首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To determine the relationship between growth cone structure and motility, we compared the neurite extension rate, the form of individual growth cones, and the organization of f-actin in embryonic (E21) and postnatal (P30) sympathetic neurons in culture. Neurites extended faster on laminin than on collagen, but the P30 nerites were less than half as long as E21 neurites on both substrata. Growth cone shape was classified into one of five categories, ranging from fully lamellipodial to blunt endings. The leading margins of lamellipodia advanced smoothly across the substratum ahead of any filopodial activity and contained meshworks of actin filaments with no linear f-actin bundles, indicating that filopodia need not underlie lamellipodia. Rapid translocation (averaging 0.9-1.4 microns/min) was correlated with the presence of lamellipodia; translocation associated with filopodia averaged only 0.3-0.5 microns/min. This relationship extended to growth cones on a branched neurite where the translocation of each growth cone was dependent on its shape. Growth cones with both filopodial and lamellipodial components moved at intermediate rates. The prevalence of lamellipodial growth cones depended on age of the neurites; early in culture, 70% of E21 growth cones were primarily lamellipodial compared to 38% of P30 growth cones. A high percentage of E21 lamellipodial growth cones were associated with rapid neurite elongation (1.2 mm/day), whereas a week later, only 16% were lamellipodial, and neurites extended at 0.5 mm/day. Age-related differences in neurite extension thus reflected the proportion of lamellipodial growth cones present rather than disparities in basic structure or in the rates at which growth cones of a given type moved at different ages. Filopodia and lamellipodia are each sufficient to advance the neurite margin; however, rapid extension of superior cervical ganglion neurites was supported by lamellipodia independent of filopodial activity.  相似文献   

2.
A Caceres  J Mautino  K S Kosik 《Neuron》1992,9(4):607-618
We show here that antisense MAP2 oligonucleotides inhibit neurite outgrowth in cultured cerebellar macroneurons. Unlike control neurons, which first extend a lamellipodial veil followed by a consolidation phase during which the cells extend minor neurites, MAP2-suppressed cells persist with lamellipodia and later become rounded. The induction of microtubules containing tyrosinated tubulin, which parallels neurite outgrowth in control neurons, was blocked under antisense conditions. The small but significant increase in acetylated microtubules was not affected. In contrast, the suppression of tau, which selectively blocks axonal elongation, completely prevented the increase of acetylated microtubules, but did not modify the induction of labile microtubules. These results suggest that MAP2 and tau have different functions: the initial establishment of neurites depends upon MAP2, whereas further neurite elongation depends upon tau and microtubule stabilization.  相似文献   

3.
We examined the distribution of fibronectin-like (FNL) immunoreactivity associated with intact buccal ganglia, cell-cultured buccal ganglia neurons and nonneuronal cells, and brain-conditioned medium from the snail Helisoma. In addition, the possible roles of fibronectin in the regulation of neurite outgrowth were studied. Immunofluorescent staining for FNL antigens revealed intense staining in patches and fibrous arrays over the connective tissue sheaths of buccal ganglia and nerve trunks. Within the ganglia, heavy staining was seen surrounding neurons and in track-like arrangements. In cell cultures, specific staining was associated with nonneuronal cell surfaces and to a lesser degree with the surface of identified neurons. In addition, a noncellular, substrate-bound component of brain-conditioned medium displayed FNL immunoreactivity. Since cultured Helisoma neurons require a substrate-associated, brain-derived conditioning factor (CF) in order to elaborate neurites with motile growth cones, we tested whether the FNL immunoreactive substance might act as a neuritotropic agent. Fibronectin antiserum suppressed, in a dose-dependent manner, the CF-induced sprouting of identified neurons in isolated cell culture. When added at increasing concentrations to neurons already growing in response to CF, fibronectin antiserum exerted a biphasic effect on neurite elongation; outgrowth was accelerated at low, but inhibited at high, antiserum concentrations. In contrast, growth cone structures associated with motility (filopodia and lamellipodia) were progressively reduced by increasing levels of antiserum. A short peptide derived from fibronectin's cell-binding domain (Arg-Gly-Asp-Ser) also greatly reduced neurite outgrowth. The combined results of this study indicate an abundance of FNL immunoreactive molecules within the CNS of Helisoma, their probable production by nonneuronal cells, and their function as a substrate-associated component of CF which promotes growth cone filopodial and lamellipodial activity.  相似文献   

