首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Silicate (Si) can enhance plant resistance or tolerance to the toxicity of heavy metals. However, it remains unclear whether Si can ameliorate lead (Pb) toxicity in banana (Musa xparadisiaca) roots. In this study, treatment with 800 mg kg−1 Pb decreased both the shoot and root weight of banana seedlings. The amendment of 800 mg kg−1 Si (sodium metasilicate, Na2SiO3·9H2O) to the Pb-contaminated soil enhanced banana biomass at two growth stages significantly. The amendment of 800 mg kg−1 Si significantly increased soil pH and decreased exchangeable Pb, thus reducing soil Pb availability, while Si addition of 100 mg kg−1 did not influence soil pH. Results from Pb fractionation analysis indicated that more Pb were in the form of carbonate and residual-bound fractions in the Si-amended Pb-contaminated soils. The ratio of Pb-bound carbonate to the total Pb tended to increase with increasing growth stages. Treatment with 100 mg kg−1 Si had smaller effects on Pb forms in the Si-amended soils than that of 800 mg kg−1 Si. Pb treatment decreased the xylem sap greatly, but the addition of Si at both levels increased xylem sap and reduced Pb concentration in xylem sap significantly in the Si-amended Pb treatments. The addition of Si increased the activities of POD, SOD, and CAT in banana roots by 14.2% to 72.1% in the Si-amended Pb treatments. The results suggested that Si-enhanced tolerance to Pb toxicity in banana seedlings was associated with Pb immobilization in the soils, the decrease of Pb transport from roots to shoots, and Si-mediated detoxification of Pb in the plants.  相似文献   

2.
To test the dose effect of ammonium (NH4 +) fertilization on soil methane (CH4) oxidation by methanotrophic communities, batch incubations were conducted at a wide scale of NH4 + amendments: 0, 100, 250, 500, and 1,000 mg N kgdry soil −1. Denaturing gradient gel electrophoresis and real-time quantitative PCR analysis were conducted to investigate the correlation between the CH4 oxidation capacity and methanotrophic communities. Immediately after the addition of NH4 +, temporal inhibition of CH4 oxidation occurred, and this might have been due to the non-specific salt effect (osmotic stress). After a lag phase, the CH4 oxidation rates of the soils with NH4 + fertilization were promoted to levels higher than those of the controls. More than 100 mg N kgdry soil −1 of NH4 + addition resulted in the reduction of type II/type I MOB ratios and an obvious evolution of type II MOB communities, while less than 100 mg N kgdry soil −1 of NH4 + addition induced nearly no change of methanotrophic community compositions. The NH4 +-derived stimulation after the lag phase was attributed to the improvement of N availability for type I MOB. Compared with the controls, 100 mg N kgdry soil −1 of NH4 + addition doubled the CH4 oxidation peak value to more than 20 mg CH4 kgdry soil −1 h−1. Therefore, an appropriate amount of leachate irrigation on the landfill cover layer might efficiently mitigate the CH4 emissions.  相似文献   

3.
The paper reports the effects of selenium (Se) supply on growth and antioxidant traits of wheat (Triticum aestivum L. cv Han NO.7086) seedlings exposed to enhanced ultraviolet-B (UV-B) stress. Antioxidant responses of seedlings were different depending on the Se concentration. Compared with the control, the lower amount used (0.5 mg Se kg−1 soil) had no significant effect on biomass accumulation. The treatments with 1.0, 2.0, and 3.0 mg Se kg−1 promoted biomass accumulation of wheat seedlings, and the increased amount in biomass was the most at 1.0 mg Se kg−1 treatment. Se treatments with 1.0, 2.0, and 3.0 mg kg−1 also significantly increased activities of peroxidase (POD) and superoxide dismutase (SOD) and reduced the rate of superoxide radical (O2) production and malondialdehyde (MDA) content of wheat seedlings. In addition, anthocyanins and phenolic compounds content in wheat seedlings evidently increased by the treatments with 1.0 and 2.0 mg Se kg−1. The lower Se treatment had no significant effect on MDA content, although it increased activities of antioxidant enzymes (POD, SOD, and catalase activities) and reduced the rate of O2 production in wheat seedlings. These results suggest that optimal Se supply is favorable for the growth of wheat seedlings and that optimal Se supply can reduce oxidative stress of seedlings under enhanced UV-B radiation.  相似文献   

