomal compartment. Interestingly, expression of dominant negative Rab5, Rab5(S34N), but not dominant negative Rab7, resulted in a significant increase in colocalization of M. avium with markers of late endosomes/lysosomes and increased mycobacterial killing. This colocalization was specific to mycobacteria since Rab5(S34N) expressing cells showed diminished trafficking of endocytic tracers to lysosomes. We further demonstrated that maturation of M. avium phagosomes was halted in Rab5(S34N) expressing macrophages supplemented with exogenous iron. These findings suggest that fusion with early endosomes is required for mycobacterial retention in early phagosomal compartments and that an inadequate supply of iron is one factor in mycobacteria's inability to prevent the normal maturation process in Rab5(S34N)-expressing macrophages.  相似文献   

17.
Phagosome maturation follows a defined biochemical program and, in the vast majority of cases, the microbe inside the phagosome is killed and digested. Although, an important number of pathogens, including Mycobacterium tuberculosis, which kills around two million people every year, have acquired the ability to survive, and even replicate by arresting phagosomal maturation. To identify more of the machinery involved in phagocytosis and phagosomal maturation, we investigated the function of Rab10 in engulfment and maturation of inert particles and Mycobacterium bovis bacille Calmette‐Guérin (BCG). We showed that Rab10 association with phagosomes is transient and confocal microscopy revealed detectible levels of Rab10 on phagosomal membranes at very early time‐points, occurring even before Rab5 acquisition. Rab10 recruitment had strong functional consequence, as the knockdown of endogenous Rab10 by RNA interference or overexpression of Rab10 dominant‐negative mutant delayed maturation of phagosomes of IgG‐opsonized latex beads or heat killed‐mycobacteria. These results can be explained, at least in part, by the involvement of Rab10 in recycling of some phagosomal components. More importantly, overexpression of the constitutively active mutant of Rab10 partially rescued live‐Mycobacterium‐containing phagosomes maturation. Indeed, we found that the membrane harbouring Mycobacterium acquired early endosome antigen 1 (EEA‐1), a marker excluded from phagosomes in control cells. Altogether these results indicate that Rab10, acting upstream of Rab5, plays a prominent role in phagolysosome formation and can modulate Mycobacterium‐containing phagosomes maturation.  相似文献   

18.
The protozoan parasite Trypanosoma cruzi has a complex biological cycle that involves vertebrate and invertebrate hosts. In mammals, the infective trypomastigote form of this parasite can invade several cell types by exploiting phagocytic-like or nonphagocytic mechanisms depending on the class of cell involved. Morphological studies showed that when trypomastigotes contact macrophages, they induce the formation of plasma membrane protrusions that differ from the canonical phagocytosis that occurs in the case of noninfective epimastigotes. In contrast, when trypomastigotes infect epithelial or muscle cells, the cell surface is minimally modified, suggesting the induction of a different class of process. Lysosomal-dependent or -independent T. cruzi invasion of host cells are two different models that describe the molecular and cellular events activated during parasite entry into nonphagocytic cells. In this context, we have previously shown that induction of autophagy in host cells before infection favors T. cruzi invasion. Furthermore, we demonstrate that autophagosomes and the autophagosomal protein LC3 are recruited to the T. cruzi entry sites and that the newly formed T. cruzi parasitophorous vacuole has characteristics of an autophagolysosome. This review summarizes the current knowledge of the molecular and cellular mechanisms of T. cruzi invasion in nonphagocytic cells. Based on our findings, we propose a new model in which T. cruzi takes advantage of the upregulation of autophagy during starvation to increase its successful colonization of host cells.  相似文献   

19.
Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20 degrees C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.  相似文献   

20.
Rab4 is an essential regulator of lysosomal trafficking in trypanosomes   总被引:6,自引:0,他引:6  
Rapid endocytosis and recycling of surface proteins are important processes common to most nucleated eukaryotic cells. The best characterized membrane recycling routes are mediated by the small GTPases Rab4 and Rab11, but the precise roles that these pathways play have not been fully elucidated. The protozoan Trypanosoma brucei has a highly developed endocytic system that is similar to that found in metazoans, albeit with an accelerated rate of membrane turnover. We have used this organism to investigate the function of the trypanosome orthologue of Rab4 (TbRAB4) by a combination of RNA interference, microscopy, and quantitative trafficking assays. RNA interference-mediated suppression of TbRAB4 expression inhibited the growth of trypanosomes without affecting receptor-mediated endocytosis or ligand recycling. Ultrastructural analysis indicated a major defect in membrane transport events. The accumulation of fluorescent dextran, a fluid-phase marker, was blocked in cells lacking TbRAB4 protein. Since most fluid-phase markers are transported to the lysosome in T. brucei, the effects of TbRAB4 RNA interference on lysosomal function were investigated. By immunofluorescence, the major lysosomal protein p67 became progressively dispersed in cells lacking the TbRAB4 protein. Pulse-chase analysis demonstrated that initial proteolytic cleavage and glycan processing of p67 were unaffected but that cells failed to accumulate the later p67 proteolyzed products associated with the lysosome. To confirm the role of TbRAB4 in lysosomal trafficking, a constitutively active mutant, TbRAB4QL, was expressed. TbRAB4QL was closely associated with an enlarged multivesicular body that contained p67. In addition, cells expressing TbRAB4QL showed increased fluid-phase uptake when compared with the parental line. Taken together, these data suggest that TbRAB4 is involved in regulation of fluid-phase traffic to the lysosome in T. brucei but not in receptor-mediated endocytosis or recycling. These data have implications for the role of Rab4 in other cell systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号