首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrins are modular (alphabeta) heterodimeric proteins that mediate cell adhesion and convey signals across the plasma membrane. Interdomain motions play a key role in signal transduction by propagating structural changes through the molecule, thus controlling the activation state and adhesive properties of the integrin. We expressed a soluble fragment of the human integrin beta2 subunit comprising the plexin-semaphorin-integrin domain (PSI)/hybrid domain/I-EGF1 fragment and present its crystal structure at 1.8-A resolution. The structure reveals an elongated molecule with a rigid architecture stabilized by nine disulfide bridges. The PSI domain is located centrally and participates in the formation of extended interfaces with the hybrid domain and I-EGF1 domains, respectively. The hybrid domain/PSI interface involves the burial of an Arg residue, and contacts between PSI and I-EGF1 are mainly mediated by well conserved Arg and Trp residues. Conservation of key interacting residues across the various integrin beta subunits sequences suggests that our structure represents a good model for the entire integrin family. Superposition with the integrin beta3 receptor in its bent conformation suggests that an articulation point is present at the linkage between its I-EGF1 and I-EGF2 modules and underlines the importance of this region for the control of integrin-mediated cell adhesion.  相似文献   

2.
Integrins mediate cell adhesion in response to activation signals that trigger conformational changes within their ectodomain. It is thought that a compact bent conformation of the molecule represents its physiological low affinity state and extended conformations its active state. We have determined the structure of two integrin fragments of the beta2 subunit. The first structure, consisting of the plexin-semaphorin-integrin domain, hybrid, integrin-epidermal growth factor 1 (I-EGF1), and I-EGF2 domains (PHE2), showed an L-shaped conformation with the bend located between the I-EGF1 and I-EGF2 domains. The second structure, which includes, in addition, the I-EGF3 domain, showed an extended conformation. The major reorientation of I-EGF2 with respect to the other domains in the two structures is accompanied by a change of torsion angle of the disulfide bond between Cys(461)-Cys(492) by 180 degrees and the conversion of a short alpha-helix (residues Ser(468)-Cys(475)) into a flexible coil. Based on the PHE2 structure, we introduced a disulfide bond between the plexin-semaphorin-integrin domain and I-EGF2 domains in the beta2 subunit. The resultant alphaLbeta2 integrin (leukocyte function-associated antigen-1) variant was locked in a bent state and could not be detected with the monoclonal antibody KIM127 in Mg(2+)/EGTA. However, it retained the binding activity to ICAM-1. These results provide a structural hypothesis for our understanding of the transition between the resting and active states of leukocyte function-associated antigen-1.  相似文献   

3.
The membrane-distal headpiece of integrins has evolved to specifically bind large extracellular protein ligands, but the molecular architecture of the resulting complexes has not been determined. We used molecular electron microscopy to determine the three-dimensional structure of the ligand-binding headpiece of integrin alpha5beta1 complexed with fragments of its physiological ligand fibronectin. The density map for the unliganded alpha5beta1 headpiece shows a 'closed' conformation similar to that seen in the alphaVbeta3 crystal structure. By contrast, binding to fibronectin induces an 'open' conformation with a dramatic, approximately 80 degrees change in the angle of the hybrid domain of the beta subunit relative to its I-like domain. The fibronectin fragment binds to the interface between the beta-propeller and I-like domains in the integrin headpiece through the RGD-containing module 10, but direct contact of the synergy-region-containing module 9 to integrin is not evident. This finding is corroborated by kinetic analysis of real-time binding data, which shows that the synergy site greatly enhances k(on) but has little effect on the stability or k(off) of the complex.  相似文献   

4.
Integrin beta subunits contain a highly conserved I-like domain that is known to be important for ligand binding. Unlike integrin I domains, the I-like domain requires integrin alpha and beta subunit association for optimal folding. Pactolus is a novel gene product that is highly homologous to integrin beta subunits but lacks associating alpha subunits [Chen, Y., Garrison, S., Weis, J. J., and Weis, J. H. (1998) J. Biol. Chem. 273, 8711-8718] and a approximately 30 amino acid segment corresponding to the specificity-determining loop (SDL) in the I-like domain. We find that the SDL is responsible for the defects in integrin beta subunit expression and folding in the absence of alpha subunits. When transfected in the absence of alpha subunits into cells, extracellular domains of mutant beta subunits lacking SDL, but not wild-type beta subunits, were well secreted and contained immunoreactive I-like domains. The purified recombinant soluble beta1 subunit with the SDL deletion showed an elongated shape in electron microscopy, consistent with its structure in alphabeta complexes. The SDL segment is not required for formation of alpha5beta1, alpha4beta1, alphaVbeta3, and alpha6beta4 heterodimers, but is essential for fomation of alpha6beta1, alphaVbeta1, and alphaLbeta2 heterodimers, suggesting that usage of subunit interface residues is variable among integrins. The beta1 SDL is required for ligand binding and for the formation of the epitope for the alpha5 monoclonal antibody 16 that maps to loop segments connecting blades 2 and 3 of beta-propeller domain of alpha5, but is not essential for nearby beta-propeller epitopes.  相似文献   

