首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND INFORMATION: Caspases are cysteine proteases that mediate apoptosis (programmed cell death) initiation and execution. Apoptosis is a conserved mechanism shared by all metazoans, although its physiological function and complexity show considerable taxon-dependent variations. To gain insight into the caspase repertoire of putative ancestors to vertebrates, we performed exhaustive genomic searches in urochordates, a sister taxon to vertebrates in which ascidians and appendicularians display chordate characters at early stages of their development. RESULTS: We identified the complete caspase families of two ascidians (Ciona intestinalis and C. savignyi) and one larvacean (Oikopleura dioica). We found in ascidian species an extremely high number of caspase genes (17 for C. intestinalis and 22 for C. savignyi), deriving from five founder gene orthologues to human pro-inflammatory, initiator and executioner caspases. Although considered to be sibling species, C. intestinalis and C. savignyi only share 11 orthologues, most of the additional genes resulting from recent mass duplications. A sharply contrasted picture was found in O. dioica, which displayed only three caspase genes deriving from a single founder gene distantly related to caspase 3/7. The difference between ascidian and larvacean caspase repertoires is discussed in the light of their developmental patterns and life cycles. CONCLUSIONS: The identification of caspase members in two ascidian species delineates five founder genes that bridge the gap between vertebrates and Ecdysozoa (arthropods and nematodes). Given the amazing diversity among urochordates, determination and comparison of the caspase repertoires in species from orders additional to Enterogona (ascidians) and Oikopleuridae might be highly informative on the evolution of caspase-dependent physiological processes.  相似文献   

2.
Ascidians, or sea squirts, are lower chordates, and share basic gene repertoires and many characteristics, both developmental and physiological, with vertebrates. Therefore, decoding cis-regulatory systems in ascidians will contribute toward elucidating the genetic regulatory systems underlying the developmental and physiological processes of vertebrates. cis-Regulatory DNAs can also be used for tissue-specific genetic manipulation, a powerful tool for studying ascidian development and physiology. Because the ascidian genome is compact compared with vertebrate genomes, both intergenic regions and introns are relatively small in ascidians. Short upstream intergenic regions contain a complete set of cis-regulatory elements for spatially regulated expression of a majority of ascidian genes. These features of the ascidian genome are a great advantage in identifying cis-regulatory sequences and in analyzing their functions. Function of cis-regulatory DNAs has been analyzed for a number of tissue-specific and developmentally regulated genes of ascidians by introducing promoter-reporter fusion constructs into ascidian embryos. The availability of the whole genome sequences of the two Ciona species, Ciona intestinalis and Ciona savignyi, facilitates comparative genomics approaches to identify cis-regulatory DNAs. Recent studies demonstrate that computational methods can help identify cis-regulatory elements in the ascidian genome. This review presents a comprehensive list of ascidian genes whose cis-regulatory regions have been subjected to functional analysis, and highlights the recent advances in bioinformatics and comparative genomics approaches to cis-regulatory systems in ascidians.  相似文献   

3.
4.
GTPases of the Rho family are molecular switches that play important roles in converting and amplifying external signals into cellular effects. Originally demonstrated to control the dynamics of the F-actin cytoskeleton, Rho GTPases have been implicated in many basic cellular processes that influence cell proliferation, differentiation, motility, adhesion, survival, or secretion. To elucidate the evolutionary history of the Rho family, we have analyzed over 20 species covering major eukaryotic clades from unicellular organisms to mammals, including platypus and opossum, and have reconstructed the ontogeny and the chronology of emergence of the different subfamilies. Our data establish that the 20 mammalian Rho members are structured into 8 subfamilies, among which Rac is the founder of the whole family. Rho, Cdc42, RhoUV, and RhoBTB subfamilies appeared before Coelomates and RhoJQ, Cdc42 isoforms, RhoDF, and Rnd emerged in chordates. In vertebrates, gene duplications and retrotranspositions increased the size of each chordate Rho subfamily, whereas RhoH, the last subfamily, arose probably by horizontal gene transfer. Rac1b, a Rac1 isoform generated by alternative splicing, emerged in amniotes, and RhoD, only in therians. Analysis of Rho mRNA expression patterns in mouse tissues shows that recent subfamilies have tissue-specific and low-level expression that supports their implication only in narrow time windows or in differentiated metabolic functions. These findings give a comprehensive view of the evolutionary canvas of the Rho family and provide guides for future structure and evolution studies of other components of Rho signaling pathways, in particular regulators of the RhoGEF family.  相似文献   

