首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary objective of this study was to determine the possible apoptotic cell death preventive effects of the antioxidant selenium using an experimental rat spinal cord injury (SCI) model and cultured spinal cord-derived neural progenitor cells (NPCs). Sodium selenite treatment exerted a profound preventive effect on apoptotic cell death, including p-P38, p-SAPK/JNK, caspases, and PARP activity, and ameliorated astrogliosis and hypomyelination, which occurs in regions of active cell death in the spinal cords of SCI rats. The foremost protective effect of selenite in SCI would therefore be manifested in the suppression of acute secondary apoptotic cell death. However, selenite does not appear to exert an anti-inflammatory function associated with active microglia and macrophage propagation or infiltration into the lesion site. Selenite-mediated neuroprotection has been linked to selenite's attenuation or inhibition of p38 mitogen-activated protein kinase, pSAPK/JNK, and Bax activation in in vitro and in vivo SCI lesion sites. Selenite also attenuated cell death via the prevention of cytochrome c release, caspase activation, and ROS accumulation in the cytosol. Also, our study showed that selenite administered immediately after SCI significantly diminishes functional deficits. The selenite-treated group recovered hind limb reflexes more rapidly, and a higher percentage of these rats regained responses to a greater degree than was seen in the untreated injured rats. Our data indicate that the therapeutic outcome of selenite is most likely the consequence of its comprehensive apoptotic cell death blocking effects, resulting in the protection of white matter, oligodendrocytes, and neurons, and the inhibition of astrogliosis. The finding that the administration of selenite prevents secondary pathological events in traumatic spinal cord injuries, and promotes the recovery of motor function in an animal model. Its efficacy may facilitate the development of novel drug targets for the treatment of SCI.  相似文献   

2.
Axonal demyelination is a consistent pathological sequel to chronic brain and spinal cord injuries and disorders that slows or disrupts impulse conduction, causing further functional loss. Since oligodendroglial progenitors are present in the demyelinated areas, failure of remyelination may be due to lack of sufficient proliferation and differentiation of oligodendroglial progenitors. Guanosine stimulates proliferation and differentiation of many types of cells in vitro and exerts neuroprotective effects in the central nervous system (CNS). Five weeks after chronic traumatic spinal cord injury (SCI), when there is no ongoing recovery of function, intraperitoneal administration of guanosine daily for 2 weeks enhanced functional improvement correlated with the increase in myelination in the injured cord. Emphasis was placed on analysis of oligodendrocytes and NG2-positive (NG2+) cells, an endogenous cell population that may be involved in oligodendrocyte replacement. There was an increase in cell proliferation (measured by bromodeoxyuridine staining) that was attributable to an intensification in progenitor cells (NG2+ cells) associated with an increase in mature oligodendrocytes (determined by Rip+ staining). The numbers of astroglia increased at all test times after administration of guanosine whereas microglia only increased in the later stages (14 days). Injected guanosine and its breakdown product guanine accumulated in the spinal cords; there was more guanine than guanosine detected. We conclude that functional improvement and remyelination after systemic administration of guanosine is due to the effect of guanosine/guanine on the proliferation of adult progenitor cells and their maturation into myelin-forming cells. This raises the possibility that administration of guanosine may be useful in the treatment of spinal cord injury or demyelinating diseases such as multiple sclerosis where quiescent oligodendroglial progenitors exist in demyelinated plaques.  相似文献   