4.
In a pot-soil culture ameliorative effect of sulphur (S) (0 or 40 mg S kg−1 soil) on cadmium (Cd) (0, 25, 50 and 100 mg Cd kg−1 soil)-induced growth inhibition and oxidative stress in mustard (Brassica campestris L.) cultivar Pusa Gold was studied. Cadmium at 100 mg kg−1 soil caused maximum increase in the contents of Cd and thiobarbituric acid reactive substances (TBARS) in leaves. Maximum reductions in growth (plant dry mass, leaf area), chlorophyll content, net photosynthetic rate (PN) and the contents of ascorbate (AsA), glutathione (GSH) were observed with 100 mg Cd kg−1 soil compared to control. The application of S helped in reducing Cd toxicity, which was greater for 25 and 50 mg Cd kg−1 soil) compared to 100 mg Cd kg−1 soil. Addition of S to Cd-treated plants showed decrease in Cd and TBARS content in leaves and restoration of growth and photosynthesis through increase in the contents of AsA and GSH. Net photosynthetic rate and plant dry mass were strongly and positively correlated with the contents of AsA and GSH. It is suggested that S may ameliorate Cd toxicity and protects growth and photosynthesis of mustard involving AsA and GSH.  相似文献   

5.
Detached leaves of tomato (Lycopersicon esculentum Mill.) experienced photoinhibition associated with sharp reductions in net photosynthetic rate (Pn), quantum efficiency of PSII (ΦPSII) and photochemical quenching (qP) even though they were exposed to mild light intensity (400 μmol m−2 s−1 PPFD) at 28°C. Photoinhibition and the reduction in Pn, ΦPSII and qP, however, were significantly alleviated by 1 mg l−1 ABA, 0.1 mg l−1 N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) and 0.01 mg l−1 24-epibrassinolide (EBR). Higher concentrations, however, reduced the effects or even exacerbated the occurrence of photoinhibition. Superoxide dismutase and ascorbate peroxidase activity in leaves increased with the increases in ABA concentration within 1–100 mg l−1, CPPU concentration within 0.1–10 mg l−1 and EBR concentration within 0.01–1.0 mg l−1. Catalase and guaiacol peroxidase activity also increased with the increase in EBR concentration but CPPU and ABA treatments at higher concentrations caused a decrease. Malondialdehyde (MDA) content decreased with the increase in CPPU concentration. ABA and EBR, however, decreased MDA concentration only at 1 and 0.01 mg l−1, respectively. In conclusion, detached leaves had increased sensitivity to PSII photoinhibition. Photoinhibition-induced decrease in photosynthesis, however, was significantly alleviated by EBR, CPPU and ABA at a proper concentration.  相似文献   

6.
Effects of selenium (Se) on growth and some physiological traits of roots in wheat (Triticum aestivum L. cv Han NO.7086) seedlings exposed to enhanced ultraviolet-B (UV-B) stress are reported. Responses of roots were different depending on the Se concentration. Compared with the control, root weight of wheat seedlings treated with 1.0 and 2.0 mg Se kg−1 soil increased by 39.47% and 16.28%, respectively. The lower amount Se (0.5 mg kg−1) and the higher amount Se treatments (3.0 mg kg−1) did not significantly affect on root weight. Se treatments significantly increased root activity, flavonoids and proline content, and activities of peroxidase and superoxide dimutase in wheat roots exposed to enhanced UV-B. In addition, the treatments with 0.5, 1.0, and 2.0 mg Se kg−1 significantly reduced malondialdehyde content and the rate of superoxide radical (O2) production of roots, whereas the higher amount Se treatment only induced a decrease in the rate of O2 production. The results of this study demonstrated that optimal Se supply promoted roots growth of wheat seedlings, and that optimal Se supply could reduce oxidative stress in wheat roots under enhanced UV-B radiation.  相似文献   