5.
Ascidian embryos were the first animal embryos to be experimentally manipulated by Man at the end of the 19th century. The mosaic theory of development was born from these experiments and those carried out by Conklin 20 years later. These astonishing animals, some of which are eaten as delicacies in France and other countries, belong to the tunicates, which are the only animals to produce cellulose. They are, however, the closest living relatives to the vertebrates. Neglected throughout most of the 20th century, ascidians have recently come back in the limelight in the wake of the sequencing of the genomes of Ciona intestinalis and Ciona savignyi. These small, unduplicated genomes harbour 16,000 to 20,000 genes and are 20 times smaller than the human genome. Ciona eggs can be microinjected and easily electroporated, which make this system suitable for the study of developmental gene regulatory networks.  相似文献   

6.
Solitary ascidians are hermaphrodites that release sperm and eggs simultaneously. However, many species are self-sterile, owing to a self/non-self recognition system operating at the outer surface of the chorion during sperm-egg interaction. In Ciona intestinalis, self-incompatibility is thought to have a genetic basis. Here, we report a survey of the self-fertilization potential of a Santa Barbara, California, population of Ciona savignyi, a close relative of C. intestinalis. We found that, in contrast to reports on C. intestinalis, C. savignyi is highly self-fertile. However, using two nonlethal recessive mutant strains, aimless (aim) and immaculate (imc), and a stable transgenic strain that expresses green fluorescent protein (GFP) in the notochord to follow offspring genotype, we demonstrate that non-self sperm outcompete self-sperm in fertilization competition assays. When the chorion was removed, both self- and non-self sperm performed equally well in the competition assay. Thus the non-self/self gamete recognition in C. savignyi is not absolute but relative, and is mediated by one or more components in the chorion. We discuss the significance of this finding in the context of natural populations in the wild, where individuals of C. savignyi are typically found growing in large groups that spawn in unison and where self-fertilization would be expected to be very rare.  相似文献   

7.
8.
9.
10.
Cytochrome P450 family 1 (CYP1) proteins are important in a large number of toxicological processes. CYP1A and CYP1B genes are well known in mammals, but the evolutionary history of the CYP1 family as a whole is obscure; that history may provide insight into endogenous functions of CYP1 enzymes. Here, we identify CYP1-like genes in early deuterostomes (tunicates and echinoderms), and several new CYP1 genes in vertebrates (chicken, Gallus gallus and frog, Xenopus tropicalis). Profile hidden Markov models (HMMs) generated from vertebrate CYP1A and CYP1B protein sequences were used to identify 5 potential CYP1 homologs in the tunicate Ciona intestinalis genome. The C. intestinalis genes were cloned and sequenced, confirming the predicted sequences. Orthologs of 4 of these genes were found in the Ciona savignyi genome. Bayesian phylogenetic analyses group the tunicate genes in the CYP1 family, provisionally in 2 new subfamilies, CYP1E and CYP1F, which fall in the CYP1A and CYP1B/1C clades. Bayesian and maximum likelihood analyses predict functional divergence between the tunicate and vertebrate CYP1s, and regions within CYP substrate recognition sites were found to differ significantly in position-specific substitution rates between tunicates and vertebrates. Subsequently, 10 CYP1-like genes were found in the echinoderm Strongylocentrotus purpuratus (sea urchin) genome. Several of the tunicate and echinoderm CYP1-like genes are expressed during development. Canonical xenobiotic response elements are present in the upstream genomic sequences of most tunicate and sea urchin CYP1s, and both groups are predicted to possess an aryl hydrocarbon receptor (AHR), suggesting possible regulatory linkage of AHR and these CYPs. The CYP1 family has undergone multiple rounds of gene duplication followed by functional divergence, with at least one gene lost in mammals. This study provides new insight into the origin and evolution of CYP1 genes.  相似文献   

