首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidative stress is a main mediator in nitric oxide (NO) -induced neurotoxicity and has been implicated in the pathogenesis of many neurodegenerative disorders. Green tea polyphenols are usually expected as potent chemo-preventive agents due to their ability of scavenging free radicals and chelating metal ions. However, not all the actions of green tea polyphenols are necessarily beneficial. In the present study, we demonstrated that higher-concentration green tea ployphenols significantly enhanced the neurotoxicity by treatment of sodium nitroprusside (SNP), a nitric oxide donor. SNP induced apoptosis in human neuroblastoma SH-SY5Y cells in a concentration and time-dependent manner, as estimated by cell viability assessment, FACScan analysis and DNA fragmentation assay, whereas treatment with green tea polyphenols alone had no effect on cell viability. Pre-treatment with lower-dose green tea polyphenols (50 and 100 microm) had only a slightly deleterious effect in the presence of SNP, while higher-dose green tea polyphenols (200 and 500 microm) synergistically damaged the cells severely. Further research showed that co-incubation of green tea polyphenols and SNP caused loss of mitochondrial membrane potential, depletion of intracellular GSH and accumulation of reactive oxygen species, and exacerbated NO-induced neuronal apoptosis via a Bcl-2 sensitive pathway.  相似文献   

2.
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by progressive and selective death of midbrain dopaminergic neurons. Pharmacologic treatment of PD can be divided into symptomatic and neuroprotective therapies.  相似文献   

3.
When uptake of the Parkinson's syndrome inducing neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and its major brain metabolite MPP+ (1-methyl-4-phenylpyridinium ion) by human platelets were compared in platelet rich plasma, a much higher rate was observed for the metabolite. The uptake process was saturable (Km = 6.8 microM; Vmax = 0.064 nmole/min/mg protein) and could be blocked by inhibitors of serotonin uptake. The accumulation of MPP+ by the platelets was accompanied by a decrease in intracellular ATP and an inhibition of mitochondrial state 3 respiration. These findings are consistent with earlier reports of the effect of MPP+ on isolated mitochondria as a potential cytotoxic mechanism, but also demonstrate that the dopamine uptake system is not the only means by which this metabolite can be efficiently transported into cells.  相似文献   

4.
5.
6.
Gliotoxin is a fungal second metabolite produced by diverse species that can be found in compost, stored crops, moist animal feed and sawdust. The role of glutathione in gliotoxin-induced toxicity was studied in order to elucidate the toxic mechanisms leading to neurite degeneration and cell death in differentiated human neuroblastoma (SH-SY5Y) cells. After 72 h of exposure to gliotoxin, moderate cytotoxicity was induced at 0.1 μmol/L, which was more severe at higher concentrations. A reduction in the number of neurites per cell was also observed. By decreasing the level of intracellular glutathione with l-buthionine-sulfoxamine (BSO) a specific inhibitor of glutathione synthesis, the cytotoxic effect of gliotoxin was significantly attenuated. The gliotoxin-induced cytotoxicity was also slightly reduced by the antioxidant vitamin C. However, the neurite degenerative effect was not altered by BSO, or by vitamin C. A concentration-dependent increase in the ratio between oxidized and reduced forms of glutathione, as well as the total intracellular glutathione levels, was noted after exposure to gliotoxin. The increase of glutathione was also reflected in western blot analyses showing a tendency for the regulatory subunit of γ-glutamylcysteine synthetase to be upregulated. In addition, the activity of glutathione reductase was slightly increased in gliotoxin-exposed cells. These results indicate that glutathione promotes gliotoxin-induced cytotoxicity, probably by reducing the ETP (epipolythiodioxopiperazine) disulfide bridge to the dithiol form.  相似文献   