3.
Spinal cord injury (SCI) has been regarded clinically as an irreversible damage caused by tissue contusion due to a blunt external force. Past research had focused on the analysis of the pathogenesis of secondary injury that extends from the injury epicenter to the periphery, as well as tissue damage and neural cell death associated with secondary injury. Recent studies, however, have proven that neural stem (progenitor) cells are also present in the brain and spinal cord of adult mammals including humans. Analyses using spinal cord injury models have also demonstrated active dynamics of cells expressing several stem cell markers, and methods aiming at functional reconstruction by promoting the potential self-regeneration capacity of the spinal cord are being explored. Furthermore, reconstruction of the neural circuit requires not only replenishment or regeneration of neural cells but also regeneration of axons. Analysis of the tissue microenvironment after spinal cord injury and research aiming to remove axonal regeneration inhibitors have also made progress. SCI is one of the simplest central nervous injuries, but its pathogenesis is associated with diverse factors, and further studies are required to elucidate these complex interactions in order to achieve spinal cord regeneration and functional reconstruction.  相似文献   

4.
Spinal cord injury (SCI) has been regarded clinically as an irreversible damage caused by tissue contusion due to a blunt external force. Past research had focused on the analysis of the pathogenesis of secondary injury that extends from the injury epicenter to the periphery, as well as tissue damage and neural cell death associated with secondary injury. Recent studies, however, have proven that neural stem (progenitor) cells are also present in the brain and spinal cord of adult mammals including humans. Analyses using spinal cord injury models have also demonstrated active dynamics of cells expressing several stem cell markers, and methods aiming at functional reconstruction by promoting the potential self-regeneration capacity of the spinal cord are being explored. Furthermore, reconstruction of the neural circuit requires not only replenishment or regeneration of neural cells but also regeneration of axons. Analysis of the tissue microenvironment after spinal cord injury and research aiming to remove axonal regeneration inhibitors have also made progress. SCI is one of the simplest central nervous injuries, but its pathogenesis is associated with diverse factors, and further studies are required to elucidate these complex interactions in order to achieve spinal cord regeneration and functional reconstruction.Key words: glia, regeneration, spinal cord, injury, axon  相似文献   

5.
In the present study, we examined the mechanisms of hydrogen-rich saline, a reported therapeutic antioxidant, in the treatment of acute spinal cord contusion injury. Male Sprague-Dawley rats were used to produce a standardized model of contuses spinal cord injury (125 kdyn force). Hydrogen-rich saline was injected intraperitoneally (5 ml/kg) immediately, and at 24 and 48 h after injury. All rats were sacrificed at 72 h after spinal cord injury (SCI). Apoptotic cell death, oxidative stress, inflammation, level of Brain derived neurotrophic factor (BDNF) were evaluated. In addition, locomotor behavior was assessed using the Basso, Beattice and Bresnahan (BBB) scale. We observed that administration of hydrogen-rich saline decreased the number of apoptotic cells, suppressed oxidative stress, and improved locomotor functions. Hydrogen-rich saline increased the release of BDNF. In conclusion, hydrogen-rich saline reduced acute spinal cord contusion injury, possibly by reduction of oxidative stress and elevation of BDNF.  相似文献   

6.
The purpose of this study is to evaluate, in an experimental model of spinal cord injury (SCI), the presence of apoptotic cell death after trauma and if early administration of a single bolus of methylprednisolone (MP) influences apoptosis in the zone of trauma and in adjacent spinal cord segments. For this study, a total of 96 adult female Wistar rats were subjected to spinal contusion at the T6-T8 level, producing immediate paraplegia. Forty-eight animals (treated group) received a single intraperitoneal injection of MP, at a dose of 30 mg/kg body weight, 10 minutes later. Cells undergoing apoptosis were detected by means of immunohistochemical labeling with the monoclonal antibody Apostain (anti-ssDNA MAb F7-26), in the injured spinal cord tissue, both in the zone of the lesion and in the adjacent spinal segments (rostral and caudal zones), 1, 4, 8, 24 and 72 hours and 1 week after injury. Apoptosis was detected in neurons and glial cells in the zone of the lesion 1 hour after trauma, with a pattern that showed no changes 4 hours later. Between 4 and 8 hours postinjury, the number of apoptotic cells increased, after which it decreased over the following days. In the adjacent spinal segments, apoptotic cells were detected 4 hours after trauma, and increased progressively over the remainder of the study, the number of apoptotic cells being similar in the lesion zone and in rostral and caudal zones one week after injury. When the group of MP-treated animals was considered, significant decreases in the number of apoptotic cells were detected in the lesion zone 24 hours after injury, and in the rostral and caudal zones, at 72 hours and at 1 week after trauma. These findings show that early administration of a single bolus of MP decreases apoptotic cell death after SCI, supporting the utility of MP in reducing secondary damage in injured spinal cord tissue.  相似文献   