7.
The aim of the study was to determine the boron contents of some wild-growing mushrooms collected from the vicinity of several boron mines located in Balikesir, Turkey and compare the boron contents of some mushroom and soil samples. The locations of the mushroom samples collected were within the distance of 0–100, 100–500, and 500–1,000 m to the mines. Soil samples were taken from beneath randomly selected fungal fruit bodies. A total of 40 mushroom samples were found in the study area and 37 different species were identified. Among the 40 samples analyzed, the highest boron content was detected to be 273 mg kg−1 in Suillus collinitus. Also, Tricholoma terreum (69.52 mg kg−1), Myxomphalia maura (36.52 mg kg−1), Otidea concinna (30.70 mg kg−1), Sepultaria arenosa (28.94 mg kg−1), Melanoleuca paedida (28.33 mg kg−1), and Lycoperdon lividum (28.31 mg kg−1) relatively have high levels of boron and these species are proposed as candidates for boron accumulation. The boron contents of the other mushrooms varied and a pattern was observed where the boron content was found to be decreased as the distance from the mines increased.  相似文献   

8.
Effects of Selenium on Wheat Seedlings Under Drought Stress   总被引:3,自引:0,他引:3  
The paper reports the effects of selenium (Se) supply on growth and some physiological traits of wheat (Triticum aestivum L. cv Shijiazhuang NO. 8) seedlings exposed to drought stress. The growth and physiological responses of seedlings were different depending on the Se concentration. The higher (3.0 mg Se kg−1) and lower amount used (0.5 mg Se kg−1) did not significantly affect on biomass accumulation. Treatments with 1.0 and 2.0 mg Se kg−1 promoted biomass accumulation of wheat seedlings. Treatments at 1.0, 2.0, and 3.0 mg Se kg−1 significantly increased root activity, proline content, peroxidase (POD), and catalase (CAT) activities, carotenoids (Car) content, chlorophyll content, and reduced malondialdehyde (MDA) content of wheat seedlings. Lower Se treatment did not significantly effect on chlorophyll content and MDA content, although it also increased some antioxidant index (proline and Car content, POD and CAT activities) in wheat seedlings. These results suggest that optimal Se supply is favorable for growth of wheat seedlings during drought condition.  相似文献   

9.
Watermelon production is threatened by fusarium wilt caused by Fusarium oxysporum f.sp. niveum (FON) in continuous cultivation system. Some elements, mainly allelochemicals, released from living roots or decayed plants might be associated with the disease. The purpose of this work was to evaluate the possible impact of coumarin, one kind of watermelon allelochemical, on FON. Furthermore, possible new mechanisms might be investigated during the ecological interactions of plant-microbe. Results showed that coumarin strongly inhibited growth of FON leading to a decrease in its biomass, dry weight of mycelia of FON in a liquid culture. The dry weight was decreased by 62.9% compared with control. The hyphal growth of FON on plates was stopped at high (>400 mg l−1) concentrations of coumarin. At 320 mg l−1, sporulation and enzyme activities of FON were also severely suppressed by coumarin. The yield of conidia, and the activities of proteinase, cellulase, and amylase were reduced by 98.9%, 79.7%, 29.8% and 15.9% respectively. However, conidial germination and mycotoxin (MT) production of FON were greatly stimulated, being increased by 55.7% and 14.9 fold at 320 mg l−1 respectively. We conclude that coumarin acted as an allelochemical substance to inhibit growth and pathogenic enzyme activities of FON but to stimulate mycotoxin production and conidial germination. It was suggested that coumarin acted as a signal transduction element bridging plant and pathogen in the process of plant-microbe interactions.  相似文献   

10.
The essential role of 6-benzylaminopurine (BA) in plant tissue culture has been widely known; however, physiological and biochemical mechanisms behind BA requirement have not been fully understood yet. BA may have an important role on callus growth by regulating antioxidant enzyme activities and acting as an effective free radical scavenger. To test this hypothesis, the impact of exogenous BA concentrations on antioxidative system in Vitis vinifera L. cv. ‘Bogazkere’ callus was investigated under in vitro conditions. Relative fresh weight growth (RFWG) of calli, total phenolics (TP) content, endogenous hydrogen peroxide (H2O2), malondialdehyde (MDA), proline concentrations, percentage of electrolyte leakage (EL), and some of the antioxidant enzyme activities; such as superoxide dismutase (SOD), and guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were measured. Inhibitory effect of high concentrations of BA on antioxidant enzyme activities and RFWG was found. In the presence of BA at 0.1 mg L−1, SOD, POD, and APX activities decreased, while CAT activity increased in comparison with the controls. Exogenous BA treatments higher than 0.1 mg L−1 resulted in an increase in cellular TP, H2O2, MDA, proline contents, and percentage of EL, while RFWG of calli decreased. Based on the findings, it may be concluded that only 0.1 mg L−1 BA concentration combined with NAA could play a direct role in reducing the level of free radicals and phenolic production associated with proliferation capacity of grape cells under in vitro conditions. Furthermore, cytokinin was effective in the antioxidative enzyme system, lipid peroxidation, and electrolyte leakage.  相似文献   

