首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular acidification has been shown to generate action potentials (APs) in several types of neurons. In this study, we investigated the role of acid-sensing ion channels (ASICs) in acid-induced AP generation in brain neurons. ASICs are neuronal Na+ channels that belong to the epithelial Na+ channel/degenerin family and are transiently activated by a rapid drop in extracellular pH. We compared the pharmacological and biophysical properties of acid-induced AP generation with those of ASIC currents in cultured hippocampal neurons. Our results show that acid-induced AP generation in these neurons is essentially due to ASIC activation. We demonstrate for the first time that the probability of inducing APs correlates with current entry through ASICs. We also show that ASIC activation in combination with other excitatory stimuli can either facilitate AP generation or inhibit AP bursts, depending on the conditions. ASIC-mediated generation and modulation of APs can be induced by extracellular pH changes from 7.4 to slightly <7. Such local extracellular pH values may be reached by pH fluctuations due to normal neuronal activity. Furthermore, in the plasma membrane, ASICs are localized in close proximity to voltage-gated Na+ and K+ channels, providing the conditions necessary for the transduction of local pH changes into electrical signals. cellular excitability; neuronal signaling; pH  相似文献   

2.
Hippocampal neurons express subunits of the acid-sensing ion channel (ASIC1 and ASIC2) and exhibit large cation currents that are transiently activated by acidic extracellular solutions. Earlier work indicated that ASIC1 contributed to the current in these neurons and suggested its importance for normal behavior. However, the specific contribution of ASIC1 and ASIC2 subunits to acid-evoked currents in hippocampal neurons remained uncertain. To decipher the individual role of the ASIC subunits, we studied H(+)-gated currents in neurons from both ASIC1 and ASIC2 null mice. We found that much of the current was produced by ASIC1a/2a heteromultimeric channels, and individual subunits made distinct contributions. The ASIC1a subunit was key in establishing current amplitude. The ASIC2a subunit had little effect on amplitude but influenced desensitization, recovery from desensitization, pH sensitivity, and the response to modulatory agents. We also found heterogeneity in the contribution of ASIC2 throughout the neuronal population, with individual neurons expressing both ASIC1a homomultimeric and ASIC1a/2a heteromultimeric channels. Studies of neurons heterozygous for disrupted ASIC alleles indicated that the properties of H(+)-gated currents are dependent on the proportion of the individual subunits. These findings indicate that the absolute and relative amounts of ASIC subunits determine the amplitude and properties of hippocampal H(+)-gated currents and therefore may contribute to normal physiology and pathophysiology.  相似文献   

3.
Proton-gated channels of the ASIC family are widely distributed in the mammalian brain, and, according to the recent data, participate in synaptic transmission. However, ASIC-mediated currents are small, and special efforts are required to detect them. This prompts the search for endogenous ASIC ligands, which can activate or potentiate these channels. A recent finding of the potentiating action of histamine on recombinant homomeric ASIC1a has directed attention to amine-containing compounds. In the present study, we have analyzed the action of histamine, tyramine, and tryptamine on native and recombinant ASICs. None of the compounds caused potentiation of native ASICs in hippocampal interneurons. Furthermore, when applied simultaneously with channel activation, they produced voltage-dependent inhibition. Experiments on recombinant ASIC1a and ASIC2a allowed for an interpretation of these findings. Histamine and tyramine were found to be inactive on the ASIC2a, while tryptamine demonstrated weak inhibition. However, they induce both voltage-dependent inhibition of open channels and voltage-independent potentiation of closed/desensitized channels on the ASIC1a. We suggest that the presence of an ASIC2a subunit in heteromeric native ASICs prevents potentiation but not inhibition. As a result, the inhibitory action of histamine, which is masked by a strong potentiating effect on the ASIC1a homomers, becomes pronounced in experiments with native ASICs.  相似文献   