4.
Identified neurons of the buccal ganglion of the snail Helisoma when isolated from their ganglionic environment and plated in cell culture grow new neurites that are tipped with motile growth cones. Addition of the neurotransmitter serotonin to the culture medium surrounding actively growing neurons causes an immediate, premature cessation of neurite elongation in specific identified neurons. Serotonin selectively inhibits neurite extension of neurons B19 and P5 while having no effect on the extension of neuron B5. Coincident with the serotonin evoked inhibition of neurite elongation is an inhibition of growth cone motile activities and a retraction of growth cone filopodia and lamellipodia. One site of serotonin's growth inhibitory actions is directly at the growth cone rather than at the neurites or cell body. A second area of this study concerns connectivity. In Helisoma neurons the formation of electrical synaptic connections critically relies on both potential partner neurons having a mutual interaction of actively growing neurites. Neurons in a nongrowing state do not form electrical synapses (Hadley et al., 1983). As a result of inhibiting neurite extension, serotonin is able to affect synaptogenesis by preventing certain neurons (neurons B19) from forming electrical synaptic connections with other neurons (neurons B5) that are themselves competent to interconnect. Thus, by inhibiting neurite extension, serotonin is capable of regulating both the development of arborizations and the formation of connectivity.  相似文献   

5.
It has been recognized for a long time that the neuronal cytoskeleton plays an important part in neurite growth and growth cone pathfinding, the mechanism by which growing axons find an appropriate route through the developing embryo to their target cells. In the growth cone, many intracellular signaling pathways that are activated by guidance cues converge on the growth cone cytoskeleton and regulate its dynamics. Most of the research effort in this area has focussed on the actin, microfilament cytoskeleton of the growth cone, principally because it underlies growth cone motility, the extension and retraction of filopodia and lamellipodia, and these structures are the first to encounter guidance cues during growth cone advance. However, more recently, it has become apparent that the microtubule cytoskeleton also has a role in growth cone pathfinding and is also regulated by guidance cues operating through intracellular signaling pathways via engagement with cell membrane receptors. Furthermore, recent work has revealed an interaction between these two components of the growth cone cytoskeleton that is probably essential for growth cone turning, a fundamental growth cone behavior during pathfinding. In this short review I discuss recent experiments that uncover the function of microtubules in growth cones, how their behavior is regulated, and how they interact with the actin filaments.  相似文献   

6.
Formation of terminal synapses at sites such as the neuromuscular junction involves transformation of the motile growth cone into the nonmotile synaptic terminal. However, transformation does not need to be the mechanism when a neurite forms multiple widely spaced synaptic varicosities along a target in an en passant configuration. Synaptic varicosities could form here by specialization of the neurite after the growth cone has advanced past the site. We examined this issue by using cocultures of identified sensory (SN) and motor (L7) neurons from Aplysia. Living SNs were labeled with fluorescent dye and their neurites were observed at high resolution every few minutes growing along the axon of L7, allowing a fine-grained analysis of the behavior of the growth cone at the sites of synapse formation. All varicosities whose formation was observed indeed developed from the growth cone. Sensory varicosities were shown by electron microscopy to contain features characteristic of active zones for transmitter release within a day of their formation on the motor axon. Growth cone advance slowed or stopped transiently during varicosity formation, but the motile activity of the peripheral region of the growth cone (veils and filopodia) was maintained. These results suggest that target "stop signals" involved in the formation of synapses, at least of the en passant variety, may be of a different type from the growth inhibitory molecules, such as the collapsins, which guide axons to their targets.  相似文献   

