首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CrkII is an intracellular adaptor protein involved in signal transduction by various growth factors. Activation of PDGF alpha-receptor resulted in its association with CrkII in vivo. In contrast, binding of CrkII to the PDGF beta-receptor was negligible, despite its becoming prominently phosphorylated. Bacterially expressed GST-CrkII SH2 domain specifically bound to Tyr-762 and Tyr-771 in the activated PDGF alpha- and beta- receptors, respectively. GST fusion protein of full-length CrkII also bound to the activated PDGF beta-receptor. However, tyrosine phosphorylation of GST-CrkII diminished its binding to the beta-receptor. CrkI, a truncated version of CrkII lacking the phosphorylatable tyrosine residue, could bind to both PDGF alpha- and beta-receptors in vivo. In conclusion, tyrosine phosphorylation of CrkII negatively affects its binding to the PDGF receptors. The differential binding of CrkII to the PDGF alpha- and beta- receptors may be a rationale for functional diversity between the two receptors.  相似文献   

2.
Autophosphorylated growth factor receptors provide binding sites for the src homology 2 domains of intracellular signaling molecules. In response to epidermal growth factor (EGF), the activated EGF receptor binds to a complex containing the signaling protein GRB2 and the Ras guanine nucleotide-releasing factor Sos, leading to activation of the Ras signaling pathway. We have investigated whether the platelet-derived growth factor (PDGF) receptor binds GRB2-Sos. In contrast with the EGF receptor, the GRB2 does not bind to the PDGF receptor directly. Instead, PDGF stimulation induces the formation of a complex containing GRB2; 70-, 80-, and 110-kDa tyrosine-phosphorylated proteins; and the PDGF receptor. Moreover, GRB2 binds directly to the 70-kDa protein but not to the PDGF receptor. Using a panel of PDGF beta-receptor mutants with altered tyrosine phosphorylation sites, we identified Tyr-1009 in the PDGF receptor as required for GRB2 binding. Binding is inhibited by a phosphopeptide containing a YXNX motif. The protein tyrosine phosphatase Syp/PTP1D/SHPTP2/PTP2C is approximately 70 kDa, binds to the PDGF receptor via Tyr-1009, and contains several YXNX sequences. We found that the 70-kDa protein that binds to the PDGF receptor and to GRB2 comigrates with Syp and is recognized by anti-Syp antibodies. Furthermore, both GRB2 and Sos coimmunoprecipitate with Syp from lysates of PDGF-stimulated cells, and GRB2 binds directly to tyrosine-phosphorylated Syp in vitro. These results indicate that GRB2 interacts with different growth factor receptors by different mechanisms and the cytoplasmic phosphotyrosine phosphatase Syp acts as an adapter between the PDGF receptor and the GRB2-Sos complex.  相似文献   

3.
Ligand induced activation of the beta-receptor for platelet-derived growth factor (PDGF) leads to activation of Src family tyrosine kinases. We have explored the possibility that the receptor itself is a substrate for Src. We show that Tyr934 in the kinase domain of the PDGF receptor is phosphorylated by Src. Cell lines expressing a beta-receptor mutant, in which Tyr934 was replaced with a phenyalanine residue, showed reduced mitogenic signaling in response to PDGF-BB. In contrast, the mutant receptor mediated increased signals for chemotaxis and actin reorganization. Whereas the motility responses of cells expressing wild-type beta-receptors were attenuated by inhibition of phosphatidylinositol 3'-kinase, those of cells expressing the mutant receptor were only slightly influenced. In contrast, PDGF-BB-induced chemotaxis of the cells with the mutant receptor was attenuated by inhibition of protein kinase C, whereas the chemotaxis of cells expressing the wild-type beta-receptor was less affected. Moreover, the PDGF-BB-stimulated tyrosine phosphorylation of phospholipase C-gamma was increased in the mutant receptor cells compared with wild-type receptor cells. In conclusion, the characteristics of the Y934F mutant suggest that the phosphorylation of Tyr934 by Src negatively modulates a signal transduction pathway leading to motility responses which involves phospholipase C-gamma, and shifts the response to increased mitogenicity.  相似文献   