11.
12.
13.
Vertebrate evolution has been largely driven by the duplication of genes that allow for the acquisition of new functions. The ATP-binding cassette (ABC) proteins constitute a large and functionally diverse family of membrane transporters. The members of this multigene family are found in all cellular organisms, most often engaged in the translocation of a wide variety of substrates across lipid membranes. Because of the diverse function of these genes, their large size, and the large number of orthologs, ABC genes represent an excellent tool to study gene family evolution. We have identified ABC proteins from the sea squirt (Ciona intestinalis), zebrafish (Danio rerio), and chicken (Gallus gallus) and, using phylogenetic analysis, identified those genes with a one-to-one orthologous relationship to human ABC proteins. All ABC protein subfamilies found in Ciona and zebrafish correspond to the human subfamilies, with the exception of a single ABCH subfamily gene found only in zebrafish. Multiple gene duplication and deletion events were identified in different lineages, indicating an ongoing process of gene evolution. As many ABC genes are involved in human genetic diseases, and important drug transport phenotypes, the understanding of ABC gene evolution is important to the development of animal models and functional studies.  相似文献   

14.
An ascidian, Ciona savignyi, is regarded as a good experimental animal for genetics because of its small and compact genome for which a draft sequence is available, its short generation time and its interesting phylogenic position. ENU-based mutagenesis has been carried out using this animal. However, insertional mutagenesis using transposable elements (transposons) has not yet been introduced. Recently, one of the Tc1/mariner superfamily transposons, Minos, was demonstrated to cause germline transgenesis in the related species Ciona intestinalis. In this report, we show that Minos has the ability to transpose from DNA to DNA in Ciona savignyi in transposition assays. Although the activity was slightly weaker than in Ciona intestinalis, Minos still caused germline transgenesis in Ciona savignyi. In addition, one insertion seemed to have caused an enhancer trapping. These results indicate that Minos provides a potential tool for transgenic techniques such as insertional mutagenesis in Ciona savignyi.  相似文献   

15.
The solitary ascidians Ciona intestinalis and Ciona savignyi co-occur in southern California harbors, but no hybrids have been recognized in nature. Numerous differences in their egg morphology were detected. Homologous (normal outcross) fertilization yielded 96-99% cleavage, where autologous (self) fertilization showed 3% and heterologous (hybrid) fertilization showed 0-1%. Acid treatment (pH 3.2) removed the block to selfing (P < 0.0001) but not hybridization for both species. Heterologous sperm bind to the vitelline coat (VC), but fail to penetrate. Enzymatic removal of the VC resulted in 91-97% cleavage with autologous and heterologous sperm (P < 0.0001). The vitelline coats of the two species differ in lectin binding to surface glycosides. Fertilization in both species is significantly inhibited by the lectins, fucose binding protein (P < 0.0001) and concanavalin A (P < 0.0001), and wheat germ agglutinin inhibits fertilization in C. intestinalis (P < 0.0001) but is without effect on C. savignyi fertilization. Self and hybrid blocks employ different mechanisms including glycoside composition and acid sensitivity.  相似文献   

16.
Silva N  Smith WC 《PloS one》2008,3(6):e2552
The genomes of many marine invertebrates, including the purple sea urchin and the solitary ascidians Ciona intestinalis and Ciona savignyi, show exceptionally high levels of heterozygosity, implying that these populations are highly polymorphic. Analysis of the C. savignyi genome found little evidence to support an elevated mutation rate, but rather points to a large population size contributing to the polymorphism level. In the present study, the relative genetic polymorphism levels in sampled populations of ten different ascidian species were determined using a similarity index generated by AFLP analysis. The goal was to determine the range of polymorphism within the populations of different species, and to uncover factors that may contribute to the high level of polymorphism. We observe that, surprisingly, the levels of polymorphism within these species show a negative correlation with the reported age of invasive populations, and that closely related species show substantially different levels of genetic polymorphism. These findings show exceptions to the assumptions that invasive species start with a low level of genetic polymorphism that increases over time and that closely related species have similar levels of genetic polymorphism.  相似文献   