7.
The controlled extension of neurites is essential not only for nervous system development, but also for effective nerve regeneration after injury. This process is critically dependent on microtubule assembly since axons fail to elongate in the presence of drugs which disrupt normal assembly dynamics. For this reason, neurite outgrowth is potentially controllable by manipulation of the assembly state of the intracellular array of microtubules. Therefore, understanding how microtubule assembly dynamics and neurite outgrowth are coupled, in the absence of drugs, can lend valuable insight into the control and guidance of the outgrowth process. In the present study we characterized the stochastic dynamics of neurite outgrowth and its corresponding microtubule array, which advances concomitantly with the advance of the nerve growth cone, the highly motile structure at the terminus of the growing neurite, using reported fluorescent microscopic image sequences (Tanaka and Kirschner, 1991, J. Cell Biol. 115:345-363). Although previously modeled as an uncorrelated random walk, the stochastic advance of the growth cone was found to be anticorrelated over a time scale of approximately 4 min, meaning that growth cone advances tended to be followed by growth cone retractions approximately 4 min later. The observed anticorrelation most likely reflects the periodic stops and starts of neurite outgrowth that have been reported anecdotally. A strikingly similar pattern of anticorrelation was also identified in the advance of the growth cone's microtubule array. Cross-correlation analysis showed that growth cone dynamics tended to precede microtubule dynamics on a time scale of approximately 0-2 min, while microtubules tended to precede growth cone dynamics on a approximately 0-20-s time scale, indicating a close temporal coupling between microtubule and growth cone dynamics. Finally, the scaling of the mean-squared displacements with time for both the growth cone and microtubules suggested a fractional Brownian motion model which accounts for the observed anticorrelation of growth cone and microtubule advance. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
Hemolymph of adultAplysia californica significantly affects neurite outgrowth of identified neurons of the land snailHelix pomatia. The metacerebral giant cell (MGC) and the motoneuron C3 from the cerebral ganglion and the neuron B2 from the buccal ganglion ofH. pomatia were isolated by enzymatic and mechanical dissociation and plated onto poly-l-lysine-coated dishes either containing culture medium conditioned byHelix ganglia, or pre-treated withAplysia hemolymph. To determine the extent of neuronal growth we measured the neurite elongation and the neuritic field of cultured neurons at different time points.Aplysia hemolymph enhances the extent and rate of linear outgrowth and the branching domain ofHelix neurons. With the hemolymph treatment the MGC neuron more consistently forms specific chemical synapses with its follower cell B2, and these connections are more effective than those established in the presence of the conditioned medium.  相似文献   

9.
Capping protein (CP) is a heterodimer that regulates actin assembly by binding to the barbed end of F-actin. In cultured nonneuronal cells, each CP subunit plays a critical role in the organization and dynamics of lamellipodia and filopodia. Mutations in either α or β CP subunit result in retinal degeneration in Drosophila. However, the function of CP subunits in mammalian neurons remains unclear. Here, we investigate the role of the β CP subunit expressed in the brain, Capzb2, in growth cone morphology and neurite outgrowth. We found that silencing Capzb2 in hippocampal neurons resulted in short neurites and misshapen growth cones in which microtubules overgrew into the periphery and completely overlapped with F-actin. In searching for the mechanisms underlying these cytoskeletal abnormalities, we identified β-tubulin as a novel binding partner of Capzb2 and demonstrated that Capzb2 decreases the rate and the extent of tubulin polymerization in vitro. We mapped the region of Capzb2 that was required for the subunit to interact with β-tubulin and inhibit microtubule polymerization. A mutant Capzb2 lacking this region was able to bind F-actin and form a CP heterodimer with α2-subunit. However, this mutant was unable to rescue the growth cone and neurite outgrowth phenotypes caused by Capzb2 knockdown. Together, these data suggest that Capzb2 plays an important role in growth cone formation and neurite outgrowth and that the underlying mechanism may involve direct interaction between Capzb2 and microtubules.  相似文献   

10.
The activity of filopodia and lamellipodia determines the advance, motility, adhesion, and sensory capacity of neuronal growth cones. The shape and dynamics of these highly motile structures originate from the continuous reorganization of the actin cytoskeleton in response to extracellular signals. The small GTPases, Rac1, Rho, and CDC42, regulate the organization of actin filament structures in nonneuronal cells; yet, their role in growth cone motility and neurite outgrowth is poorly understood. We investigated in vitro the function of Rac1 in neurite outgrowth and differentiation by introducing purified recombinant mutants of Rac1 into primary chick embryo motor neurons via trituration. Endogenous Rac1 was expressed in growth cone bodies as well as in the tips and shafts of filopodia, where it often colocalized with actin filament structures. The introduction of constitutively active Rac1 resulted in an increase in rhodamine–phalloidin staining, presumably from an accumulation of actin filaments in growth cones, while dominant negative Rac1 caused a decrease in rhodamine–phalloidin staining. Nevertheless, both Rac1 mutants retarded growth cone advance, and hence attenuated neurite outgrowth and inhibited differentiation of neurites into axons and dendrites on laminin and fibronectin. In contrast, on poly-D -lysine, neither Rac1 mutant affected growth cone advance, neurite outgrowth, or neurite differentiation despite inducing similar changes in the amount of rhodamine–phalloidin staining in growth cones. Our data demonstrate that Rac1 regulates actin filament organization in neuronal growth cones and is pivotal for β1 integrin–mediated growth cone advance, but not for growth on poly-D lysine. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 524–540, 1998  相似文献   