5.
Despite extensive evidence that integrin conformational changes between bent and extended conformations regulate affinity for ligands, an alternative hypothesis has been proposed in which a "deadbolt" can regulate affinity for ligand in the absence of extension. Here, we tested both the deadbolt and the extension models. According to the deadbolt model, a hairpin loop in the beta3 tail domain could act as a deadbolt to restrain the displacement of the beta3 I domain beta6-alpha7 loop and maintain integrin in the low affinity state. We found that mutating or deleting the beta3 tail domain loop has no effect on ligand binding by either alphaIIbbeta 3 or alphaVbeta3 integrins. In contrast, we found that mutations that lock integrins in the bent conformation with disulfide bonds resist inside-out activation induced by cytoplasmic domain mutation. Furthermore, we demonstrated that extension is required for accessibility to fibronectin but not smaller fragments. The data demonstrate that integrin extension is required for ligand binding during integrin inside-out signaling and that the deadbolt does not regulate integrin activation.  相似文献   

6.
We have expressed the beta1B integrin subunit in beta1-deficient GD25 cells to examine beta1B functions without the interference of endogenous beta1A expression. As previously reported [Retta et al., 1998, Mol. Biol. Cell 9, 715-731], the beta1B integrins did not mediate cell adhesion under normal culture conditions, while the presence of 0.3 mM Mn(2+) allowed beta1B integrins to support adhesion. Mn(2+), as well as the small soluble peptide GRGDS, induced a beta1B conformation, which was recognized by the mAb 9EG7, a marker for active or ligand-bound integrins. beta1B integrins were found to localize to a subset of focal contacts in a ligand-independent manner on fibronectin, but not on vitronectin. However, clustering of beta1B did not induce tyrosine phosphorylation of FAK, p130(Cas), or paxillin, as studied by beta1B-mediated adhesion, to fibronectin in the presence of Mn(2+) or to anti-beta1 antibody in DMEM. Induction of ligand-occupied conformation by the GRGDS peptide during the adhesion to anti-beta1 antibody also failed to trigger FAK phosphorylation. Stimulation of tyrosine phosphorylation on FAK, p130(Cas), and paxillin by adhesion via integrin alphaVbeta3 to fibronectin or vitronectin was not disturbed in GD25-beta1B cells compared to the untransfected GD25 cells, nor were any negative effects of beta1B observed on alphaVbeta3-mediated cell attachment, spreading, and actin organization, or on the cell proliferation rate. These results show that the reported negative effects of beta1B on adhesive events do not apply to alphaVbeta3-dependent interactions and suggest that they may specifically act on beta1 integrins.  相似文献   

7.
At least four members of the integrin family of receptors, alphaVbeta1, alphaVbeta3, alphaVbeta6, and alphaVbeta8, have been identified as receptors for foot-and-mouth disease virus (FMDV) in vitro. Our investigators have recently shown that the efficiency of receptor usage appears to be related to the viral serotype and may be influenced by structural differences on the viral surface (H. Duque and B. Baxt, J. Virol. 77:2500-2511, 2003). To further examine these differences, we generated soluble alphaVbeta3 and alphaVbeta6 integrins. cDNA plasmids encoding the individual complete integrin alphaV, beta3, and beta6 subunits were used to amplify sequences encoding the subunits' signal peptide and ectodomain, resulting in subunits lacking transmembrane and cytoplasmic domains. COS-1 cells were transfected with plasmids encoding the soluble alphaV subunit and either the soluble beta3 or beta6 subunit and labeled with [35S]methionine-cysteine. Complete subunit heterodimeric integrins were secreted into the medium, as determined by radioimmunoprecipitation with specific monoclonal and polyclonal antibodies. For the examination of the integrins' biological activities, stable cell lines producing the soluble integrins were generated in HEK 293A cells. In the presence of divalent cations, soluble alphaVbeta6 bound to representatives of type A or O viruses, immobilized on plastic dishes, and significantly inhibited viral replication, as determined by plaque reduction assays. In contrast, soluble alphaVbeta3 was unable to bind to immobilized virus of either serotype; however, virus bound to the immobilized integrin, suggesting that FMDV binding to alphaVbeta3 is a low-affinity interaction. In addition, soluble alphaVbeta3 did not neutralize virus infectivity. Incubation of soluble alphaVbeta6 with labeled type A12 or O1 resulted in a significant inhibition of virus adsorption to BHK cells, while soluble alphaVbeta3 caused a low (20 to 30%), but consistent, inhibition of virus adsorption. Virus incubated with soluble alphaVbeta6 had a lower sedimentation rate than native virus on sucrose density gradients, but the particles retained all of their structural proteins and still contained bound integrin and, therefore, were not exhibiting characteristics of a picornavirus A particle.  相似文献   