4.
Activation of platelet-derived growth factor (PDGF) receptors occurs through ligand-induced dimerization and autophosphorylation. In this study, we investigated the effects of mutation of tyrosine residue 857 (Y857) in the activation loop of the PDGF β-receptor (PDGFRβ) to phenylalanine (Y857F). In agreement with previous observations, we found that PDGFRβY857F had a severely diminished in vitro kinase activity. However, in vivo the overall amount of tyrosine phosphorylation of PDGFRβY857F was similar to that of the wild-type receptor, except for the tyrosine residue 771 (Y771) which displayed a stronger phosphorylation in the mutant receptor. Analysis of the ability to induce signal transduction revealed that the PDGFRβY857F mutant had an attenuated activation of Akt and Erk1/2 MAP kinase. In contrast, the mutant receptor efficiently mediated phosphorylation of the ubiquitin-ligase c-Cbl that participates in receptor internalization and degradation, and PLCγ which has previously been shown to be connected with various cellular responses, including migration. However, the protein tyrosine phosphatase SHP-2, implicated in the PDGF-induced mitogenic response, together with the adaptor proteins Alix and Stam, involved in intracellular sorting of receptor, was not phosphorylated in cells expressing PDGFRβY857F. We found that both receptor variants were internalized from the cell surface and degraded at a comparable rate. Interestingly, PDGFRβY857F was unable to mediate PDGF-BB-induced mitogenic signaling, whereas it could elicit a chemotactic response.  相似文献   

5.
Two novel sites of autophosphorylation were localized to the C-terminal tail of the PDGF beta-receptor. To evaluate the importance of these phosphorylation sites, receptor mutants in which Tyr1009, Tyr1021 or both were replaced with phenylalanine residues, were expressed in porcine aortic endothelial (PAE) cells. These mutants were similar to the wild type receptor with regard to protein tyrosine kinase activity and ability to induce mitogenicity in response to PDGF-BB. However, both the Y1009F and Y1021F mutants showed a decreased ability to mediate association with and the tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma) compared to the wild type PDGF beta-receptor; in the case of the Y1009F/Y1021F double mutant, no association or phosphorylation of PLC-gamma could be detected. These data show that tyrosine phosphorylation of PLC-gamma is dependent on autophosphorylation of the PDGF beta-receptor at Tyr1009 and Tyr1021.  相似文献   

6.
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.  相似文献   

7.
Upon binding of platelet-derived growth factor (PDGF), the PDGF beta receptor (PDGFR) undergoes autophosphorylation on distinct tyrosine residues and binds several SH2-domain-containing signal relay enzymes, including phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein of Ras (RasGAP), and the tyrosine phosphatase SHP-2. In this study, we have investigated whether PDGF-dependent PI3K activation is affected by the other proteins that associate with the PDGFR. We constructed and characterized a series of PDGFR mutants which contain binding sites for PI3K as well as one additional protein, either RasGAP, SHP-2, or PLC gamma. While all of the receptors had wild-type levels of PDGF-stimulated tyrosine kinase activity and associated with comparable amounts of PI3K activity, their abilities to trigger accumulation of PI3K products in vivo differed dramatically. The wild-type receptor, as well as receptors that recruited PI3K or PI3K and SHP-2, were all capable of fully activating PI3K. In contrast, receptors that associated with PI3K and RasGAP or PI3K and PLC gamma displayed a greatly reduced ability to stimulate production of PI3K products. When this series of receptors was tested for their ability to activate Ras, we observed a strong positive correlation between Ras activation and PI3K activation. Further investigation of the relationship between Ras and PI3K indicated that Ras was upstream of PI3K. Thus, activation of PI3K requires not only binding of PI3K to the tyrosine-phosphorylated PDGFR but accumulation of GTP-bound Ras as well. Furthermore, PLC gamma and RasGAP negatively modulate PDGF-dependent PI3K activation. Finally, PDGF-stimulated signal relay can be regulated by altering the ratio of SH2-domain-containing enzymes that are recruited to the PDGFR.  相似文献   