7.
Although implicated in neurodegeneration, autophagy has been characterized mostly in yeast and mammalian non-neuronal cells. In a recent study, we sought to determine if SPHK1 (sphingosine kinase 1), implicated previously in macroautophagy/autophagy in cancer cells, regulates autophagy in neurons. SPHK1 synthesizes sphingosine-1-phosphate (S1P), a bioactive lipid involved in cell survival. In our study, we discovered that, when neuronal autophagy is pharmacologically stimulated, SPHK1 relocalizes to the endocytic and autophagic organelles. Interestingly, in non-neuronal cells stimulated with growth factors, SPHK1 translocates to the plasma membrane, where it phosphorylates sphingosine to produce S1P. Whether SPHK1 also binds to the endocytic and autophagic organelles in non-neuronal cells upon induction of autophagy has not been demonstrated. Here, we determined if the effect in neurons is operant in the SH-SY5Y neuroblastoma cell line. In both non-differentiated and differentiated SH-SY5Y cells, a short incubation of cells in amino acid-free medium stimulated the formation of SPHK1-positive puncta, as in neurons. We also found that, unlike neurons in which these puncta represent endosomes, autophagosomes, and amphisomes, in SH-SY5Y cells SPHK1 is bound only to the endosomes. In addition, a dominant negative form of SPHK1 was very toxic to SH-SY5Y cells, but cultured primary cortical neurons tolerated it significantly better. These results suggest that autophagy in neurons is regulated by mechanisms that differ, at least in part, from those in SH-SY5Y cells.  相似文献   

8.
Moriya R  Uehara T  Nomura Y 《FEBS letters》2000,484(3):253-260
We have attempted to elucidate the precise mechanism of nitric oxide (NO)-induced apoptotic neuronal cell death. Enzymatic cleavages of DEVD-AFC, VDVAD-AFC, and LEHD-AFC (specific substrates for caspase-3-like protease (caspase-3 and -7), caspase-2, and caspase-9, respectively) were observed by treatment with NO. Western blot analysis showed that pro-forms of caspase-2, -3, -6, and -7 are decreased during apoptosis. Interestingly, Ac-DEVD-CHO, a caspase-3-like protease inhibitor, blocked not only the decreases in caspase-2 and -7, but also the formation of p17 from p20 in caspase-3 induced by NO, suggesting that caspase-3 exists upstream of caspase-2 and -7. Bongkrekic acid, a potent inhibitor of mitochondrial permeability transition, specifically blocked both the loss of mitochondrial membrane potential and subsequent DNA fragmentation in response to NO. Thus, NO results in neuronal apoptosis through the sequential loss of mitochondrial membrane potential, caspase activation, and degradation of inhibitor of caspase-activated DNase (CAD) (CAD activation).  相似文献   

9.
Dopamine beta-hydroxylase exists as three forms in human neuroblastoma (SH-SY5Y) cells. The membrane-bound form of the hydroxylase contains three different species with apparent relative molecular weights of 73,000, 77,000, and 82,000. The intracellular soluble form of dopamine beta-hydroxylase was present as a single species with an apparent molecular weight of 73,000. Pulse-chase experiments showed that membranous dopamine beta-hydroxylase contains two subunit forms of 73,000 and 77,000 after short chase times. The soluble hydroxylase was synthesized as a single species of 73,000 at approximately the same rate as the lower molecular weight species of the membranous enzyme. A constitutively secreted third form of the enzyme with an intermediate apparent molecular weight also incorporated [35S]sulfate, whereas no significant amount of [35S]sulfate was observed in the cellular forms of the enzyme. The [35S]sulfate was incorporated on N-linked oligosaccharides. Approximately 12% of the enzyme is released constitutively within 1 h. These results demonstrate that neuronal cells have the ability to constitutively secrete a specific form of dopamine beta-hydroxylase which may contribute to the levels of this enzyme found in plasma.  相似文献   

10.
Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to ability to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease.  相似文献   

11.
12.
It has been suggested that baicalein, a flavonoid obtained from the Scutellaria root, exerts a protective role on neurons against several neuronal insults. However, the protective mechanisms underlying this protective effect remain largely unknown. Our results indicate that baicalein protects SH-SY5Y cells, a dopaminergic neuronal cell line, from 6-hydroxydopamine (6-OHDA)-induced damage by the attenuation of reactive oxygen species (ROS). In order to determine the effects of baicalein on mitochondrial events, mitochondrial membrane potentials (deltapsim) and caspase cascades downstream of mitochondria were assessed. Baicalein inhibited the collapse of deltapsim, suggesting that baicalein reduces the mitochondrial dysfunction associated with 6-OHDA treatment. Baicalein also inhibited caspase-9 and caspase-3 activation, which can be triggered by mitochondrial malfunctions. Furthermore, baicalein induced a significant reduction in the level of phospho-JNK, which is known as an apoptotic mediator in 6-OHDA-induced neuronal cell death. Our results indicate that baicalein protects neurons from the deleterious effects of 6-OHDA via the attenuation of oxidative stress, mitochondrial dysfunction, caspase activity, and JNK activation.  相似文献   

