首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel 3D microstructural model is proposed to investigate the relationship between morphology and mechanical properties of trabecular bone. Open and closed cell geometries were selected with varying volume fractions and degrees of anisotropy that simulate the architectures of human cancellous bone over a broad range of anatomical locations. Finite element models of both cells were developed using beams and shells. Volume fraction and mean intercept length were calculated analytically and the effective elastic tensors were computed with linear tissue properties and periodic boundary conditions. Distinct, but strong relationships were obtained between fabric and the elastic tensors for open and closed cell geometries, which bound the experimental results obtained for human bone and support the relevance of the selected model to address trabecular bone fragility.  相似文献   

2.
Fabric and compliance tensors of a cube of cancellous bone with a complicated three-dimensional trabecular structure were obtained for trabecular surface remodeling by using a digital image-based model combined with a large-scale finite element method. Using mean intercept length and a homogenization method, the fabric and compliance tensors were determined for the trabecular structure obtained in the computer remodeling simulation. The tensorial quantities obtained indicated that anisotropic structural changes occur in cancellous bone adapting to the compressive loading condition. There were good correlations between the fabric tensor, bone volume fraction, and compliance tensor in the remodeling process. The result demonstrates that changes in the structural and mechanical properties of cancellous bone are essentially anisotropic and should be expressed by tensorial quantities.  相似文献   

3.
Fabric and compliance tensors of a cube of cancellous bone with a complicated three-dimensional trabecular structure were obtained for trabecular surface remodeling by using a digital image-based model combined with a large-scale finite element method. Using mean intercept length and a homogenization method, the fabric and compliance tensors were determined for the trabecular structure obtained in the computer remodeling simulation. The tensorial quantities obtained indicated that anisotropic structural changes occur in cancellous bone adapting to the compressive loading condition. There were good correlations between the fabric tensor, bone volume fraction, and compliance tensor in the remodeling process. The result demonstrates that changes in the structural and mechanical properties of cancellous bone are essentially anisotropic and should be expressed by tensorial quantities.  相似文献   

4.
Assessment of the mechanical properties of trabecular bone is of major biological and clinical importance for the investigation of bone diseases, fractures and their treatments. Finite element (FE) methods are getting increasingly popular for quantifying the elastic and failure properties of trabecular bone. In particular, voxel-based FE methods have been previously used to calculate the effective elastic properties of trabecular microstructures. However, in most studies, bone tissue moduli were assumed or back-calculated to match the apparent elastic moduli from experiments, which often lead to surprisingly low values when compared to nanoindentation results. In this study, voxel-based FE analysis of trabecular bone is combined with physical measures of volume fraction, micro-CT (microCT) reconstructions, uniaxial mechanical tests and specimen-specific nanoindentation tests for proper validation of the method. Cylindrical specimens of cancellous bone were extracted from human femurs and their volume fraction determined with Archimede's method. Uniaxial apparent modulus of the specimens was measured with an improved tension-compression testing protocol that minimizes boundary artefacts. Their microCT reconstructions were segmented to match the measured bone volume fraction and used to create full-size voxel models with 30-45 microm element size. For each specimen, linear isotropic elastic material properties were defined based on specific nanoindentation measurements of its embedded bone tissue. Linear FE analyses were finally performed to simulate the uniaxial mechanical tests. Additional parametric analyses were performed to evaluate the potential errors on the predicted apparent modulus arising from variations in segmentation threshold, tissue modulus, and the use of 125-mm(3) cubic sub-regions. The results demonstrate an excellent correspondence between experimental measures and FE predictions of uniaxial apparent modulus. In conclusion, the adopted voxel-based FE approach is found to be a robust method to predict the linear elastic properties of human cancellous bone, provided segmentation of the microCT reconstructions is carefully calibrated, tissue modulus is known a priori and the entire region of interest is included in the analysis.  相似文献   

5.
A novel 3D microstructural model is proposed to investigate the relationship between morphology and mechanical properties of trabecular bone. Open and closed cell geometries were selected with varying volume fractions and degrees of anisotropy that simulate the architectures of human cancellous bone over a broad range of anatomical locations. Finite element models of both cells were developed using beams and shells. Volume fraction and mean intercept length were calculated analytically and the effective elastic tensors were computed with linear tissue properties and periodic boundary conditions

Distinct, but strong relationships were obtained between fabric and the elastic tensors for open and closed cell geometries, which bound the experimental results obtained for human bone and support the relevance of the selected model to address trabecular bone fragility.  相似文献   