8.
Ligand stimulation of PDGF beta-receptors leads to autophosphorylation of the regulatory tyrosine 857 and of tyrosine residues that in their phosphorylated form serve as docking sites for Src homology 2 domain-containing proteins. Regulation of the PDGF beta-receptor by protein-tyrosine phosphatases is poorly understood. We have investigated PDGF beta-receptor dephosphorylation by receptor-like protein-tyrosine phosphatase DEP-1 using a cell line with inducible DEP-1 expression and by characterizing in vitro dephosphorylation of the PDGF beta-receptor and of receptor-derived phosphopeptides by DEP-1. After DEP-1 induction PDGF beta-receptor.DEP-1 complexes and reduced receptor tyrosine phosphorylation were observed. Phosphopeptide analysis of the PDGF beta-receptors from DEP-1-expressing cells and of the receptors dephosphorylated in vitro by DEP-1 demonstrated that dephosphorylation of autophosphorylation sites of the receptor differed and revealed that the regulatory Tyr(P)(857) was not a preferred site for DEP-1 dephosphorylation. When dephosphorylation of synthetic receptor-derived peptides was analyzed, the selectivity was reproduced, indicating that amino acid sequence surrounding the phosphorylation sites is the major determinant of selectivity. This notion is supported by the observation that the poorly dephosphorylated Tyr(P)(562) and Tyr(P)(857), in contrast to other analyzed phosphorylation sites, are surrounded by basic amino acid residues at positions -4 and +3 relative to the tyrosine residue. Our study demonstrates that DEP-1 dephosphorylation of the PDGF beta-receptor is site-selective and may lead to modulation, rather than general attenuation, of signaling.  相似文献   

9.
A characteristic feature of the platelet-derived growth factor (PDGF) beta-receptor is the presence of an insert sequence in the protein tyrosine kinase domain. A receptor mutant which lacks the entire insert of 98 amino acids was expressed in CHO cells, and its functional characteristics were compared with those of the wild-type receptor. The mutant receptor bound PDGF-BB with high affinity and mediated internalization and degradation of the ligand with efficiency similar to that of the wild-type receptor but did not transduce a mitogenic signal. It was found to display a decreased autophosphorylation after ligand stimulation and had a decreased ability to phosphorylate exogenous substrates; phosphofructokinase was not phosphorylated at all, whereas a peptide substrate was phosphorylated, albeit at a lower rate compared with phosphorylation by the wild-type receptor. Furthermore, the mutant receptor did not mediate actin reorganization but mediated an increase in c-fos expression. The data indicate that the insert in the kinase domain of the PDGF beta-receptor is important for the substrate specificity or catalytic efficiency of the kinase; the deletion of the insert interferes with the transduction of some, but not all, of the signals that arise after activation of the receptor.  相似文献   

10.
Two novel sites of autophosphorylation were localized to the juxtamembrane segment of the human platelet-derived growth factor (PDGF) beta-receptor. To evaluate the importance of these phosphorylation sites, receptor mutants were made in which Tyr579, Tyr581 or both were replaced with phenylalanine residues; the receptor mutants were stably expressed in porcine aortic endothelial cells. Compared with the wild-type receptor, the Y579F and Y581F mutants were less able to mediate association with and activation of the Src family tyrosine kinases. The ability of these phosphorylation sites to mediate directly the binding of the Src family proteins was also demonstrated by using phosphotyrosine-containing synthetic peptides representing the juxtamembrane sequence of the receptor. Both the Y579F and Y581F mutants were similar to the wild-type receptor with regard to their protein tyrosine kinase activity and ability to induce mitogenicity in response to PDGF-BB. A conclusive evaluation of the role of the Src family members in signal transduction could, however, not be made since our attempt to prevent completely the association by mutation of both Tyr579 and Tyr581, resulted in loss of kinase activity and was therefore not informative. The present data, together with previous observations, demonstrate a high degree of specificity in the interaction between different autophosphorylation sites in the PDGF beta-receptor and downstream components in the signal transduction pathway.  相似文献   