13.
We investigated the effect of vanadate, a tyrosine phosphatase inhibitor, on cell death induced by peroxynitrite in human neuroblastoma SH-SY5Y cells. Vanadate prevented cell death induced by 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor; whereas SIN-1-induced cell death was not prevented by neither okadaic acid, an inhibitor of serine/threonine phosphatases 1 and 2A, nor cyclosporin A, an inhibitor of serine/threonine phosphatase 2B. Vanadate did not prevent cell death induced by N-ethyl-2-(1-ethyl-hydroxy-2-nitrosohydrazino)-ethanamine, a nitric oxide donor. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase), did not block the protective effect of vanadate, suggesting that the protective effect of vanadate is independent on PI3-kinase. Vanadate increased tyrosine phosphorylation of several proteins including the focal adhesion protein p130 Crk-associated substrate (p130(cas)). By the treatment with SIN-1, the endogenous association of p130(cas) and Crk was disrupted, and the association was restored by vanadate treatment. These results suggest that disruption of tyrosine phosphorylation signaling may be critical for peroxynitrite-induced cell death, and that vanadate prevents cell death at least in part through the enhancement in tyrosine phosphorylation of the proteins including p130(cas).  相似文献   

14.
Much evidence indicates that typical phytochemicals such as resveratrol, epigallocatechin gallate, and curcumin have a growth inhibitory effect against cancer cells when each is tested separately. However, when fruits and vegetables including a mixture of phytochemicals are consumed, it is unclear whether this anti-proliferative activity is elicited in the body. Initially, we found that nobiletin, a typical polymethoxy flavone from Citrus, had a preventive effect on H(2)O(2)-induced apoptosis at 20-30 microM in human neuroblastoma SH-SY5Y cells. Nobiletin acted as a signal modulator to attenuate the activation of the intrinsic pathway of the apoptosis induced by H(2)O(2) exposure. On the other hand, tangeretin and 5-demethyl nobiletin, which are also polymethoxy flavones from Citrus, were shown to have a growth inhibitory effect by us and others. These results led us to investigate the interactive effects of these polymethoxy flavones on cell growth. In the present study, we found that tangeretin, nobiletin, and 5-demethyl nobiletin exhibited a cancelling, synergistic, or additive effect when combinations of two of these three compounds were tested. As to the structure-activity relationship, the methyl group at C-5 in nobiletin was shown to contribute to the anti-proliferative effect. By the combined treatment with tangeretin and 5-demethyl nobiletin, the apoptotic cell population and the activity of caspase-3 were synergistically elevated. The finding that tangeretin and 5-demethyl nobiletin induced apoptosis by reducing the mitochondrial membrane potential suggested that an intrinsic pathway of apoptosis was synergistically activated by the combination treatment with tangeretin and 5-demethyl nobiletin. On the other hand, in the combined treatment including nobiletin, the growth inhibitory activity of tangeretin was reduced. These results indicate the relevance of the combination of phytochemicals for the enhancement of the anticancer effect.  相似文献   

15.
N -Acetylaspartate (NAA) and N -acetylaspartylglutamate (NAAG) are related neuronal metabolites associated with the diagnosis and treatment of schizophrenia. NAA is a valuable marker of neuronal viability in magnetic resonance spectroscopy, a technique which has consistently shown NAA levels to be modestly decreased in the brains of schizophrenia patients. However, there are conflicting reports on the changes in brain NAA levels after treatment with antipsychotic drugs, which exert their therapeutic effects in part by blocking dopamine D2 receptors. NAAG is reported to be an agonist of the metabotropic glutamate 2/3 receptor, which is linked to neurotransmitter release modulation, including glutamate release. Alterations in NAAG metabolism have been implicated in the development of schizophrenia possibly via dysregulation of glutamate neurotransmission. In the present study we have used high performance liquid chromatography to determine the effects of the antipsychotic drugs haloperidol and clozapine on NAA and NAAG levels in SH-SY5Y human neuroblastoma cells, a model system used to test the responses of dopaminergic neurons in vitro . The results indicate that the antipsychotic drugs haloperidol and clozapine increase both NAA and NAAG levels in SH-SY5Y cells in a dose and time dependant manner, providing evidence that NAA and NAAG metabolism in neurons is responsive to antipsychotic drug treatment.  相似文献   