4.
Acid-sensing ion channels (ASICs) are sodium channels gated by extracellular protons. The recent crystallization of ASIC1a identified potential binding sites for Cl in the extracellular domain that are highly conserved between ASIC isoforms. However, the significance of Cl binding is unknown. We investigated the effect of Cl substitution on heterologously expressed ASIC1a current and H+-gated currents from hippocampal neurons recorded by whole-cell patch clamp. Replacement of extracellular Cl with the impermeable and inert anion methanesulfonate (MeSO3) caused ASIC1a currents to desensitize at a faster rate and attenuated tachyphylaxis. However, peak current amplitude, pH sensitivity, and selectivity were unchanged. Other anions, including Br, I, and thiocyanate, also altered the kinetics of desensitization and tachyphylaxis. Mutation of the residues that form the Cl-binding site in ASIC1a abolished the modulatory effects of anions. The results of anion substitution on native ASIC channels in hippocampal neurons mirrored those in heterologously expressed ASIC1a and altered acid-induced neuronal death. Anion modulation of ASICs provides new insight into channel gating and may prove important in pathological brain conditions associated with changes in pH and Cl.  相似文献   

5.
Acid-sensing ion channels (ASICs) are neuronal Na+-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.  相似文献   

6.
Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide), suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function.  相似文献   

7.
As an H(+)-gated subgroup of the degenerin/epithelial Na(+) channel family, acid-sensing ion channels (ASICs) were reported to be involved in various physiological and pathological processes in neurons. However, little is known about the role of ASICs in the function of dendritic cells (DCs). In this study, we investigated the expression of ASICs in mouse bone marrow-derived DCs and their possible role in the function of DCs. We found that ASIC1, ASIC2, and ASIC3 are expressed in DCs at the mRNA and protein levels, and extracellular acid can evoke ASIC-like currents in DCs. We also demonstrated that acidosis upregulated the expression of CD11c, MHC class II, CD80, and CD86 and enhanced the Ag-presenting ability of DCs via ASICs. Moreover, the effect of acidosis on DCs can be abolished by the nonsteroidal anti-inflammatory drugs ibuprofen and diclofenac. These results suggest that ASICs are involved in the acidosis-mediated effect on DC function.  相似文献   

8.
ASIC2a (BNaC1 or MDEG) is distributed throughout the nervous system and potentially involved in mechanosensation, hearing, vision, and taste functions. However, pharmacological properties of ASIC2 homomers including the mechanism of inhibition by amiloride remain unclear. In this study, we describe the properties of hASIC2a stably expressed in Ltk(-) cells, the first reported stable cell line expressing any ASICs subunit, by standard whole cell voltage clamp method. In response to pH 4.0, at -80 mV, hASIC2a cells exhibited rapidly activating fast transient inward current ( approximately 100 pA/pF) that was followed by a sustained current ( approximately 13 pA/pF). In contrast, untransfected Ltk(-) cells showed only a very small rapidly activating non-inactivating inward current ( approximately 4 pA/pF). The magnitude of hASIC2a transient current was pH dependent with pH(50) values for activation and inactivation of approximately 4.2 and approximately 5.5, respectively. Ion substitution experiments revealed the following rank order of permeability: Na(+)>K(+)>Ca(2+) for the transient current. Amiloride reversibly inhibited the pH 4.0 evoked transient current with IC(50) values of approximately 20 microM at both -30 and -80 mV holding potentials, indicating that the interactions are voltage independent when nearly all amiloride is protonated. Amiloride (100 microM) did not inhibit ASIC2a transient current when pre-applied in pH 7.4 and pH 4.0 currents obtained in absence of amiloride, but it did inhibit currents when co-applied at pH 4.0 suggesting open channel blockade. In summary, ASIC2a stable cell line serves as a useful model system to study the pharmacological properties of ASIC2a currents, potentially contributing to pH-evoked responses in cells of the dorsal root ganglion and the central nervous system.  相似文献   

9.
Stomatin modulates gating of acid-sensing ion channels   总被引:3,自引:0,他引:3  
Acid-sensing ion channels (ASICs) are H(+)-gated members of the degenerin/epithelial Na(+) channel (DEG/ENaC) family in vertebrate neurons. Several ASICs are expressed in sensory neurons, where they play a role in responses to nociceptive, taste, and mechanical stimuli; others are expressed in central neurons, where they participate in synaptic plasticity and some forms of learning. Stomatin is an integral membrane protein found in lipid/protein-rich microdomains, and it is believed to regulate the function of ion channels and transporters. In Caenorhabditis elegans, stomatin homologs interact with DEG/ENaC channels, which together are necessary for normal mechanosensation in the worm. Therefore, we asked whether stomatin interacts with and modulates the function of ASICs. We found that stomatin co-immunoprecipitated and co-localized with ASIC proteins in heterologous cells. Moreover, stomatin altered the function of ASIC channels. Stomatin potently reduced acid-evoked currents generated by ASIC3 without changing steady state protein levels or the amount of ASIC3 expressed at the cell surface. In contrast, stomatin accelerated the desensitization rate of ASIC2 and heteromeric ASICs, whereas current amplitude was unaffected. These data suggest that stomatin binds to and alters the gating of ASICs. Our findings indicate that modulation of DEG/ENaC channels by stomatin-like proteins is evolutionarily conserved and may have important implications for mammalian nociception and mechanosensation.  相似文献   