7.
Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury.   总被引:38,自引:0,他引:38  
Traumatic spinal cord injury often results in complete loss of voluntary motor and sensory function below the site of injury. The long-term neurological deficits after spinal cord trauma may be due in part to widespread apoptosis of neurons and oligodendroglia in regions distant from and relatively unaffected by the initial injury. The caspase family of cysteine proteases regulates the execution of the mammalian apoptotic cell death program. Caspase-3 cleaves several essential downstream substrates involved in the expression of the apoptotic phenotype in vitro, including gelsolin, PAK2, fodrin, nuclear lamins and the inhibitory subunit of DNA fragmentation factor. Caspase-3 activation in vitro can be triggered by upstream events, leading to the release of cytochrome c from the mitochondria and the subsequent transactivation of procaspase-9 by Apaf-1. We report here that these upstream and downstream components of the caspase-3 apoptotic pathway are activated after traumatic spinal cord injury in rats, and occur early in neurons in the injury site and hours to days later in oligodendroglia adjacent to and distant from the injury site. Given these findings, targeting the upstream events of the caspase-3 cascade has therapeutic potential in the treatment of acute traumatic injury to the spinal cord.  相似文献   

8.
脊髓损伤的治疗与康复一直是医学领域的重大难题,尤其是在改善损伤的神经功能方面进展甚微。继发性损伤是造成脊髓损伤后神经功能障碍的主要原因,炎症反应是继发性损伤阶段最重要的病理过程。急性期通过抑制神经炎症来减轻继发性损伤被认为可减轻神经功能损害而达到神经保护作用。炎性小体是一类蛋白质复合体,由模式识别受体中的NLRs家族和PHYIN家族的受体蛋白质作为主要框架组装并命名,常见的炎性小体包括NLRP1、NLRP3、NLRC4(IPAF)、AIM2等。在感染或受到损伤刺激时,炎性小体在细胞质内组装,并激活促炎症蛋白酶胱天蛋白酶1(caspase-1),活化的胱天蛋白酶1一方面促进促炎症细胞因子IL-1β和IL-18的前体成熟和分泌,另一方面介导细胞焦亡。细胞焦亡以细胞肿胀破裂并释放细胞内容物为特征,是在炎症和应激的病理条件下诱导的程序性细胞死亡方式。促炎症细胞因子和焦亡释放的胞内物质都可作为促炎信号引发炎症反应。近期发现,炎性小体通过诱导促炎因子释放以及介导细胞焦亡等途径, 参与激活脊髓损伤后的炎症级联反应,加重继发性神经炎症。靶向抑制炎性小体的激活可减轻炎症反应,促进神经细胞存活,达到神经保护作用。因此,炎性小体有望成为脊髓损伤治疗的新靶点。本文拟从炎性小体的结构及其在脊髓损伤中的作用、激活机制和治疗前景进行综述,以期为后续研究提供思路。  相似文献   

9.
10.
P2X7 receptor inhibition improves recovery after spinal cord injury   总被引:21,自引:0,他引:21  
Secondary injury exacerbates the extent of spinal cord insults, yet the mechanistic basis of this phenomenon has largely been unexplored. Here we report that broad regions of the peritraumatic zone are characterized by a sustained process of pathologic, high ATP release. Spinal cord neurons expressed P2X7 purine receptors (P2X7R), and exposure to ATP led to high-frequency spiking, irreversible increases in cytosolic calcium and cell death. To assess the potential effect of P2X7R blockade in ameliorating acute spinal cord injury (SCI), we delivered P2X7R antagonists OxATP or PPADS to rats after acute impact injury. We found that both OxATP and PPADS significantly improved functional recovery and diminished cell death in the peritraumatic zone. These observations demonstrate that SCI is associated with prolonged purinergic receptor activation, which results in excitotoxicity-based neuronal degeneration. P2X7R antagonists inhibit this process, reducing both the histological extent and functional sequelae of acute SCI.  相似文献   