17.
Small GTPases of the Rho family, Rho, Rac, and Cdc42, are critical regulators of the changes in the actin cytoskeleton. Rho GTPases are typically activated by Dbl-homology (DH)-domain-containing guanine nucleotide exchange factors (GEFs). Recent genetic and biochemical studies revealed a new type of GEF for the Rho GTPases. This family is composed of 11 genes, designated as Dock1 to Dock11, and is structurally divided into four classes Dock-A, -B, -C, and -D. Dock-A and -B subfamilies are typically GEFs specific for Rac1, while the Dock-D subfamily is specific for Cdc42. Here we show that Dock6, a member of the Dock-C subfamily, exchanges GDP for GTP for Rac1 and Cdc42 in vitro and in vivo. Furthermore, we find that, in mouse N1E-115 neuroblastoma cells, expression of Dock6 is increased following differentiation. Transfection of the catalytic Dock Homology Region-2 (DHR-2) domain of Dock6 promotes neurite outgrowth mediated by Rac1 and Cdc42. Conversely, knockdown of endogenous Dock6 by small interference RNA reduces activation of Rac1 and Cdc42 and neurite outgrowth. Taken together, these results suggest that Dock6 differs from all of the identified Dock180-related proteins, in that it is the GEF specific for both Rac1 and Cdc42 and may be one of physiological regulators of neurite outgrowth.  相似文献   

18.
Cloning and characterization of rac-like cDNAs from Arabidopsis thaliana   总被引:12,自引:0,他引:12  
Winge  Per  Brembu  Tore  Bones  Atle M. 《Plant molecular biology》1997,35(4):483-495
The Rho family of GTPases are in higher eukaryotes divided into 3 major subfamilies; the Rho, Rac and Cdc42 proteins. In plants, however, the Rho family is restricted to one large family of Rac-like proteins. From work with mammalian phagocytes the Rac proteins are known to activate a multicomponent NADPH-dependent oxidase which results in accumulation of H2O2, a process termed oxidative burst. In plants a similar oxidative burst is observed and plays an important role in its defence against pathogen infections, suggesting a similar role for the plant Rac-like proteins. The Rho family of GTPases proteins are also involved in control of cell morphology, and are also thought to mediate signals from cell membrane receptors.In a broad search for members of the Ras superfamily in plants, several new small GTP-binding proteins were found. We report here the identification and molecular cloning of 5 rac-like cDNAs from Arabidopsis thaliana, Arac1–5. The Rac-like proteins deduced from the cDNA sequences all share 80–95% homology, but show considerably more diversity on the nucleotide level, indicating that this is an ancient gene family. Four of the rac genes were found to be expressed in all tissues examined, but one gene, Arac2, was expressed exclusively in the root, hypocotyl and stem. Our results show that the rac gene family in A. thaliana consists of at least 10 different genes.  相似文献   

19.
Paxillin is a prominent focal adhesion docking protein that regulates cell adhesion and migration. Although numerous paxillin-binding proteins have been identified and paxillin is required for normal embryogenesis, the precise mechanism by which paxillin functions in vivo has not yet been determined. We identified an ortholog of mammalian paxillin in Drosophila (Dpax) and have undertaken a genetic analysis of paxillin function during development. Overexpression of Dpax disrupted leg and wing development, suggesting a role for paxillin in imaginal disc morphogenesis. These defects may reflect a function for paxillin in regulation of Rho family GTPase signaling as paxillin interacts genetically with Rac and Rho in the developing eye. Moreover, a gain-of-function suppressor screen identified a genetic interaction between Dpax and cdi in wing development. cdi belongs to the cofilin kinase family, which includes the downstream Rho target, LIM kinase (LIMK). Significantly, strong genetic interactions were detected between Dpax and Dlimk, as well as downstream effectors of Dlimk. Supporting these genetic data, biochemical studies indicate that paxillin regulates Rac and Rho activity, positively regulating Rac and negatively regulating Rho. Taken together, these data indicate the importance of paxillin modulation of Rho family GTPases during development and identify the LIMK pathway as a critical target of paxillin-mediated Rho regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号