11.
The related proteins SCG10 and stathmin are highly expressed in the developing nervous system. Recently it was discovered that they are potent microtubule destabilizing factors. While stathmin is expressed in a variety of cell types and shows a cytosolic distribution, SCG10 is neuron-specific and membrane-associated. It contains an N-terminal targeting sequence that mediates its transport to the growing tips of axons and dendrites. SCG10 accumulates in the central domain of the growth cone, a region that also contains highly dynamic microtubules. These dynamic microtubules are known to be important for growth cone advance and responses to guidance cues. Because overexpression of SCG10 strongly enhances neurite outgrowth, SCG10 appears to be an important factor for the dynamic assembly and disassembly of growth cone microtubules during axonal elongation. Phosphorylation negatively regulates the microtubule destabilizing activity of SCG10 and stathmin, suggesting that these proteins may link extracellular signals to the rearrangement of the neuronal cytoskeleton. A role for these proteins in axonal elongation is also supported by their growth-associated expression pattern in nervous system development as well as during neuronal regeneration.  相似文献   

12.
Laminin, an extracellular matrix molecule, is known to promote neurite growth. In the present study, the effects of soluble laminin on organelle transport and their relation to neurite growth were investigated in cultured dissociated mouse dorsal root ganglion (DRG) neurons. Laminin added into the extracellular medium was deposited on the surface of DRG neurons. DRG neurons incubated with soluble laminin exhibited branched, long, and thin neurites. Time-lapse study demonstrated that many small-diameter branches were newly formed after the addition of laminin. Thus, the growths of large-diameter primary neuritis, arising from cell bodies and branches extended from growth cones of primary neuritis, were analyzed separately. Laminin decreased the growth rate of primary neurites but increased that of branches. In primary neurites, acute addition of laminin rapidly decreased organelle movement in the neurite shaft and growth cone, accompanied by slowing of the growth cone advance. Branching of primary neurites occurred in response to laminin in some growth cones. In these growth cones, organelles protruded into nascent branches. In branches, soluble laminin increased organelle movement in the growth cone and the distal portion of the shaft. These results suggest that laminin inhibits the elongation of primary neurites but promotes branching and elongation of branches, all of which seem to be closely related to organelle transport.  相似文献   

13.
Neurite outgrowth from PC12 pheochromocytoma cells, as well as from peripheral and central nervous system neurons in vitro, is mediated by the extracellular matrix molecule, laminin. We have recently shown that mesenchymal cell spreading and migration on laminin is mediated, in part, by the cell surface enzyme, beta 1,4 galactosyltransferase (GalTase). GalTase is localized on lamellipodia of migrating cells where it functions as a laminin receptor by binding to specific N-linked oligosaccharides in laminin (Runyan et al., 1988; Eckstein and Shur, 1989). In the present study, we examined whether GalTase functions similarly during neutrite outgrowth on laminin using biochemical and immunological analyses. PC12 neurite outgrowth was inhibited by reagents that perturb cell surface GalTase activity, including anti-GalTase IgG and Fab fragments, as well as the GalTase modifier protein alpha-lactalbumin. Control reagents had no effect on neurite outgrowth. Furthermore, blocking GalTase substrates on laminin matrices by earlier galactosyltion or enzymatic removal of GalTase substrates also inhibited neurite outgrowth. Conversely, neurite outgrowth was enhanced by the addition of UDP-galactose, which completes the GalTase enzymatic reaction, while inappropriate sugar nucleotides had no effect. The effects of all these treatments were dose and/or time dependent. Surface GalTase was shown to function during both neurite initiation and elongation, although the effects of GalTase perturbation were most striking during the initiation stages of neurite formation. Consistent with this, surface GalTase was localized by indirect immunofluorescence to the growth cone and developing neurite. Collectively, these results demonstrate that GalTase mediates the initiation of neurite outgrowth on laminin, and to a lesser extent, neurite elongation. Furthermore, this study demonstrates that process extension from both mesenchymal cells and neuronal cells is partly dependent upon specific oligosaccharide residues in laminin.  相似文献   