6.
 The adaptation of cancellous bone to mechanical forces is well recognized. Theoretical models for predicting cancellous bone architecture have been developed and have mainly focused on the distribution of trabecular mass or the apparent density. The purpose of this study was to develop a theoretical model which can simultaneously predict the distribution of trabecular orthotropy/orientation, as represented by the fabric tensor, along with apparent density. Two sets of equations were derived under the assumption that cancellous bone is a biological self-optimizing material which tends to minimize strain energy. The first set of equations provide the relationship between the fabric tensor and stress tensor, and have been verified to be consistent with Wolff’s law of trabecular architecture, that is, the principal directions of the fabric tensor coincide with the principal stress trajectories. The second set of equations yield the apparent density from the stress tensor, which was shown to be identical to those obtained based on local optimization with strain energy density of true bone tissue as the objective function. These two sets of equations, together with elasticity field equations, provide a complete mathematical formulation for the adaptation of cancellous bone. Received: 25 February 1997/Revised version: 23 September 1997  相似文献   

7.
Cancellous bone has a dynamic 3-dimensional architecture of trabeculae, the arrangement of which is continually reorganized via bone remodeling to adapt to the mechanical environment. Osteocytes are currently believed to be the major mechanosensory cells and to regulate osteoclastic bone resorption and osteoblastic bone formation in response to mechanical stimuli. We previously developed a mathematical model of trabecular bone remodeling incorporating the possible mechanisms of cellular mechanosensing and intercellular communication in which we assumed that interstitial fluid flow activates the osteocytes to regulate bone remodeling. While the proposed model has been validated by the simulation of remodeling of a single trabecula, it remains unclear whether it can successfully represent in silico the functional adaptation of cancellous bone with its multiple trabeculae. In the present study, we demonstrated the response of cancellous bone morphology to uniaxial or bending loads using a combination of our remodeling model with the voxel finite element method. In this simulation, cancellous bone with randomly arranged trabeculae remodeled to form a well-organized architecture oriented parallel to the direction of loading, in agreement with the previous simulation results and experimental findings. These results suggested that our mathematical model for trabecular bone remodeling enables us to predict the reorganization of cancellous bone architecture from cellular activities. Furthermore, our remodeling model can represent the phenomenological law of bone transformation toward a locally uniform state of stress or strain at the trabecular level.  相似文献   

8.
The amount of microdamage in bone tissue impairs mechanical performance and may act as a stimulus for bone remodeling. Here we determine how loading mode (tension vs. compression) and microstructure (trabecular microarchitecture, local trabecular thickness, and presence of resorption cavities) influence the number and volume of microdamage sites generated in cancellous bone following a single overload. Twenty paired cylindrical specimens of human vertebral cancellous bone from 10 donors (47–78 years) were mechanically loaded to apparent yield in either compression or tension, and imaged in three dimensions for microarchitecture and microdamage (voxel size 0.7×0.7×5.0 μm3). We found that the overall proportion of damaged tissue was greater (p=0.01) for apparent tension loading (3.9±2.4%, mean±SD) than for apparent compression loading (1.9±1.3%). Individual microdamage sites generated in tension were larger in volume (p<0.001) but not more numerous (p=0.64) than sites in compression. For both loading modes, the proportion of damaged tissue varied more across donors than with bone volume fraction, traditional measures of microarchitecture (trabecular thickness, trabecular separation, etc.), apparent Young?s modulus, or strength. Microdamage tended to occur in regions of greater trabecular thickness but not near observable resorption cavities. Taken together, these findings indicate that, regardless of loading mode, accumulation of microdamage in cancellous bone after monotonic loading to yield is influenced by donor characteristics other than traditional measures of microarchitecture, suggesting a possible role for tissue material properties.  相似文献   

9.
The aim of this study was to verify whether a misalignment between the testing direction and the trabecular main direction has a significant effect on the compressive behaviour of cancellous bone. Ten cylindrical specimens were extracted from femoral heads with a misalignment to the trabecular main direction of approximately 20 degrees. Each specimen was paired with a specimen extracted aligned with the main direction of the trabeculae on the basis of the closest bone volume fraction, obtaining two groups, one 'aligned' and one 'misaligned'. The average off-axis angle was 6.1 degrees and 21.6 degrees for the 'aligned' and 'misaligned' group, respectively. The specimens underwent micro-tomographic analysis, compressive testing, micro-indentation testing and ashing. No significant differences were found in histomorphometric parameters, hardness and ash density between the two groups, whereas significant differences were found in Young's modulus and ultimate stress: both parameters, measured for the 'misaligned' group, were about 40% lower than those measured for the 'aligned' group. These results demonstrate a great effect of the angle between the testing direction and the main direction of the trabecular structure on the compressive behaviour of cancellous bone. This angle should be reduced as much as possible (in the present work the average value was 6.6+/-3.3 degrees), in any case measured, and always reported together with the mechanical parameters of cancellous bone.  相似文献   