11.
We report that integrin-mediated signaling induces a rapid and transient tyrosine phosphorylation of platelet-derived growth factor (PDGF) beta-receptors in human diploid foreskin AG 1518 fibroblasts. A transient tyrosine phosphorylation of PDGF beta-receptors was evident one and two hours after cells had been plated on collagen type I and fibronectin, as well as on immobilized anti-integrin subunit IgG, but not on poly-L-lysine. In contrast EGF or PDGF alpha-receptors were not phosphorylated on tyrosine residues under these conditions. Tyrosine phosphorylation of PDGF beta-receptors induced by plating on collagen type I was inhibited by cytochalasin D and herbimycin A, unaffected by cycloheximide and enhanced by orthovanadate. Furthermore, a transient phosphorylation of PDGF beta-receptors occurred when AG 518 fibroblasts were cultured in three-dimensional collagen lattices or exposed to external strain exerted through centrifugation. The latter effect was evident already after two minutes. Clustering of cell surface beta1 integrins led to PDGF beta-receptor phosphorylation both in suspended and firmly attached AG 1518 fibroblasts. Plating of cells on collagen type I, fibronectin, and anti-beta1-integrin IgG resulted in the formation of PDGF beta-receptor aggregates as detected by immunofluorescence. Suramin or anti-PDGF-BB IgG had no effect on the plating-induced tyrosine phosphorylation of PDGF beta-receptors. PDGF-B chain mRNA, or protein, were not detected in AG 1518 fibroblasts. Our data suggest that a ligand-independent PDGF beta-receptor activation during cell adhesion and early phases of cell spreading is involved in integrin-mediated signaling in fibroblasts, and constitutes parts of a mechanism for cells to respond during the dynamic phases of externally applied tension as well as fibroblast-mediated tension during cell adhesion and collagen gel contraction.  相似文献   

12.
Raf kinases are important intermediates in epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) mediated activation of the mitogen-activated protein kinase (MAPK) pathway. In this report, we show that the A-Raf kinase is associated with activated EGF receptor complexes and with PDGF receptor (PDGFR) complexes independent of prior PDGF treatment. The ability of A-Raf to associate with receptor tyrosine kinases could provide a Ras-GTP-independent mechanism for the membrane localization of A-Raf. Expression of a partially activated A-Raf mutant resulted in decreased tyrosine phosphorylation of the PDGFR, specifically on Y857 (autophosphorylation site) and Y1021 (phospholipase Cgamma1 (PLCgamma1) binding site), but not the binding sites for other signalling proteins (Nck, phosphatidylinositol 3'-kinase (PI3K), RasGAP, Grb2, SHP). Activated A-Raf expression also altered the activation of PLCgamma1, and p85-associated PI3K. Thus, A-Raf can regulate PLCgamma1 signalling via a PDGFR-dependent mechanism and may also regulate PI3K signalling via a PDGFR-independent mechanism.  相似文献   

13.
Platelet-derived growth factor (PDGF) is a potent mitogen for many cell types. The PDGF receptor (PDGFR) is a receptor tyrosine kinase that mediates the mitogenic effects of PDGF by binding to and/or phosphorylating a variety of intracellular signaling proteins upon PDGF-induced receptor dimerization. We show here that the Na(+)/H(+) exchanger regulatory factor (NHERF; also known as EBP50), a protein not previously known to interact with the PDGFR, binds to the PDGFR carboxyl terminus (PDGFR-CT) with high affinity via a PDZ (PSD-95/Dlg/Z0-1 homology) domain-mediated interaction and potentiates PDGFR autophosphorylation and extracellular signal-regulated kinase (ERK) activation in cells. A point-mutated version of the PDGFR, with the terminal leucine changed to alanine (L1106A), cannot bind NHERF in vitro and is markedly impaired relative to the wild-type receptor with regard to PDGF-induced autophosphorylation and activation of ERK in cells. NHERF potentiation of PDGFR signaling depends on the capacity of NHERF to oligomerize. NHERF oligomerizes in vitro when bound with PDGFR-CT, and a truncated version of the first NHERF PDZ domain that can bind PDGFR-CT but which does not oligomerize reduces PDGFR tyrosine kinase activity when transiently overexpressed in cells. PDGFR activity in cells can also be regulated in a NHERF-dependent fashion by stimulation of the beta(2)-adrenergic receptor, a known cellular binding partner for NHERF. These findings reveal that NHERF can directly bind to the PDGFR and potentiate PDGFR activity, thus elucidating both a novel mechanism by which PDGFR activity can be regulated and a new cellular role for the PDZ domain-containing adapter protein NHERF.  相似文献   