11.
Greenhouse experiments were conducted to study the permissible value of vanadium (V) based on the growth and physiological responses of green Chinese cabbage (Brassica chinensis L.), and effects of V on microbial biomass carbon (MBC) and enzyme activities in allitic udic ferrisols were also studied. The results showed that biomass of cabbage grown on soil treated with 133 mg V kg−1 significantly decreased by 25.1% compared with the control (P < 0.05). Vanadium concentrations in leaves and roots increased with increasing soil V concentration. Contents of vitamin C (Vc) increased by 10.3%, while that of soluble sugar in leaves significantly decreased by 54.0% when soil V concentration was 133 mg kg−1, respectively. The uptake of essential nutrient elements by cabbage was disturbed when soil V concentration exceeded 253 mg kg−1. Soil MBC was significantly stimulated by 15.5%, while dehydrogenase activity significantly decreased by 62.8% and urease activity slightly changed at treatment of 133 mg V kg−1 as compared with the control, respectively. Therefore, the permissible value of V in allitic udic ferrisols is proposed as 130 mg kg−1.  相似文献   

12.
The effects of three periods of incubation (10, 20 and 30 min) at different levels of bleomycin (0, 0.1, 0.2, 0.3, 0.4 and 0.5 μg ml−1), as well as three periods of exposure (12, 24 and 48 h) to different levels of the anti-auxin p-chlorophenoxyisobutyric acid (PCIB), including 1, 2, 3, 4 and 5 mg l−1, on microspore embryogenesis of rapeseed cv. ‘Amica’ were investigated. Microspore embryogenesis was significantly enhanced following 20 min treatment with 0.2 μg ml−1 bleomycin compared with untreated cultures. Highest embryo yield (163 embryos Petri dish−1) was observed with 24 h treatment of 4 mg l−1 PCIB. The highest percentage of secondary embryogenesis was observed on B5 medium containing 0.15 mg l−1 of gibberellic acid (GA3) and 0.2 mg l−1 6-benzyladenine (BA) in 4–6 mm microspore-derived embryos (MDEs). Most callus formed on B5 medium containing 0.15 mg l−1 GA3, 0.1 mg l−1 BA and 0.1 mg l−1 indole-3-acetic acid (IAA) when 4–6 mm embryos were used. Regeneration was highest on B5 medium containing 0.05 mg l−1 GA3 or 0.1 mg l−1 BA and 0.2 mg l−1 IAA with 2–4 mm embryos. Microspore embryogenesis and plant regeneration could be improved by both bleomycin and PCIB when the appropriate MDE length and phytohormone level were selected.  相似文献   

13.
The Fusarium diversity and the mycobiota associated with moldy wheat kernels from Santa Fe province, Argentine, was assessed. The wheat cultivated area in Santa Fe province is divided according to agrometeorological conditions into two zones: Zone I (north-central) and Zone II (south). The natural occurrence of Fusarium toxins BEA, FUP, DON and NIV was also determined. Cladosporium was the most abundant of the 19 genera identified, followed by Fusarium, Phoma and Alternaria. Zone II shows a predominance of F. graminearum and F. culmorum. In Zone I, DON was present in 13/32 samples (range 0.43–3.60 mg kg−1) and NIV in 6/32 samples (range 0.11–0.40 mg kg−1). In zone II, DON was found in 11/21 samples (range 0.57–9.50 mg kg−1) and NIV in 4/21 samples (range 0.10–0.60 mg kg−1). BEA and FP were not detected in both zones.  相似文献   