10.
A novel 3D microstructural model was proposed and validated in part I of this publication. In part II, the model was used to identify the yield surface of a representative volume element of human trabecular bone as a function of volume fraction and degree of anisotropy. Finite element models of open and closed cells geometries were used to calculate effective yield stresses for a variety of loading cases with periodic boundary conditions. The postyield behaviour of the trabecular tissue was assumed from data available for cortical tissue. The yield stresses defined by a 0.2% offset in the global stress-strain curve were fit to an orthotropic Hill criterion and the parameters of the surface calculated. Similarly to the previous elastic analysis, distinct but strong relationships were obtained between volume fraction, fabric and the yield surface parameters for both the open and closed cell geometries. This finding suggests that volume fraction and fabric may be used to predict the initiation of mechanical damage in human trabecular bone at the continuum level.  相似文献   

11.
Strong correspondence between the uniaxial apparent strength and stiffness of cancellous bone allows the use of stiffness as a predictor of bone strength. Measured values of mechanical properties in cancellous bone can be different between experiments due to different experimental conditions. In the current study, bone volume fraction, experimentally determined and finite element (FE) predicted stiffness were examined as predictors of cancellous bone ultimate strength in two different groups each of which was tested using a different end constraint. It is demonstrated that, although always significant, the relationships of strength with bone volume fraction and experimentally determined stiffness are different between test groups. Apparent stiffness, estimated by FE modeling, predicts the ultimate strength of human cancellous bone consistently for all examined experimental protocols.  相似文献   

12.
Correlation of the mean and standard deviation of trabecular stresses has been proposed as a mechanism by which a strong relationship between the apparent strength and stiffness of cancellous bone can be achieved. The current study examined whether the relationship between the mean and standard deviation of trabecular von Mises stresses can be generalized for any group of cancellous bone. Cylindrical human vertebral cancellous bone specimens were cut in the infero-superior direction from T12 of 23 individuals (inter-individual group). Thirty nine additional specimens were prepared similarly from the T4-T12 and L2-L5 vertebrae of a 63 year old male (intra-individual group). The specimens were scanned by micro-computed tomography (microCT) and trabecular von Mises stresses were calculated using finite element modeling. The expected value, standard deviation and coefficient of variation of the von Mises stress were calculated form a three-parameter Weibull function fitted to von Mises stress data from each specimen. It was found that the average and standard deviation of trabecular von Mises shear stress were: (i) correlated with each other, supporting the idea that high correlation between the apparent strength and stiffness of cancellous bone can be achieved through controlling the trabecular level shear stress variations, (ii) dependent on anatomical site and sample group, suggesting that the variation of stresses are correlated to the mean stress to different degrees between vertebrae and individuals, and (iii) dependent on bone volume fraction, consistent with the idea that shear stress is less well controlled in bones with low BV/TV. The conversion of infero-superior loading into trabecular von Mises stresses was maximum for the tissue at the junction of the thoracic and lumbar spine (T12-L1) consistent with this junction being a common site of vertebral fracture.  相似文献   

13.
Until recently, detailed analyses of the architecture of nonhuman primate cancellous bone have not been possible due to a combination of methodological constraints, including poor resolution imaging or destructive protocols. The development of micro-computed tomography (microCT) and morphometric methods associated with this imaging modality offers anthropologists a new means to study the comparative architecture of cancellous bone. Specifically, microCT will allow anthropologists to investigate the relationship between locomotor behavior and trabecular structure. We conducted a preliminary study on the trabecular patterns in the proximal humerus and femur of Hylobates lar, Ateles paniscus, Macaca mulatta, and Papio anubis to investigate the quantitative differences in their trabecular architecture and evaluate the potential of microCT in anthropological inquiry. MicroCT allows the researcher to evaluate variables beyond simple two-dimensional orientations and radiographic densities. For example, this methodology facilitates the study of trabecular thickness and bone volume fraction using three-dimensional data. Results suggest that density-related parameters do not reliably differentiate suspensory-climbing species from quadrupedal species. However, preliminary results indicate that measurements of the degree of anisotropy, a measure of trabecular orientation uniformity, do distinguish suspensory-climbing taxa from more quadrupedal species. The microCT method is an advance over conventional radiography and medical CT because it can accurately resolve micron-sized struts that make up cancellous bone, and from these images a wide array of parameters that have been demonstrated to be related to cancellous bone mechanical properties can be measured. Methodological problems pertinent to any comparative microCT study of primate trabecular architecture are discussed.  相似文献   