10.
Acid-sensing ion channels (ASICs) are emerging as fundamental players in the regulation of neural plasticity and in pathological conditions. Here we showed that lead (Pb2+), a well known neurotoxic metal ion, reversibly and concentration-dependently inhibited ASIC currents in the acutely dissociated spinal dorsal horn and hippocampal CA1 neurons of rats. In vitro expression of ASIC subunits in combination demonstrated that both ASIC1 and -3 subunits were sensitive to Pb2+. Mechanistically, Pb2+ reduced the pH sensitivity of ASICs independent of membrane voltage change. Moreover, Pb2+ inhibited the ASIC-mediated membrane depolarization and the elevation of intracellular Ca2+ concentration. In addition, we compared the effect of Pb2+ with that of Ca2+ or amiloride to explore the possible interactions of Pb2+ and Ca2+ in regulating ASICs, and we found that Pb2+ inhibited ASIC currents independent of the amiloride/Ca2+ blockade. Because ASIC1b and -3 subunits are mainly expressed in peripheral neurons, our data identified ASIC1a-containing Ca2+-permeable ASIC as a novel central target of Pb2+ action, which may contribute to Pb2+ neurotoxicity.  相似文献   

11.
The role of extracellular acidosis in inflammatory airway diseases is not well known. One consequence of tissue acidification is the stimulation of sensory nerves via the polymodal H(+)-gated transmembrane channels ASICs and TRPV1 receptor. The present study investigated the effect of acidosis on airway basal tone and responsiveness in the guinea pig. Acidosis (pH 6.8, 10 min, 37 degrees C) significantly decreased the basal tone of tracheal rings (p<0.01 vs. paired control). Moreover, pH fall raised the maximal contraction of tracheal rings to acetylcholine (p<0.05 vs. paired control). The pH-induced relaxation of airway basal tone was inhibited by pretreatments with ASIC1a or ASIC3/ASIC2a inhibitors (0.5 mM ibuprofen, 0.1 mM gadolinium), nitric oxide synthase inhibitor (1 mM L-NAME), and guanylate cyclase inhibitor (1 microM ODQ). In contrast, the pH-induced relaxation of airway basal tone was not modified by epithelium removal or pretreatments with a TRPV1 antagonist (1 microM capsazepine), a combination of NK(1,2,3) receptor antagonists (0.1 microM each), a blocker of voltage-sensitive Na(+) channels (1 microM tetrodotoxin), a cyclooxygenase inhibitor with no activity on ASICs (1 microM indomethacin) or ASIC3 and ASIC3/ASIC2b inhibitors (10 nM diclofenac, 1 microM aspirin). Furthermore, acid-induced hyperresponsiveness to acetylcholine was inhibited by epithelium removal, capsazepine, NK(1,2,3) receptor antagonists, tetrodotoxin, amiloride, ibuprofen and diclofenac. In summary, the initial pH-induced airway relaxation seems to be independent of sensory nerves, suggesting a regulation of airway basal tone mediated by smooth muscle ASICs. Conversely, the pH-induced hyperresponsiveness involves sensory nerves-dependent ASICs and TRPV1, and an unknown epithelial component in response to acidosis.  相似文献   

12.
Yu Y  Chen Z  Li WG  Cao H  Feng EG  Yu F  Liu H  Jiang H  Xu TL 《Neuron》2010,68(1):61-72
Acid-sensing ion channels (ASICs) have long been considered as extracellular proton (H(+))-gated cation channels, and peripheral ASIC3 channels seem to be a natural sensor of acidic pain. Here, we report the identification of a nonproton sensor on ASIC3. We show first that 2-guanidine-4-methylquinazoline (GMQ) causes persistent ASIC3 channel activation at the normal pH. Using GMQ as a probe and combining mutagenesis and covalent modification analysis, we then uncovered a ligand sensor lined by residues around E423 and E79 of the extracellular "palm" domain of the ASIC3 channel that is crucial for activation by nonproton activators. Furthermore, we show that GMQ activates sensory neurons and causes pain-related behaviors in an ASIC3-dependent manner, indicating the functional significance of ASIC activation by nonproton ligands. Thus, natural ligands beyond protons may activate ASICs under physiological and pathological conditions through the nonproton ligand sensor, serving for channel activation independent of abrupt and marked acidosis.  相似文献   