14.
The aminoglycoside neomycin has recently been found to affect certain platelet-derived growth factor (PDGF) responses in C3H/10T1/2 C18 fibroblasts. Using porcine aortic endothelial cells transfected with PDGF alpha- or beta-receptors, we explored the possibility that neomycin interferes with the interaction between the different PDGF isoforms and their receptors. We found that neomycin (5 mM) inhibited the binding of 125I-PDGF-BB to the alpha-receptor with only partial effect on the binding of 125I-PDGF-AA; in contrast, the binding of 125I-PDGF-BB to the beta-receptor was not affected by the aminoglycoside. Scatchard analyses showed that neomycin (5 mM) decreased the number of binding sites for PDGF-BB on alpha-receptor-expressing cells by 87%. Together with cross-competition studies with 125I-labeled PDGF homodimers, the effect of neomycin indicates that PDGF-AA and PDGF-BB bind to both common and unique structures on the PDGF alpha-receptor. Neomycin specifically inhibited the autophosphorylation of the alpha-receptor by PDGF-BB, with less effect on the phosphorylation induced by PDGF-AA and no effect on the phosphorylation of the beta-receptor by PDGF-BB. Thus, neomycin is a PDGF isoform- and receptor-specific antagonist that provides a possibility to compare the signal transduction pathways of alpha- and beta-receptors in cells expressing both receptor types. This approach was used to show that activation of PDGF beta-receptors by PDGF-BB mediated a chemotactic response in human fibroblasts, whereas activation of alpha-receptors by the same ligand inhibited chemotaxis.  相似文献   

15.
The receptor for the myeloid cell growth factor colony stimulating factor 1 (CSF-1) is a protein tyrosine kinase that is closely related to the PDGF receptor. Ligand binding results in kinase activation and autophosphorylation. Three autophosphorylation sites, Tyr697, Tyr706 and Tyr721, have been mapped to the kinase insert domain. Deletion of the entire kinase insert domain completely abrogates signal transduction by the CSF-1 receptor expressed in Rat-2 fibroblasts. To investigate the function of individual phosphorylation sites present in the CSF-1 receptor kinase insert domain, a number of phosphorylation site mutants were expressed in Rat-2 fibroblasts. Mutation of either Tyr697 or Tyr721 compromised signal transduction by the CSF-1 receptor. A mutant receptor, in which both Tyr697 and Tyr721 were replaced by phenylalanine, has lost all ability to induce changes in morphology or to increase cell growth rate in response to CSF-1. Tyr721 has been identified recently as the binding site for PI 3-kinase. Here we report that GRB2 associates with the CSF-1 receptor upon ligand binding. The phosphorylation on tyrosine of SHC and several other GRB2-associated proteins increased upon stimulation with CSF-1. Tyr697 was identified as a binding site for GRB2. We suggest that PI 3-kinase, GRB2 and some of the GRB2-associated proteins could play an important role in signal transduction by the CSF-1 receptor.  相似文献   

16.
A Kazlauskas  J A Cooper 《Cell》1989,58(6):1121-1133
We have identified two platelet-derived growth factor (PDGF)-dependent autophosphorylation sites in the beta subunit of the human PDGF receptor (PDGF-R). The major site of phosphorylation (Tyr-857) corresponds to the major autophosphorylation site in many other tyrosine kinases. Tyr-751, which lies within the kinase insert region, is a second in vivo site and the major in vitro site. Immunoprecipitates of wild-type PDGF-Rs prepared from PDGF-treated cells contained a phosphatidylinositol (PI) 3 kinase activity and three specific polypeptides as well as the PDGF-R. Mutation of Tyr-751 to Phe or Gly, or mutation of the catalytic domain to abolish kinase activity, blocked association of the PDGF-R with the PI kinase and the three proteins. These results suggest that autophosphorylation in the kinase insert region triggers the binding of the activated PDGF-R to specific cellular proteins, including a PI kinase whose activity is known to be stimulated by PDGF. Thus autophosphorylation may play a novel role in signal transduction via the PDGF-R.  相似文献   