16.
6-hydroxydopamine (6-OHDA)-induced apoptosis in dopaminergic neuronal cells is a common cell model of Parkinson's disease (PD). The role of apoptosis signal-regulating kinase 1 (ASK1) in this model has not been well studied. We observed significant activation of ASK1, p38 and JNK, as well as apoptosis in human dopaminergic neuroblastoma SH-SY5Y cells exposed to 6-OHDA. Over-expressing kinase-dead mutant ASK1(K709M) or knock-down of endogenous ASK1 by its small interfering RNA (siRNA) greatly suppressed activation of these kinases and apoptosis in the cells. It was found that the activation of p38 and JNK was suppressed to almost the same extent as that of ASK1 in the ASK1-knock-down cells, suggesting that activated ASK1 is almost totally responsible for activation of p38/JNK. It was also observed that the 6-OHDA-induced cell apoptosis could be effectively prevented by over-expressing the dominant-negative mutant of p38 or p38 inhibitor SB203580, demonstrating that activation of p38/JNK signalling is required for initiating the programmed cell death. Furthermore, suppression of the 6-OHDA-generated reactive oxygen species (ROS) by pre-incubation of cells with N-acetyl-L-cysteine effectively inhibited the 6-OHDA-induced activation of ASK1, p38 and JNK, and protected the cells from apoptosis. This study clearly shows the route from ROS generation by 6-OHDA to initiation of p38/JNK signalling via activation of ASK1 in the studied PD model.  相似文献   

17.
18.
19.
The ability of G protein‐coupled receptors to regulate osmosensitive uptake of the organic osmolyte, taurine, into human SH‐SY5Y neuroblastoma cells has been examined. When monitored under isotonic conditions and in the presence of physiologically relevant taurine concentrations (1–100 μM), taurine influx was mediated exclusively by a Na+‐dependent, high‐affinity (Km = 2.5 μM) saturable transport mechanism (Vmax = 0.087 nmol/mg protein/min). Reductions in osmolarity of > 20% (attained under conditions of a constant NaCl concentration) resulted in an inhibition of taurine influx (> 30%) that could be attributed to a reduction in Vmax, whereas the Km for uptake remained unchanged. Inclusion of the muscarinic cholinergic agonist, oxotremorine‐M (Oxo‐M), also resulted in an attenuation of taurine influx (EC50~0.7 μM). Although Oxo‐M‐mediated inhibition of taurine uptake could be observed under isotonic conditions (~25–30%), the magnitude of inhibition was significantly enhanced by hypotonicity (~55–60%), a result that also reflected a reduction in the Vmax, but not the Km, for taurine transport. Oxo‐M‐mediated inhibition of taurine uptake was dependent upon the availability of extracellular Ca2+ but was independent of protein kinase C activity. In addition to Oxo‐M, inclusion of either thrombin or sphingosine 1‐phosphate also attenuated volume‐dependent taurine uptake. The ability of Oxo‐M to inhibit the influx of taurine was attenuated by 4‐[(2‐butyl‐6,7‐dichloro‐2‐cyclopentyl‐2,3‐dihydro‐1‐oxo‐1H‐inden‐5‐yl)oxy]butanoic acid, an inhibitor of the volume‐sensitive organic osmolyte and anion channel. 4‐[(2‐Butyl‐6,7‐dichloro‐2‐cyclopentyl‐2,3‐dihydro‐1‐oxo‐1H‐inden‐5‐yl)oxy]butanoic acid also prevented receptor‐mediated changes in the efflux and influx of K+ under hypoosmotic conditions. The results suggest that muscarinic receptor activation can regulate both the volume‐dependent efflux and uptake of taurine and that these events may be functionally coupled.  相似文献   

20.
Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer's disease (AD). Considerable attention has been focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-SY5Y neuroblastoma cells. Decreased cell survival in SH-SY5Y cultures treated with acrolein correlated with oxidative stress, increased NADPH oxidase activity, free radical production, protein oxidation/nitration (protein carbonyl, 3-nitrotyrosine), and lipid peroxidation (4-hydroxy-2-nonenal). Pretreatment with PYC significantly attenuated acrolein-induced cytotoxicity, protein damage, lipid peroxidation, and cell death. A dose-response study suggested that PYC showed protective effects against acrolein toxicity by modulating oxidative stress and increasing GSH. These findings provide support that PYC may provide a promising approach for the treatment of oxidative stress-related neurodegenerative diseases such as AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号