8.
Integrins are alphabeta heterodimeric cell surface receptors that mediate transmembrane signaling by binding extracellular and cytoplasmic ligands. The ectodomain of integrin alphaVbeta3 crystallizes in a bent, genuflexed conformation considered to be inactive (unable to bind physiological ligands in solution) unless it is fully extended by activating stimuli. We generated a stable, soluble complex of the Mn(2+)-bound alphaVbeta3 ectodomain with a fragment of fibronectin (FN) containing type III domains 7 to 10 and the EDB domain (FN7-EDB-10). Transmission electron microscopy and single particle image analysis were used to determine the three-dimensional structure of this complex. Most alphaVbeta3 particles, whether unliganded or FN-bound, displayed compact, triangular shapes. A difference map comparing ligand-free and FN-bound alphaVbeta3 revealed density that could accommodate the RGD-containing FN10 in proximity to the ligand-binding site of beta3, with FN9 just adjacent to the synergy site binding region of alphaV. We conclude that the ectodomain of alphaVbeta3 manifests a bent conformation that is capable of stably binding a physiological ligand in solution.  相似文献   

9.
Regulation of integrin affinity (activation) is essential for metazoan development and for many pathological processes. Binding of the talin phosphotyrosine-binding (PTB) domain to integrin beta subunit cytoplasmic domains (tails) causes activation, whereas numerous other PTB-domain-containing proteins bind integrins without activating them. Here we define the structure of a complex between talin and the membrane-proximal integrin beta3 cytoplasmic domain and identify specific contacts between talin and the integrin tail required for activation. We used structure-based mutagenesis to engineer talin and beta3 variants that interact with comparable affinity to the wild-type proteins but inhibit integrin activation by competing with endogenous talin. These results reveal the structural basis of talin's unique ability to activate integrins, identify an interaction that could aid in the design of therapeutics to block integrin activation, and enable engineering of cells with defects in the activation of multiple classes of integrins.  相似文献   

10.
The affinity of integrin-ligand interaction is regulated extracellularly by divalent cations and intracellularly by inside-out signaling. We report here that the extracellular, membrane-proximal alpha/beta stalk interactions not only regulate cation-induced integrin activation but also play critical roles in propagating inside-out signaling. Two closely related integrins, alphaIIbbeta3 and alphaVbeta3, share high structural homology and bind to similar ligands in an RGD-dependent manner. Despite these structural and functional similarities, they exhibit distinct responses to Mn(2+). Although alphaVbeta3 showed robust ligand binding in the presence of Mn(2+), alphaIIbbeta3 showed a limited increase but failed to achieve full activation. Swapping alpha stalk regions between alphaIIb and alphaV revealed that the alpha stalk, but not the ligand-binding head region, was responsible for the difference. A series of alphaIIb/alphaV domain-swapping chimeras were constructed to identify the responsible domain. Surprisingly, the minimum component required to render alphaIIbbeta3 susceptible to Mn(2+) activation was the alphaV calf-2 domain, which does not contain any divalent cation-binding sites. The calf-2 domain makes interface with beta epidermal growth factor 4 and beta tail domain in three-dimensional structure. The effect of calf-2 domain swapping was partially reproduced by mutating the specific amino acid residues in the calf-2/epidermal growth factor 4-beta tail domain interface. When this interface was constrained by an artificially introduced disulfide bridge, the Mn(2+)-induced alphaVbeta3-fibrinogen interaction was significantly impaired. Notably, a similar disulfide bridge completely abrogated fibrinogen binding to alphaIIbbeta3 when alphaIIbbeta3 was activated by cytoplasmic tail truncation to mimic inside-out signaling. Thus, disruption/formation of the membrane-proximal alpha/beta stalk interface may act as an on/off switch that triggers integrin-mediated bidirectional signaling.  相似文献   