17.
In response to binding of platelet-derived growth factor (PDGF), the PDGF receptor (PDGFR) beta subunit is phosphorylated on tyrosine residues and associates with numerous signal transduction enzymes, including the GTPase-activating protein of ras (GAP) and phosphatidylinositol 3-kinase (PI3K). Previous studies have shown that association of PI3K requires phosphorylation of tyrosine 751 (Y751) in the kinase insert and that this region of receptor forms at least a portion of the binding site for PI3K. In this study, the in vitro binding of GAP to the PDGFR was investigated. Like PI3K, GAP associates only with receptors that have been permitted to autophosphorylate, and GAP itself does not require tyrosine phosphate in order to stably associate with the phosphorylated PDGFR. To define which tyrosine residues are required for GAP binding, a panel of PDGFR phosphorylation site mutants was tested. Mutation of Y771 reduced the amount of GAP that associates to an undetectable level. In contrast, the F771 (phenylalanine at 771) mutant bound wild-type levels of PI3K, whereas the F740 and F751 mutants bound 3 and 23%, respectively, of the wild-type levels of PI3K but wild-type levels of GAP. The F740/F751 double mutant associated with wild-type levels of GAP, but no detectable PI3K activity, while the F740/F751/F771 triple mutant could not bind either GAP or PI3K. The in vitro and in vivo associations of GAP and PI3K activity to these PDGFR mutants were indistinguishable. The distinct tyrosine residue requirements suggest that GAP and PI3K bind different regions of the PDGFR. This possibility was also supported by the observation that the antibody to the PDGFR kinase insert Y751 region that blocks association of PI3K had only a minor effect on the in vitro binding of GAP. In addition, highly purified PI3K and GAP associated in the absence of other cellular proteins and neither cooperated nor competed with each other's binding to the PDGFR. Taken together, these studies indicate that GAP and PI3K bind directly to the PDGFR and have discrete binding sites that include portions of the kinase insert domain.  相似文献   

18.
The beta receptor for platelet-derived growth factor (beta PDGFR) is activated by binding of PDGF and undergoes phosphorylation at multiple tyrosine residues. The tyrosine-phosphorylated receptor associates with numerous SH2-domain-containing proteins which include phospholipase C-gamma 1 (PLC gamma), the GTPase-activating protein of Ras (GAP), the p85 subunit of phosphatidylinositol 3 kinase (PI3K), the phosphotyrosine phosphatase Syp, and several other proteins. Our previous studies indicated that PI3K and PLC gamma were required for relay of the mitogenic signal of beta PDGFR, whereas GAP and Syp did not appear to be required for this response. In this study, we further investigated the role of GAP and Syp in mitogenic signaling by beta PDGFR. Focusing on the PLC gamma-dependent branch of beta PDGFR signaling, we constructed a series of mutant beta PDGFRs that contained the binding sites for pairs of the receptor-associated proteins: PLC gamma and PI3K, PLC gamma and GAP, or PLC gamma and Syp. Characterization of these mutants showed that while all receptors were catalytically active and bound similar amounts of PLC gamma, they differed dramatically in their ability to initiate DNA synthesis. This signaling deficiency related to an inability to efficiently tyrosine phosphorylate and activate PLC gamma. Surprisingly, the crippled receptor was the one that recruited PLC gamma and GAP. Thus, GAP functions to suppress signal relay by the beta PDGFR, and it does so by silencing PLC gamma. These findings demonstrate that the biological response to PDGF depends not only on the ability of the beta PDGFR to recruit signal relay enzymes but also on the blend of these receptor-associated proteins.  相似文献   