13.
14.
Acid sensing ion channels (ASICs), Ca2+ and voltage-activated potassium channels (BK) are widely present throughout the central nervous system. Previous studies have shown that when expressed together in heterologous cells, ASICs inhibit BK channels, and this inhibition is relieved by acidic extracellular pH. We hypothesized that ASIC and BK channels might interact in neurons, and that ASICs may regulate BK channel activity. We found that ASICs inhibited BK currents in cultured wild-type cortical neurons, but not in ASIC1a/2/3 triple knockout neurons. The inhibition in the wild-type was partially relieved by a drop in extracellular pH to 6. To test the consequences of ASIC-BK interaction for neuronal excitability, we compared action potential firing in cultured cortical neurons from wild-type and ASIC1a/2/3 null mice. We found that in the knockout, action potentials were narrow and exhibited increased after-hyperpolarization. Moreover, the excitability of these neurons was significantly increased. These findings are consistent with increased BK channel activity in the neurons from ASIC1a/2/3 null mice. Our data suggest that ASICs can act as endogenous pH-dependent inhibitors of BK channels, and thereby can reduce neuronal excitability.  相似文献   

15.
Acid-sensing ion channels (ASICs) are modulated by various classes of ligands, including the recently described hydrophobic monoamines, which inhibit and potentiate ASICs in a subunit-specific manner. In particular, memantine inhibits ASIC1a and potentiates ASIC2a homomers. The aim of the present work was to characterize action mechanism of memantine on recombinant ASIC1a expressed in CHO (Chinese hamster ovary) cells. We have demonstrated that effect of memantine on ASIC1a strongly depends on membrane voltage, conditioning pH value and application protocol. When applied simultaneously with activating acidification at hyperpolarized voltages, memantine caused the strongest inhibition. Surprisingly, application of memantine between ASIC1a activations at zero voltage caused significant potentiation. Analysis of the data suggests that memantine produces two separate effects, voltage-dependent open-channel block and shift of steady-state desensitization curve to more acidic values. Putative binding sites are discussed based on the computer docking of memantine to the acidic pocket and the pore region.  相似文献   

16.
ASIC1a is a neuronal sodium channel activated by external H+ ions. To date, all the characterization of ASIC1a has been conducted applying long H+ stimuli lasting several seconds. Such experimental protocols weaken and even silence ASIC1a currents to repetitive stimulation. In this work, we examined ASIC1a currents by methods that use rapid application and removal of H+. We found that brief H+ stimuli, <100 ms, even if applied at high frequency, prevent desensitization thereby generate full and steady peak currents of human ASIC1a. Kinetic analysis of recovery from desensitization of hASIC1a revealed two desensitized states: short- and long-lasting with time constants of τDs ≤0.5 and τDl = 229 s, while in chicken ASIC1a the two desensitized states have similar values τD 4.5 s. It is the large difference in stability of the two desensitized states that makes hASIC1a desensitization more pronounced and complex than in cASIC1a. Furthermore, recovery from desensitization was unrelated to cytosolic variations in pH, ATP, PIP2, or redox state but was dependent on the hydrophobicity of key residues in the first transmembrane segment (TM1). In conclusion, brief H+-stimuli maintain steady the magnitude of peak currents thereby the ASIC1a channel is well poised to partake in high frequency signals in the brain.  相似文献   

17.
Acid-sensing ion channels (ASICs) are Na+ channels activated by changes in pH within the peripheral and central nervous systems. Several different isoforms of ASICs combine to form trimeric channels, and their properties are determined by their subunit composition. ASIC2 subunits are widely expressed throughout the brain, where they heteromultimerize with their partnering subunit, ASIC1a. However, ASIC2 contributes little to the pH sensitivity of the channels, and so its function is not well understood. We found that ASIC2 increased cell surface levels of the channel when it is coexpressed with ASIC1a, and genetic deletion of ASIC2 reduced acid-evoked current amplitude in mouse hippocampal neurons. Additionally, ASIC2a interacted with the neuronal synaptic scaffolding protein PSD-95, and PSD-95 reduced cell surface expression and current amplitude in ASICs that contain ASIC2a. Overexpression of PSD-95 also reduced acid-evoked current amplitude in hippocampal neurons. This result was dependent upon ASIC2 since the effect of PSD-95 was abolished in ASIC2−/− neurons. These results lend support to an emerging role of ASIC2 in the targeting of ASICs to surface membranes, and allows for interaction with PSD-95 to regulate these processes.  相似文献   