11.
The response of smooth muscle cells to IGF-I requires ligand occupancy of the alphaVbeta3 integrin. We have shown that vitronectin (Vn) is required for IGF-I-stimulated migration or proliferation, whereas the anti-alphaVbeta3 monoclonal antibody, LM609, which inhibits ligand binding, blocks responsiveness of these cells to IGF-I. The amino acids 177-184 ((177)CYDMKTTC(184)) within the extracellular domain of beta3 have been proposed to confer the ligand specificity of alphaVbeta3; therefore, we hypothesized that ligand binding to the 177-184 cysteine loop of beta3 may be an important regulator of the cross talk between alphaVbeta3 and IGF-I in SMCs. Here we demonstrate that blocking ligand binding to a specific amino acid sequence within the beta3 subunit of alphaVbeta3 (i.e. amino acids 177-184) blocked Vn binding to the beta3 subunit of alphaVbeta3 and correspondingly beta3 phosphorylation was decreased. In the presence of this antibody, IGF-I-stimulated Shc phosphorylation and ERK 1/2 activation were impaired, and this was associated with an inhibition in the ability of IGF-I to stimulate an increase in migration or proliferation. Furthermore, in cells expressing a mutated form of beta3 in which three critical residues within the 177-184 sequence were altered beta3 phosphorylation was decreased. This was associated with a loss of IGF-I-stimulated Shc phosphorylation and impaired smooth muscle cell proliferation in response to IGF-I. In conclusion, we have demonstrated that the 177-184 sequence of beta3 is necessary for Vn binding to alphaVbeta3 and that ligand occupancy of this site is necessary for an optimal response of smooth muscle cells to IGF-I.  相似文献   

12.
The influence of alphaVbeta3 integrin on MT1-MMP functionality was studied in human breast cancer cells of differing beta3 integrin status. Overexpression of beta3 integrin caused increased cell surface expression of alphaV integrin and increased cellular adhesion to extracellular matrix (ECM) substrates in BT-549, MDA-MB-231 and MCF-7 cells. beta3 integrin expression also enhanced the migration of breast cancer cells on ECM substrates and enhanced collagen gel contraction. In vivo, alphaVbeta3 cooperated with MT1-MMP to increase the growth of MCF-7 cells after orthotopic inoculation in immunocompromised mice, but had no influence on in vitro proliferation. Despite these stimulatory effects, overexpression of beta3 integrin suppressed the type I collagen (Col I) induced MMP-2 activation in all breast cancer cell lines analyzed. This was also evident in extracts from the MCF-7 tumors in vivo, where MMP-2 activation was stimulated by MT1-MMP transfection, but attenuated with beta3 integrin expression. Although our studies confirm important biological effects of alphaVbeta3 integrin on enhancing cell adhesion and migration, ECM remodeling and tumor growth, beta3 integrin caused reduced MMP-2 activation in response to Col I in vitro, which appears to be physiologically relevant, as it was also seen in tumor xenografts in vivo. The reduction of MMP-2 activation (and thus MT1-MMP activity) by alphaVbeta3 in response to Col I may be important in scenarios where cells which are activated for matrix degradation need to preserve some pericellular collagen, perhaps as a substrate for cell adhesion and migration, thus maintaining a balanced level of proteolysis required for efficient tumor growth.  相似文献   