14.
The mechanical properties of cancellous bone and the biological response of the tissue to mechanical loading are related to deformation and strain in the trabeculae during function. Due to the small size of trabeculae, their motion is difficult to measure. To avoid the need to measure trabecular motions during loading the finite element method has been used to estimate trabecular level mechanical deformation. This analytical approach has been empirically successful in that the analytical models are solvable and their results correlate with the macroscopically measured stiffness and strength of bones. The present work is a direct comparison of finite element predictions to measurements of the deformation and strain at near trabecular level. Using the method of digital volume correlation, we measured the deformation and calculated the strain at a resolution approaching the trabecular level for cancellous bone specimens loaded in uniaxial compression. Smoothed results from linearly elastic finite element models of the same mechanical tests were correlated to the empirical three-dimensional (3D) deformation in the direction of loading with a coefficient of determination as high as 97% and a slope of the prediction near one. However, real deformations in the directions perpendicular to the loading direction were not as well predicted by the analytical models. Our results show, that the finite element modeling of the internal deformation and strain in cancellous bone can be accurate in one direction but that this does not ensure accuracy for all deformations and strains.  相似文献   

15.
Despite the introduction of new surgical techniques, the treatment of cartilage defects remains challenging. Delay or complete failure of cartilage healing is associated with problems in biological regeneration. The influence of mechanical conditions on this process, however, remains unevaluated. Osteochondral defects were generated on the left femoral condyle in 18 Yucatan minipigs. After 4, 6 and 12 weeks the defect filling, trabecular orientation and bone density were compared to the intact contralateral side. The mechanical straining during this period was then analyzed using an adaptive finite element technique. Histologically, the osteochondral defects showed bone resorption at the base and bone formation from the circumference. At 12 weeks, the macroscopically healed specimens showed fibrous cartilage formation, a minimally organized trabecular structure and increased trabecular volume fraction compared to the controls (p < 0.002). The amount of cancellous, cartilagineous, and fibrous tissue and the defect size as measured in histomorphometric analysis for the three time points (4, 6 and 12 weeks) was comparable in magnitude to that predicted by finite element analysis. The simulated osteochondral healing process was not fully capable of re-establishing a hyaline-like cartilage layer. The correlation between simulation and histology allows identification of mechanical factors that appear to have a larger impact on the healing of osteochondral defects than previously considered.  相似文献   

16.
The mechanical performance of cancellous bone is characterized using experiments which apply linear poroelasticity theory. It is hypothesized that the anisotropic organization of the solid and pore volumes of cancellous bone can be physically characterized separately (no deformable boundary interactive effects) within the same bone sample. Due to its spongy construction, the in vivo mechanical function of cancellous or trabecular bone is dependent upon fluid and solid materials which may interact in a hydraulic, convective fashion during functional loading. This project provides insight into the organization of the tissue, ie., the trabecular connectivity, by defining the separate nature of this biphasic performance. Previous fluid flow experiments [Kohles et al., 2001, Journal of Biomechanics, 34(11), pp. 1197-1202] describe the pore space via orthotropic permeability. Ultrasonic wave propagation through the trabecular network is used to describe the solid component via orthotropic elastic moduli and material stiffness coefficients. The linear poroelastic nature of the tissue is further described by relating transport (fluid flow) and elasticity (trabecular load transmission) during regression analysis. In addition, an empirical relationship between permeability and porosity is applied to the collected data. Mean parameters in the superior-inferior (SI) orientation of cubic samples (n=20) harvested from a single bovine distal femur were the largest (p<0.05) in comparison to medial-lateral (ML) and anterior-posterior (AP) orientations: Apparent elastic modulus (2,139 MPa), permeability (4.65x10(-10) m2), and material stiffness coefficient (13.6 GPa). A negative correlation between permeability as a predictor of structural elastic modulus supported a parametric relationship in the ML (R2=0.4793), AP (R2=0.3018), and SI (R2=0.6445) directions (p<0.05).  相似文献   