11.
Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular structures. Here, we describe how to isolate and image the living spinal cord from mice to capture dynamics of acute axonal injury.  相似文献   

12.
After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis) in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC) or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn) of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU) to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord) and unaltered in neurogenic regions (dentate gyrus and SVZ) of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.  相似文献   

13.
Treatment with a monoclonal antibody (mAb) against the CD11d subunit of the leukocyte integrin CD11d/CD18 after spinal cord injury (SCI) decreases intraspinal inflammation and oxidative damage, improving neurological function in rats. In this study we tested whether the anti-CD11d mAb treatment reduces intraspinal free radical formation and cell death after SCI. Using clip-compression SCI in rats, reactive oxygen species (ROS) generated in injured spinal cord were detected using 2',7'-dichlorofluorescin-diacetate and hydroethidine as fluorescent probes. ROS in the injured cord increased significantly after SCI; anti-CD11d mAb treatment significantly reduced this ROS formation. Immunohistochemistry and western blotting were employed to assess the effects of anti-CD11d mAb treatment on spinal cord expression of gp91Phox (a subunit of NADPH oxidase producing superoxide) on formation of 4-hydroxynonenal (HNE, indicating lipid peroxidation) and on expression of caspase-3. We also assessed effects on cell death, determined by cell morphology. The expression of gp91Phox, formation of HNE, and cell death increased after SCI. Anti-CD11d mAb treatment clearly attenuated these responses. In conclusion, anti-CD11d mAb treatment significantly reduces intraspinal free radical formation caused by infiltrating leukocytes after SCI, thereby reducing secondary cell death. These effects likely underlie tissue preservation and improved neurological function that result from the mAb treatment.  相似文献   

14.
It has been shown previously that after spinal cord injury, the loss of grey matter is relatively faster than loss of white matter suggesting interventions to save white matter tracts offer better therapeutic possibilities. Loss of white matter in and around the injury site is believed to be the main underlying cause for the subsequent loss of neurological functions. In this study we used a series of techniques, including estimations of the number of axons with pathology, immunohistochemistry and mapping of distribution of pathological axons, to better understand the temporal and spatial pathological events in white matter following contusion injury to the rat spinal cord. There was an initial rapid loss of axons with no detectable further loss beyond 1 week after injury. Immunoreactivity for CNPase indicated that changes to oligodendrocytes are rapid, extending to several millimetres away from injury site and preceding much of the axonal loss, giving early prediction of the final volume of white matter that survived. It seems that in juvenile rats the myelination of axons in white matter tracts continues for some time, which has an important bearing on interpretation of our, and previous, studies. The amount of myelin debris and axon pathology progressively decreased with time but could still be observed at 10 weeks after injury, especially at more distant rostral and caudal levels from the injury site. This study provides new methods to assess injuries to spinal cord and indicates that early interventions are needed for the successful sparing of white matter tracts following injury.  相似文献   

15.
Brachial plexus root avulsion (BPRA) leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av) treated with normal saline), Av+GM1 (treated with monosialoganglioside), and control. At time points of 3 day (d), 1 week (w), 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA.  相似文献   