13.
Integrin αVβ3 plays an important role in regulating cellular activities and in human diseases. Although the structure of αVβ3 has been studied by crystallography and electron microscopy, the detailed activation mechanism of integrin αVβ3 induced by fibronectin remains unclear. In this study, we investigated the conformational and dynamical motion changes of Mn2+‐bound integrin αVβ3 by binding to fibronectin with molecular dynamics simulations. Results showed that fibronectin binding to integrin αVβ3 caused the changes of the conformational flexibility of αVβ3 domains, the essential mode of motion for the domains of αV subunit and β3 subunit and the degrees of correlated motion of residues between the domains of αV subunit and β3 subunit of integrin αVβ3. The angle of Propeller domain with respect to the Calf‐2 domain of αV subunit and the angle of Hybrid domain with respect to βA domain of β3 subunit significantly increased when integrin αVβ3 was bound to fibronectin. These changes could result in the conformational change tendency of αVβ3 from a bend conformation to an extended conformation and lead to the open swing of Hybrid domain relative to βA domain of β3 subunit, which have demonstrated their importance for αVβ3 activation. Fibronectin binding to integrin αVβ3 significantly decreased the relative position of α1 helix to βA domain and that to metal ion‐dependent adhesion site, stabilized Mn2+ ions binding in integrin αVβ3 and changed fibronectin conformation, which are important for αVβ3 activation. Results from this study provide important molecular insight into the “outside‐in” activation mechanism of integrin αVβ3 by binding to fibronectin.  相似文献   

14.
The red cell intercellular adhesion molecule-4 (ICAM-4) binds to different members of the integrin receptor families. To better define the ICAM-4 integrin receptor specificity, cell transfectants individually expressing various integrins were used to demonstrate that alphaLbeta2, alphaMbeta2, and alphaIIbbeta3 (activated) bind specifically and dose dependently to the recombinant ICAM-4-Fc protein. We also show that cell surface ICAM-4 interacts with the cell surface alphaVbeta3 integrin. In addition, using a alpha4beta1 cell transfectant and beta2 integrin-deficient LAD cells, we show here that ICAM-4 failed to interact with alpha4beta1 even after alpha4beta1 activation by phorbol ester or with the monoclonal antibody TS2/16 (+ Mn2+). ICAM-4 amino acids that are critical for alphaIIbbeta3 and alphaVbeta3 interaction were identified by domain deletion analysis, site-directed mutagenesis and synthetic peptide inhibition. Our results provide evidence that the beta3 integrin binding sites encompass the first and second Ig-like domains of ICAM-4. However, while the alphaIIbbeta3 contact site comprises the ABED face of domain D1 with an extension in the C'-E loop of domain D2, the alphaVbeta3 contact site comprises residues on both faces of D1 and in the C'-E loop of D2. These data, together with our previous results, demonstrate that different integrins bind to different but partly overlapping sites on ICAM-4, and that ICAM-4 may accommodate multiple integrin receptors present on leukocytes, platelets and endothelial cells.  相似文献   

15.
Wang W  Fu G  Luo BH 《Biochemistry》2010,49(47):10158-10165
Integrin conformational changes mediate integrin activation and signaling triggered by intracellular molecules or extracellular ligands. Even though it is known that αβ transmembrane domain separation is required for integrin signaling, it is still not clear how this signal is transmitted from the transmembrane domain through two long extracellular legs to the ligand-binding headpiece. This study addresses whether the separation of the membrane-proximal extracellular αβ legs is critical for integrin activation and outside-in signaling. Using a disulfide bond to restrict dissociation of the α-subunit Calf-2 domain and β-subunit I-EGF4 domain, we were able to abolish integrin inside-out activation and outside-in signaling. In contrast, disrupting the interface by introducing a glycosylation site into either subunit activated integrins for ligand binding through a global conformational change. Our results suggest that the interface of the Calf-2 domain and the I-EGF4 domain is critical for integrin bidirectional signaling.  相似文献   

16.
Vinogradova O  Velyvis A  Velyviene A  Hu B  Haas T  Plow E  Qin J 《Cell》2002,110(5):587-597
Activation of the ligand binding function of integrin heterodimers requires transmission of an "inside-out" signal from their small intracellular segments to their large extracellular domains. The structure of the cytoplasmic domain of a prototypic integrin alpha(IIb)beta(3) has been solved by NMR and reveals multiple hydrophobic and electrostatic contacts within the membrane-proximal helices of its alpha and the beta cytoplasmic tails. The interface interactions are disrupted by point mutations or the cytoskeletal protein talin that are known to activate the receptor. These results provide a structural mechanism by which a handshake between the alpha and the beta cytoplasmic tails restrains the integrin in a resting state and unclasping of this interaction triggers the inside-out conformational signal that leads to receptor activation.  相似文献   