14.
In the present study, N and S assimilation, antioxidant enzymes activity, and yield were studied in N and S-treated plants of Brassica juncea (L.) Czern. & Coss. (cvs. Chuutki and Radha) under salt stress. The treatments were given as follows: (1) NaCl90 mM+N0S0 mg kg-1 sand (control), (2) NaCl90 mM+N60S0 mg kg-1 sand, (3) NaCl90 mM+N60S20 mg kg-1 sand, (4) NaCl90 mM+N60S40 mg kg-1 sand, and (5) NaCl90 mM+N60S60 mg kg-1 sand. The combined application of N (60 mg kg−1 sand) and S (40 mg kg−1 sand) proved beneficial in alleviating the adverse effect of salt stress on growth attributes (shoot length plant−1, fresh weight plant−1, dry weight plant−1, and area leaf−1), physio-biochemical parameters (carbonic anhydrase activity, total chlorophyll, adenosine triphosphate-sulphurylase activity, leaf N, K and Na content, K/Na ratio, activity of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase, and content of glutathione and ascorbate), and yield attributes (pods plant−1, seeds pod−1, and seed yield plant−1). Therefore, it is concluded that combined application of N and S induced the physiological and biochemical mechanisms of Brassica. The stimulation of antioxidant enzymes activity and its synergy with N and S assimilation may be one of the important mechanisms that help the plants to tolerate the salinity stress and resulted in an improved yield.  相似文献   

15.
Morinda citrifolia adventitious roots were cultured in shake flasks using Murashige and Skoog medium with different types and concentrations of auxin and cytokinin. Root (fresh weight and dry weight) accumulation was enhanced at 5 mg l−1 indole butyric acid (IBA) and at 7 and 9 mg l−1 naphthalene acetic acid (NAA). On the other hand, 9 mg l−1 NAA decreased the anthraquinone, phenolic and flavonoid contents more severely than 9 mg l−1 IBA. When adventitious roots were treated with kinetin (0.1, 0.3 and 0.5 mg l−1) and thidiazuron (TDZ; 0.1, 0.3 and 0.5 mg l−1) in combination with 5 mg l−1 IBA, fresh weight and dry weight decreased but secondary metabolite content increased. The secondary metabolite content (including 1,1-diphenyl-2-picrylhydrazyl activity) increased more in TDZ-treated than in kinetin-treated roots. Antioxidative enzymes such as catalase (CAT) and guaiacol peroxidase (G-POD), which play important roles in plant defense, also increased. A strong decrease in ascorbate peroxidase activity resulted in a high accumulation of hydrogen peroxide. This indicates that adventitious roots can grow under stress conditions with induced CAT and G-POD activities and higher accumulations of secondary metabolites. These results suggest that 5 mg l−1 IBA supplementation is useful for growth and secondary metabolite production in adventitious roots of M. citrifolia.  相似文献   

16.
We report the distribution of major and trace element concentrations in epipelagic zooplankton collected in the Northern Gulf of California in August 2003. The Bray–Curtis index defined three element assemblages in zooplankton: (1) major metals, which included only two elements, Na (3.6–17.0%) and Ca (1.0–4.8%). Na had its highest concentrations in the shallow tidally mixed Upper Gulf, where high salinity, temperature, and zooplankton biomass (dominated by copepods) prevailed. Ca showed its highest concentrations south of Ballenas Channel, characterized by tidal mixing and convergence-induced upwelling, indicated by low sea-surface temperature, salinity, and zooplankton biomass; (2) Six biological essential elements, like Fe (80–9,100 mg kg−1) and Zn (20–2,570 mg kg−1), were detected in high concentrations in zooplankton collected near Guaymas Basin, which had high surface temperature and chlorophyll a concentrations. (3) Metals of terrigenous origin, such as Sc (0.01–1.4 mg kg−1) and Th (0.03–2.3 mg kg−1), and redox-sensitive metals, like Co (3–23.8 mg kg−1); this was the assemblage with the largest number of elements (15). Both types of elements of assemblage 3 had maximum concentrations in the cyclonic eddy that dominates the summer circulation in the Northern region. We concluded that sediment resuspension by tidal mixing in the Upper Gulf, upwelling south of Ballenas Channel, and the cyclonic eddy were key oceanographic features that affected the element concentrations of epipelagic zooplankton in the Northern Gulf of California. Oceanographic mechanisms such as these may contribute to element incorporation in marine organisms in other seas.  相似文献   