14.
During development, growth cones direct growing axons into appropriate targets. However, in some cortical pathways target innervation occurs through the development of collateral branches that extend interstitially from the axon shaft. How do such branches form? Direct observations of living cortical brain slices revealed that growth cones of callosal axons pause for many hours beneath their cortical targets prior to the development of interstitial branches. High resolution imaging of dissociated living cortical neurons for many hours revealed that the growth cone demarcates sites of future axon branching by lengthy pausing behaviors and enlargement of the growth cone. After a new growth cone forms and resumes forward advance, filopodial and lamellipodial remnants of the large paused growth cone are left behind on the axon shaft from which interstitial branches later emerge. To investigate how the cytoskeleton reorganizes at axon branch points, we fluorescently labeled microtubules in living cortical neurons and imaged the behaviors of microtubules during new growth from the axon shaft and the growth cone. In both regions microtubules reorganize into a more plastic form by splaying apart and fragmenting. These shorter microtubules then invade newly developing branches with anterograde and retrograde movements. Although axon branching of dissociated cortical neurons occurs in the absence of targets, application of a target-derived growth factor, FGF-2, greatly enhances branching. Taken together, these results demonstrate that growth cone pausing is closely related to axon branching and suggest that common mechanisms underlie directed axon growth from the terminal growth cone and the axon shaft.  相似文献   

15.
The requirement for trophic factors in neurite outgrowth is well established, though their role in synapse formation is yet to be determined. Moreover, the issue of whether the trophic factors mediating neurite outgrowth are also responsible for synapse specification has not yet been resolved. To test whether trophic factors mediating neurite outgrowth and synapse formation between identified neurons are conserved in two molluscan species and whether these developmental processes are differentially regulated by different trophic factors, we used soma-soma and neurite-neurite synapses between identified Lymnaea neurons. We demonstrate here that the trophic factors present in Aplysia hemolymph, although sufficient to induce neurite outgrowth from Lymnaea neurons, do not promote specific synapse formation between excitatory partners. Specifically, the identified presynaptic neuron visceral dorsal 4 (VD4) and postsynaptic neuron left pedal dorsal 1 (LPeD1) were either paired in a soma-soma configuration or plated individually to allow neuritic contacts. Cells were cultured in either Lymnaea brain-conditioned medium (CM) or on poly-L-lysine dishes that were pretreated with Aplysia hemolymph (ApHM), but contained only Lymnaea defined medium (DM; does not promote neurite outgrowth). In ApHM-coated dishes containing DM, Lymnaea neurons exhibited extensive neurite outgrowth, but appropriate excitatory synapses failed to develop between the cells. Instead, inappropriate reciprocal inhibitory synapses formed between VD4 and LPeD1. Similar inappropriate inhibitory synapses were observed in Aplysia hemolymph-pretreated dishes that contained dialyzed Aplysia hemolymph. These inhibitory synapses were novel and inappropriate, because they do not exist in vivo. A receptor tyrosine kinase inhibitor (Lavendustin A) blocked neurite outgrowth induced by both Lymnaea CM and ApHM. However, it did not affect inappropriate inhibitory synapse formation between the neurons. These data demonstrate that neurite outgrowth but not inappropriate inhibitory synapse formation involves receptor tyrosine kinases. Together, our data provide direct evidence that trophic factors required for neurite outgrowth are conserved among two different molluscan species, and that neurite extension and synapse specification between excitatory partners are likely mediated by different trophic factors.  相似文献   

16.
Mechanisms that regulate neurite outgrowth are phylogenetically conserved, including the signaling molecules involved. Here, we describe neurotrophic effects on isolated bag cell neurons (BCNs) of substrate-bound growth factors endogenous to the sea slug Aplysia californica. Sheath cells dissociated from the pleural-visceral connectives of the Aplysia CNS and arterial cells dissociated from the anterior aorta enhance neurite outgrowth when compared to controls, i.e., BCNs grown in defined medium alone. In addition, the substrate remaining after sheath cells or arterial cells are killed significantly enhances growth, relative to all other conditions tested. For instance, primary neurites are more numerous and greater in length for BCNs cultured on substrate produced by arterial cells. These results suggest that sheath and arterial cells produce growth-promoting factors, some of which are found in the substrates produced by these cell types. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), we found that Aplysia collagen-like peptides are produced by dissociated arterial cells, and therefore likely contribute to the observed growth effects. Collagen-like peptides and other factors produced by sheath and arterial cells likely influence neurite growth in the Aplysia CNS during development, learning and memory, and regeneration after injury.  相似文献   