17.
Previously, bio-mechanical studies on the temporomandibular joint have concentrated mainly on the mandibular condyle while the articular eminence has been largely overlooked. Furthermore, research on the mechanical properties of bone using finite element analysis has focused on the cortical bone in preference to cancellous bone. In this study morphorogical changes in the internal structure of the articular eminence as related to child growth were examined using Micro-CT. Morphometric analysis of samples of cancellous bone representing both deciduous and early mixed dentitions showed an increase in the bone volume fraction and trabecular thickness in the early mixed dentition, and finite element analysis indicated directional transmission of stress as well. These results suggest that the morphology of the trabecular bone was altered to adapt to the functional growth progressed from the deciduous to the early mixed dentition.  相似文献   

18.
Density is a salient property of bone and plays a crucial role in determining the mechanical properties of both its cancellous and cortical structural forms. Density is defined in a number of ways at either the bone tissue (D(app), apparent) or the bone material level (D(mat), material). The concept of density is relatively simple, but measuring it in the context of bone is a complex issue. The third dimension of the problem is the concept of porosity, or BV/TV (ratio of bone material volume over tissue volume). Recent investigations from our laboratory have revealed an interdependence of D(app) and D(mat) in the cancellous bone of at least four different cohorts of human patients. To clarify the underlying causes of this behaviour, we produced here equivalent relationships from specimens originating from cortical and cancellous areas of the same bone. Plots of D(app) vs. D(mat) showed that D(mat) was not a monotonic function of increasing D(app), but instead showed a 'boomerang'-like pattern. By empirically dissecting the data in two regions for D(app) above and below a value equal to 1.3gcm(-3), we were able to objectively isolate the bone in trabecular and compact forms. Our findings may have implications not only for the segregation of bone in these two structural forms, but also for the mechanobiological and physiological processes that govern the regulation of compact and trabecular bone areas.  相似文献   

19.
Two-dimensional simulation of trabecular surface remodeling was conducted for a human proximal femur to investigate the structural change of cancellous bone toward a uniform stress state. Considering that a local mechanical stimulus plays an important role in cellular activities in bone remodeling, local stress nonuniformity was assumed to drive trabecular structural change to seek a uniform stress state. A large-scale pixel-based finite element model was used to simulate structural changes of individual trabeculae over the entire bone. As a result, the initial structure of trabeculae changed from isotropic to anisotropic due to trabecular microstructural changes caused by surface remodeling according to the mechanical environment in the proximal femur. Under a single-loading condition, it was shown that the apparent structural property evaluated by fabric ellipses corresponded to the apparent stress state in cancellous bone. As is observed in the actual bone, a distributed trabecular structure was obtained under a multiple-loading condition. Through these studies, it was concluded that trabecular surface remodeling toward a local uniform stress state at the trabecular level could naturally bring about functional adaptation phenomenon at the apparent tissue level. The proposed simulation model would be capable of providing insight into the hierarchical mechanism of trabecular surface remodeling at the microstructural level up to the apparent tissue level.  相似文献   

20.
Water is commonly removed from bone to study its effect on mechanical behaviour; however, dehydration also alters the bone structure. To make matters worse, measuring structural changes in cancellous bone is complicated by a number of factors. Therefore, the goals of this study were to address these issues by (1) comparing Archimedes' method and a helium pycnometer as methods for measuring cancellous bone volume; (2) measuring the apparent dimensional and volumetric tissue shrinkage of cancellous bone at two levels of dehydration; and, (3) identifying whether a size effect exists in cancellous bone shrinkage. Cylindrical specimens (3, 5 and 8.3 mm diameters) of cancellous bone were taken from the distal bovine femur. The apparent dimensions of each cylindrical specimen were measured in a fully hydrated state (HYD), after drying at room temperature (AIR), and after oven drying at 105 degrees C (OVEN). Tissue volume measurements for those three hydration states were obtained using both a helium pycnometer and Archimedes' method. Aluminium foams, which mimic the cancellous structure, were used as controls. The results suggest that the helium pycnometer and Archimedes' method yield identical results in the HYD and AIR states, but that Archimedes' method under-predicts the nominal OVEN volume by incorporating the collagen-apatite porosity. A distinct size effect on volumetric shrinkage is observed (p<0.025) using the pycnometer in both AIR and OVEN states. Apparent dimensional shrinkage (2% and 7%) at the two dehydration levels is much smaller than the measured volumetric tissue shrinkage (16% and 29%), which results in a reduced dehydrated bone volume fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号