17.
Human fibrillin-1, the major structural protein of connective tissue 10-12 nm microfibrils, contains multiple calcium binding epidermal growth factor-like domains interspersed with transforming growth factor beta-binding protein-like (TB) domains. TB4 contains a flexible RGD loop that mediates cell adhesion via alphaVbeta3 and alpha5beta1 integrins. This study identifies integrin alphaVbeta6 as a novel cellular receptor for fibrillin-1 with a K(d) of approximately 0.45 mum. Analyses of this interaction by surface plasmon resonance and immunocytochemistry reveal different module requirements for alphaVbeta6 activation compared with those of alphaVbeta3, suggesting that a covalent linkage of an N-terminal calcium binding epidermal growth factor-like domain to TB4 can modulate alphaV integrin binding specificity. Furthermore, our data suggest alpha5beta1 is a low affinity fibrillin-1 receptor (K(d) > 1 mum), thus providing a molecular explanation for the different alpha5beta1 distribution patterns seen when human keratinocytes and fibroblasts are plated on recombinant fibrillin fragments versus those derived from the physiological ligand fibronectin. Non-focal contact distribution of alpha5beta1 suggests that its engagement by fibrillin-1 may elicit a lesser degree and/or different type of intracellular signaling compared with that seen with a high affinity ligand.  相似文献   

18.
Integrins are cysteine-rich heterodimeric cell-surface adhesion molecules that alter their affinity for ligands in response to cellular activation. The molecular mechanisms involved in this activation of integrins are not understood. Treatment with the thiol-reducing agent, dithiothreitol, can induce an activation-like state in many integrins suggesting that cysteine-cysteine dithiol bonds are important for the receptor's tertiary structure and may be involved in activation-induced conformational changes. Here we demonstrate that the platelet-specific integrin, alpha(IIb)beta(3), contains an endogenous thiol isomerase activity, predicted from the presence of the tetrapeptide motif, CXXC, in each of the cysteine-rich repeats of the beta(3) polypeptide. This motif comprises the active site in enzymes involved in disulfide exchange reactions, including protein-disulfide isomerase (EC ) and thioredoxin. Intrinsic thiol isomerase activity is also observed in the related integrin, alpha(v)beta(3), which shares a common beta-subunit. Thiol isomerase activity within alpha(IIb)beta(3) is time-dependent and saturable, and is inhibited by the protein-disulfide isomerase inhibitor, bacitracin. Furthermore, this activity is calcium-sensitive and is regulated in the EDTA-stabilized conformation of the integrin. This novel demonstration of an enzymatic activity associated with an integrin subunit suggests that altered thiol bonding within the integrin or its substrates may be locally modified during alpha(IIb)beta(3) activation.  相似文献   

19.
Wang W  Jiang Y  Wang C  Luo BH 《Biochemistry》2011,50(43):9264-9272
Integrin bidirectional signaling is mediated by conformational change. It has been shown that the separation of the α- and β-subunit transmembrane/cytoplasmic tails and the lower legs is required for transmitting integrin bidirectional signals across the plasma membrane. In this study, we address whether the separation of the αβ knee is critical for integrin activation and outside-in signaling. By introducing three disulfide bonds to restrict dissociation of the α-subunit thigh domain and β-subunit I-EGF2 domain, we found that two of them could completely abolish integrin inside-out activation, whereas the other could not. This disulfide-bonded mutant, in the context of the activation mutation of the cytoplasmic domain, had intermediate affinity for ligands and was able to mediate cell adhesion. Our data suggest that there exists rearrangement at the interface between the thigh domain and the I-EGF2 domain during integrin inside-out activation. None of the disulfide-bonded mutants could mediate cell spreading upon adhering to immobilized ligands, suggesting that dissociation of the integrin two knees is required for integrin outside-in signaling. Disrupting the interface by introducing a glycan chain into either subunit is sufficient for high affinity ligand binding and cell spreading.  相似文献   

20.
Takagi J  Petre BM  Walz T  Springer TA 《Cell》2002,110(5):599-511
How ligand binding alters integrin conformation in outside-in signaling, and how inside-out signals alter integrin affinity for ligand, have been mysterious. We address this with electron microscopy, physicochemical measurements, mutational introduction of disulfides, and ligand binding to alphaVbeta3 and alphaIIbbeta3 integrins. We show that a highly bent integrin conformation is physiological and has low affinity for biological ligands. Addition of a high affinity ligand mimetic peptide or Mn(2+) results in a switchblade-like opening to an extended structure. An outward swing of the hybrid domain at its junction with the I-like domain shows conformational change within the headpiece that is linked to ligand binding. Breakage of a C-terminal clasp between the alpha and beta subunits enhances Mn(2+)-induced unbending and ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号