17.
In this study we have examined the cellular functions of ERM proteins in developing neurons. The results obtained indicate that there is a high degree of spatial and temporal correlation between the expression and subcellular localization of radixin and moesin with the morphological development of neuritic growth cones. More importantly, we show that double suppression of radixin and moesin, but not of ezrin–radixin or ezrin–moesin, results in reduction of growth cone size, disappearance of radial striations, retraction of the growth cone lamellipodial veil, and disorganization of actin filaments that invade the central region of growth cones where they colocalize with microtubules. Neuritic tips from radixin–moesin suppressed neurons displayed high filopodial protrusive activity; however, its rate of advance is 8–10 times slower than the one of growth cones from control neurons. Radixin–moesin suppressed neurons have short neurites and failed to develop an axon-like neurite, a phenomenon that appears to be directly linked with the alterations in growth cone structure and motility. Taken collectively, our data suggest that by regulating key aspects of growth cone development and maintenance, radixin and moesin modulate neurite formation and the development of neuronal polarity.  相似文献   

18.
Cytoskeletal remodeling during growth cone-target interactions   总被引:12,自引:7,他引:5       下载免费PDF全文
《The Journal of cell biology》1993,121(6):1369-1383
Reorganization of the cytoskeleton of neuronal growth cones in response to environmental cues underlies the process of axonal guidance. Most previous studies addressing cytoskeletal changes during growth cone pathfinding have focused on the dynamics of a single cytoskeletal component. We report here an investigation of homophilic growth cone- target interactions between Aplysia bag cell neurons using digitally enhanced video microscopy, which addresses dynamic interactions between actin filaments and microtubules. After physical contact of a growth cone with a physiological target, mechanical coupling occurred after a delay; and then the growth cone exerted forces on and displaced the target object. Subsequent to coupling, F-actin accumulation was observed at the target contact zone, followed by preferential microtubule extension to the same site. After successful target interactions, growth cones typically moved off highly adhesive poly-L- lysine substrates into native target cell surfaces. These events were associated with modulation of both the direction and rate of neurite outgrowth: growth cone migration was typically reoriented to a trajectory along the target interaction axis and rates of advance increased by about one order of magnitude. Directed microtubule movements toward the contact site appeared to be F-actin dependent as target site-specific microtubule extension and bundling could be reversibly randomized by micromolar levels of cytochalasin B in a characteristic manner. Our results suggest that target contacts can induce focal F-actin assembly and reorganization which, in turn, guides target site-directed microtubule redistribution.  相似文献   

19.
Abstract: Genistein and other inhibitors of protein tyrosine kinases were examined for effects on neurite elongation and growth cone morphology in the rat PC12 pheochromocytoma cell line. Genistein increased the rate of neurite elongation in PC12 cells grown on a collagen/polylysine substratum after priming with nerve growth factor (NGF), but had no effect on undifferentiated cells. Steady-state levels of phosphotyrosine-modified proteins (105, 59, 52, and 46 kDa) were reduced in NGF-primed cells by genistein treatment. The target of genistein action did not appear to be the NGF receptor/ trk tyrosine kinase because the presence of NGF in cultures of NGF-primed cells was not necessary for genistein-stimulated neurite outgrowth. The tyrosine kinase inhibitors tyrphostin RG508964 and herbimycin A also increased the rate of neurite elongation in NGF-primed PC12 cells. Video-enhanced differential interference contrast microscopy revealed that growth cones of genistein-treated cells had less complex morphologies and were less dynamic than untreated cells, with short filopodia restricted to the leading edge, unlike untreated cells whose growth cones exhibited longer, more numerous filopodia and lamellipodia, which remodeled continuously. These results suggest that protein tyrosine kinase activity in PC12 cells negatively regulates neurite outgrowth and directly or indirectly affects growth cone morphology.  相似文献   

20.
Collapsin response mediator protein 2 (CRMP-2) enhances the advance of growth cones by regulating microtubule assembly and Numb-mediated endocytosis. We previously showed that Rho kinase phosphorylates CRMP-2 during growth cone collapse; however, the roles of phosphorylated CRMP-2 in growth cone collapse remain to be clarified. Here, we report that CRMP-2 phosphorylation by Rho kinase cancels the binding activity to the tubulin dimer, microtubules, or Numb. CRMP-2 binds to actin, but its binding is not affected by phosphorylation. Electron microscopy revealed that CRMP-2 localizes on microtubules, clathrin-coated pits, and actin filaments in dorsal root ganglion neuron growth cones, while phosphorylated CRMP-2 localizes only on actin filaments. The phosphomimic mutant of CRMP-2 has a weakened ability to enhance neurite elongation. Furthermore, ephrin-A5 induces phosphorylation of CRMP-2 via Rho kinase during growth cone collapse. Taken together, these results suggest that Rho kinase phosphorylates CRMP-2, and inactivates the ability of CRMP-2 to promote microtubule assembly and Numb-mediated endocytosis, during growth cone collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号