19.
Using the specific Abl tyrosine kinase inhibitor STI 571, we purified unphosphorylated murine type IV c-Abl and measured the kinetic parameters of c-Abl tyrosine kinase activity in a solution with a peptide-based assay. Unphosphorylated c-Abl exhibited substantial peptide kinase activity with K(m) of 204 microm and V(max) of 33 pmol min(-1). Contrary to previous observations using immune complex kinase assays, we found that a transforming c-Abl mutant with a Src homology 3 domain point mutation (P131L) had significantly (about 6-fold) higher intrinsic kinase activity than wild-type c-Abl (K(m) = 91 microm, V(max) = 112 pmol min(-1)). Autophosphorylation stimulated the activity of wild-type c-Abl about 18-fold and c-Abl P131L about 3.6-fold, resulting in highly active kinases with similar catalytic rates. The autophosphorylation rate was dependent on Abl protein concentration consistent with an intermolecular reaction. A tyrosine to phenylalanine mutation (Y412F) at the c-Abl residue homologous to the c-Src catalytic domain autophosphorylation site impaired the activation of wild-type c-Abl by 90% but reduced activation of c-Abl P131L by only 45%. Mutation of a tyrosine (Tyr-245) in the linker region between the Src homology 2 and catalytic domains that is conserved among the Abl family inhibited the autophosphorylation-induced activation of wild-type c-Abl by 50%, whereas the c-Abl Y245F/Y412F double mutant was minimally activated by autophosphorylation. These results support a model where c-Abl is inhibited in part through an intramolecular Src homology 3-linker interaction and stimulated to full catalytic activity by sequential phosphorylation at Tyr-412 and Tyr-245.  相似文献   

20.
Binding of platelet-derived growth factor (PDGF) to the PDGF receptor (PDGFR) beta subunit triggers receptor tyrosine phosphorylation and the stable association of a number of signal transduction molecules, including phospholipase C gamma (PLC gamma), the GTPase activating protein of ras (GAP), and phosphatidylinositol-3 kinase (PI3K). Previous reports have identified three PDGFR tyrosine phosphorylation sites in the kinase insert domain that are important for stable association of GAP and PI3K. Two of them, tyrosine (Y) 740, and Y-751 are required for the stable association of PI3K, while Y-771 is required for binding of GAP. Here we present data for two additional tyrosine phosphorylation sites, Y-1009 and Y-1021, that are both in the carboxy-terminal region of the PDGFR. Characterization of PDGFR mutants in which these phosphorylation sites are substituted with phenylalanine (F) indicated that Y-1021 and Y-1009 were required for the stable association of PLC gamma and a 64-kDa protein, respectively. An F-1009/F-1021 double mutant selectively failed to bind both PLC gamma and the 64-kDa protein, whereas all of the carboxy-terminal mutants bound wild-type levels of GAP and PI3K. The carboxy terminus encodes the complete binding site for PLC gamma, since a phosphorylated carboxy-terminal fusion protein selectively bound PLC gamma. To determine the biological consequences of failure to associate with PLC gamma, we measured PDGF-dependent inositol phosphate production and initiation of DNA synthesis. The PDGFR mutants that failed to associate with PLC gamma were not able to mediate the PDGF-dependent production of inositol phosphates. Since tyrosine phosphorylation of PLC gamma enhances its enzymatic activity, we speculated that PDGFR mutants that failed to activate PLC gamma were unable to mediate its tyrosine phosphorylation. Surprisingly, the F-1021 receptor mediated readily detectable levels of PDGF-dependent PLC gamma tyrosine phosphorylation. Thus, the production of inositol phosphates requires not only PLC gamma tyrosine phosphorylation but also its association with the PDGFR. Comparison of the mutant PDGFRs' abilities to initiate PDGF-dependent DNA synthesis indicated that failure to associate with PLC gamma and produce inositol phosphates diminished the mitogenic response by 30%. In contrast, preventing the PDGFR from binding the 64-kDa protein did not compromise PDGF-triggered DNA synthesis at saturating concentrations of PDGF. Thus, it appears that phosphorylation of the PDGFR at Y-1021 is required for the stable association of PLC gamma to the receptor's carboxy terminus, the production of inositol phosphates, and initiation of the maximal mitogenic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号