18.
Acidosis is a common feature of brain in acute neurological injury, particularly in ischemia where low pH has been assumed to play an important role in the pathological process. However, the cellular and molecular mechanisms underlying acidosis-induced injury remain unclear. Recent studies have demonstrated that activation of Ca2+-permeable acid-sensing ion channels (ASIC1a) is largely responsible for acidosis-mediated, glutamate receptor-independent, neuronal injury. In cultured mouse cortical neurons, lowering extracellular pH to the level commonly seen in ischemic brain activates amiloride-sensitive ASIC currents. In the majority of these neurons, ASICs are permeable to Ca2+, and an activation of these channels induces increases in the concentration of intracellular Ca2+ ([Ca2+]i). Activation of ASICs with resultant [Ca2+]i loading induces time-dependent neuronal injury occurring in the presence of the blockers for voltage-gated Ca2+ channels and the glutamate receptors. This acid-induced injury is, however, inhibited by the blockers of ASICs, and by reducing [Ca2+]o. In focal ischemia, intracerebroventricular administration of ASIC1a blockers, or knockout of the ASIC1a gene protects brain from injury and does so more potently than glutamate antagonism. Furthermore, pharmacological blockade of ASICs has up to a 5 h therapeutic time window, far beyond that of glutamate antagonists. Thus, targeting the Ca2+-permeable acid-sensing ion channels may prove to be a novel neuroprotective strategy for stroke patients.  相似文献   

19.
Acid-sensing ion channels (ASICs) have been implicated in a wide variety of physiological functions. We have used a rat dorsal root ganglion cDNA library in a yeast two-hybrid assay to identify sensory neuron proteins that interact with ASICs. We found that annexin II light chain p11 physically interacts with the N terminus of ASIC1a, but not other ASIC isoforms. Immunoprecipitation studies confirmed an interaction between p11 and ASIC1 in rat dorsal root ganglion neurons in vivo. Coexpression of p11 and ASIC1a in CHO-K1 cells led to a 2-fold increase in expression of the ion channel at the cell membrane as determined by membrane-associated immunoreactivity and cell-surface biotinylation. Consistent with these findings, peak ASIC1a currents in transfected CHO-K1 cells were up-regulated 2-fold in the presence of p11, whereas ASIC3-mediated currents were unaffected by p11 expression. Neither the pH dependence of activation nor the rates of desensitization were altered by p11, suggesting that its primary role in regulating ASIC1a activity is to enhance cell-surface expression of ASIC1a. These data demonstrate that p11, already known to traffic members of the voltage-gated sodium and potassium channel families as well as transient receptor potential and chloride channels, also plays a selective role in enhancing ASIC1a functional expression.  相似文献   

20.
Zn2+ and H+ are coactivators of acid-sensing ion channels.   总被引:4,自引:0,他引:4  
Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular protons. They are expressed in sensory neurons, where they are thought to be involved in pain perception associated with tissue acidosis. They are also expressed in brain. A number of brain regions, like the hippocampus, contain large amounts of chelatable vesicular Zn(2+). This paper shows that Zn(2+) potentiates the acid activation of homomeric and heteromeric ASIC2a-containing channels (i.e. ASIC2a, ASIC1a+2a, ASIC2a+3), but not of homomeric ASIC1a and ASIC3. The EC(50) for Zn(2+) potentiation is 120 and 111 microm for the ASIC2a and ASIC1a+2a current, respectively. Zn(2+) shifts the pH dependence of activation of the ASIC1a+2a current from a pH(0.5) of 5.5 to 6.0. Systematic mutagenesis of the 10 extracellular histidines of ASIC2a leads to the identification of two residues (His-162 and His-339) that are essential for the Zn(2+) potentiating effect. Mutation of another histidine residue, His-72, abolishes the pH sensitivity of ASIC2a. This residue, which is located just after the first transmembrane domain, seems to be an essential component of the extracellular pH sensor of ASIC2a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号