17.
The denitrification performance of a lab-scale anoxic rotating biological contactor (RBC) using landfill leachate with high nitrate concentration was evaluated. Under a carbon to nitrogen ratio (C/N) of 2, the reactor achieved N-NO3 removal efficiencies above 95% for concentrations up to 100 mg N-NO3  l−1. The highest observed denitrification rate was 55 mg N-NO3  l−1 h−1 (15 g N-NO3  m−2 d−1) at a nitrate concentration of 560 mg N-NO3  l−1. Although the reactor has revealed a very good performance in terms of denitrification, effluent chemical oxygen demand (COD) concentrations were still high for direct discharge. The results obtained in a subsequent experiment at constant nitrate concentration (220 mg N-NO3  l−1) and lower C/N ratios (1.2 and 1.5) evidenced that the organic matter present in the leachate was non-biodegradable. A phosphorus concentration of 10 mg P-PO4 3− l−1 promoted autotrophic denitrification, revealing the importance of phosphorus concentration on biological denitrification processes.  相似文献   

18.
Bioremediation of diesel-oil-contaminated alpine soils at low temperatures   总被引:11,自引:0,他引:11  
Bioremediation of two diesel-oil-contaminated alpine subsoils, differing in soil type and bedrock, was investigated in laboratory experiments at 10 °C after supplementation with an inorganic fertilizer. Initial diesel oil contamination of 4000 mg kg−1 soil dry matter (dm) was reduced to 380–400 mg kg−1 dm after 155 days of incubation. In both soils, about 30 % of the diesel oil contamination (1200 mg kg−1 dm) was eliminated by abiotic processes. The residual decontamination (60 %–65 %) could be attributed to microbial degradation activities. In both soils, the addition of a cold-adapted diesel-oil-degrading inoculum enhanced biodegradation rates only slightly and temporarily. From C/N and N/P ratios (determined by measuring the contents of total hydrocarbons, NH4 + N, NO3 N and PO4 3− P) of soils␣it could be deduced that there was no nutrient deficiency during the whole incubation period. Soil biological activities (basal respiration and dehydrogenase activity) corresponded to the course of biodegradation activities in the soils. Received: 9 September 1996 / Accepted: 7 December 1996  相似文献   

19.
20.
The objective of the present work was selection of cultivar and suitable medium for regenerating shoots from leaf segments of non-heading Chinese cabbage. We evaluated six types of supplemented media with 2.0, 5.0 and 10.0 mg l−1 6-BA; 1.0 and 2.0 mg l−1 TDZ; 0.1, 0.3, 0.5, 0.8 and 1.0 mg l−1NAA; 3.0, 5.0 and 7.5 mg l−1AgNO3; 0.01 mg l−1 2–4, D and 4.0 mg l−1 KT for shoot regeneration and six cultivars “Sanchidaye”, “Liuchuandasuomian”, “Qingyou 4”, “Liangbaiye”, “AiKang 5” and “Hanxiao F3”, furthermore for root formation three types of supplemented media with 0.2, 0.3, 0.5 mg l−1 NAA, and for survival rate two types of base media: turf + vermiculite + manure (1:2:0.2) and soil + vermiculite (1:2). Culturing leaf segments on MS medium supplemented with 2 mg l−1 TDZ; 0.5 mg l−1 NAA and 7.5 mg l−1 AgNO3 gave the highest number of shoots per leaf segment (66) while roots were best formed on the medium supplemented with 0.2 mg l−1 NAA. Survival rate was highest (61.6%) in the turf: vermiculite: manure (1:2:0.2) medium. The highest percentage of responding leaf segments, number of shoots per leaf segment, rooting percentage and survival rate were observed in “Liuchuandasuomian”. The plantlets were transferred to the soil and grown into mature plants in pots. These results could be used for preliminary selections of cultivars to transfer disease resistance (Bt) gene through agrobacterium in non-heading Chinese cabbage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号