16.
Acidic fibroblast growth factor (aFGF; also known as FGF-1) is a potent neurotrophic factor that affects neuronal survival in the injured spinal cord. However, the pathological changes that occur with spinal cord injury (SCI) and the attribution to aFGF of a neuroprotective effect during SCI are still elusive. In this study, we demonstrated that rat SCI, when treated with aFGF, showed significant functional recovery as indicated by the Basso, Beattie, and Bresnahan locomotor rating scale and the combined behavior score (p < 0.01-0.001). Furthermore proteomics and bioinformatics approaches were adapted to investigate changes in the global protein profile of the damaged spinal cord tissue when experimental rats were treated either with or without aFGF at 24 h after injury. We found that 51 protein spots, resolvable by two-dimensional PAGE, had significant differential expression. Using hierarchical clustering analysis, these proteins were categorized into five major expression patterns. Noticeably proteins involved in the process of secondary injury, such as astrocyte activation (glial fibrillary acidic protein), inflammation (S100B), and scar formation (keratan sulfate proteoglycan lumican), which lead to the blocking of injured spinal cord regeneration, were down-regulated in the contusive spinal cord after treatment with aFGF. We propose that aFGF might initiate a series of biological processes to prevent or attenuate secondary injury and that this, in turn, leads to an improvement in functional recovery. Moreover the quantitative expression level of these proteins was verified by quantitative real time PCR. Furthermore we identified various potential neuroprotective protein factors that are induced by aFGF and may be involved in the spinal cord repair processes of SCI rats. Thus, our results could have a remarkable impact on clinical developments in the area of spinal cord injury therapy.  相似文献   

17.
We investigated whether imatinib (Gleevec?, Novartis), a tyrosine kinase inhibitor, could improve functional outcome in experimental spinal cord injury. Rats subjected to contusion spinal cord injury were treated orally with imatinib for 5 days beginning 30 minutes after injury. We found that imatinib significantly enhanced blood-spinal cord-barrier integrity, hindlimb locomotor function, sensorimotor integration, and bladder function, as well as attenuated astrogliosis and deposition of chondroitin sulfate proteoglycans, and increased tissue preservation. These improvements were associated with enhanced vascular integrity and reduced inflammation. Our results show that imatinib improves recovery in spinal cord injury by preserving axons and other spinal cord tissue components. The rapid time course of these beneficial effects suggests that the effects of imatinib are neuroprotective rather than neurorestorative. The positive effects on experimental spinal cord injury, obtained by oral delivery of a clinically used drug, makes imatinib an interesting candidate drug for clinical trials in spinal cord injury.  相似文献   

18.
Pyrroloquinoline quinone (PQQ) is a naturally occurring redox cofactor that acts as an essential nutrient, antioxidant, and redox modulator. PQQ has been demonstrated to oxidize the redox modulatory site of N-methyl-d-aspartic acid (NMDA) receptors. Such agents are known to be neuroprotective in experimental stroke models. Therefore, we examined the possible ameliorating effect of PQQ on spinal cord injury (SCI) in adult rats. Intraperitoneal administration of PQQ effectively promoted the functional recovery of SCI rats after hemi-transection, which was preceded by the attenuation of the expression of inducible nitric oxide (NO) synthase (iNOS) mRNA in the injury site. NO is involved in the secondary detrimental mechanisms and has been implicated in NMDA receptor-mediated neurotoxicity. In fact, administration of PQQ induced significantly decreased lesion size and increased axon density adjoining the lesion area. These observations suggest that PQQ protects against the secondary damage by reducing iNOS expression following primary physical injury to the spinal cord.  相似文献   

19.
Intraperitoneal administration of guanosine to rats with chronic spinal cord injury stimulates remyelination and functional recovery. If guanosine produced its effects in the nervous system, it should enter it and elevate endogenous concentrations. [(3)H]-guanosine (8 mg/kg) was administered intraperitoneally to rats and its distribution and concentration in different sites determined. Guanosine rapidly entered all tissues; its concentration peaked at about 15 minutes except in adipose tissue and CNS where it continued to rise for 30 minutes. Its chief metabolic product in all sites was guanine with over twice as much guanine as guanosine present in CNS after 30 minutes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号