首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infrared spectroscopy in the interval from 1800 to 1300 cm-1 has been used to investigate the secondary structure and the hydrogen/deuterium exchange behavior of bacteriorhodopsin and bovine rhodopsin in their respective native membranes. The amide I' and amide II' regions from spectra of membrane suspensions in D2O were decomposed into constituent bands by use of a curve-fitting procedure. The amide I' bands could be fit with a minimum of three theoretical components having peak positions at 1664, 1638, and 1625 cm-1 for bacteriorhodopsin and 1657, 1639, and 1625 cm-1 for rhodopsin. For both of these membrane proteins, the amide I' spectrum suggests that alpha-helix is the predominant form of peptide chain secondary structure, but that a substantial amount of beta-sheet conformation is present as well. The shape of the amide I' band was pH-sensitive for photoreceptor membranes, but not for purple membrane, indicating that membrane-bound rhodopsin undergoes a conformation change at acidic pH. Peptide hydrogen exchange of bacteriorhodopsin and rhodopsin was monitored by observing the change in the ratio of integrated absorbance (Aamide II'/Aamide I') during the interval from 1.5 to 25 h after membranes were introduced into buffered D2O. The fraction of peptide groups in a very slowly exchanging secondary structure was estimated to be 0.71 for bacteriorhodopsin at pD 7. The corresponding fraction in vertebrate rhodopsin was estimated to be less than or equal to 0.60. These findings are discussed in relationship to previous studies of hydrogen exchange behavior and to structural models for both proteins.  相似文献   

2.
Infrared spectroscopy of a single cell--the human erythrocyte   总被引:1,自引:0,他引:1  
Methods for obtaining the infrared spectrum of a single erythrocyte by infrared microscopy have been developed. The spectrum contains the amide I, II, and III bands characteristic of protein secondary structure near 1650, 1550, and 1300 cm-1, respectively. Bound carbon monoxide exhibits a readily measured band at 1951 cm-1 for 12C16O and 1907 cm-1 for 13C16O. Both amide and CO bands are similar to those found for purified hemoglobin A. Spectra can be obtained in H2O or D2O media under physiologically relevant conditions. Single cell infrared spectroscopy (SCIR) permits the qualitative and quantitative determination of differences among individual red cells. These results suggest many potential applications for SCIR for the measurements of properties of individual cells at the molecular level under physiologically relevant conditions.  相似文献   

3.
Fourier-transform infrared spectroscopy is a valuable method for the study of protein conformation in solution primarily because of the sensitivity to conformation of the amide I band (1700-1620 cm-1) which arises from the backbone C = O stretching vibration. Combined with resolution-enhancement techniques such as derivative spectroscopy and self-deconvolution, plus the application of iterative curve-fitting techniques, this method provides a wealth of information concerning protein secondary structure. Further extraction of conformational information from the amide I band is dependent upon discerning the correlations between specific conformational types and component bands in the amide I region. In this paper, we report spectra-structure correlations derived from conformational perturbations in bovine trypsin which arise from autolytic processing, zymogen activation, and active-site inhibition. IR spectra were collected for the single-chain (beta-trypsin) and once-cleaved, double-chain (alpha-trypsin) forms as well as at various times during the course of autolysis and also for zymogen, trypsinogen, and beta-trypsin inhibited with diisopropyl fluorophosphate. Spectral differences among the various molecular forms were interpreted in light of previous biochemical studies of autolysis and the known three-dimensional structures of the zymogen, the active enzyme, and the DIP-inhibited form. Our spectroscopic results from these proteins in D2O imply that certain loop structures may absorb in the region of 1655 cm-1. Previously, amide I' infrared bands near 1655 cm-1 have been interpreted as arising solely from alpha-helices. These new data suggest caution in interpreting this band. We have also proposed that regions of protein molecules which are known from crystallographic experiments to be disordered absorb in the 1645 cm-1 region and that type II beta-turns absorb in the region of 1672-1685 cm-1. Our results also corroborate assignment of the low-frequency component of extended strands to bands below 1636 cm-1. Additionally, the results of multiple measurements have allowed us to estimate the variability present in component band areas calculated by curve fitting the resolution-enhanced IR spectra. We estimate that this approach to data analysis and interpretation is sensitive to changes of 0.01 unit or less in the relative integrated intensities of component bands in spectra whose peaks are well resolved.  相似文献   

4.
The polarized Raman spectra of glycerinated and intact single muscle fibers of the giant barnacle were obtained. These spectra show that the conformation-sensitive amide I, amide III, and C-C stretching vibrations give Raman bands that are stronger when the electric field of both the incident and scattered radiation is parallel to the fiber axis (Izz). The detailed analysis of the amide I band by curve fitting shows that approximately 50% of the alpha-helical segments of the contractile proteins are oriented along the fiber axis, which is in good agreement with the conformation and composition of muscle fiber proteins. Difference Raman spectroscopy was also used to highlight the Raman bands attributed to the oriented segments of the alpha-helical proteins. The difference spectrum, which is very similar to the spectrum of tropomyosin, displays amide I and amide III bands at 1,645 and 1,310 cm-1, respectively, the bandwidth of the amide I line being characteristic of a highly alpha-helical biopolymer with a small dispersion of dihedral angles. A small dichroic effect was also observed for the band due to the CH2 bending mode at 1,450 cm-1 and on the 1,340 cm-1 band. In the C-C stretching mode region, two bands were detected at 902 and 938 cm-1 and are both assigned to the alpha-helical conformation.  相似文献   

5.
Fourier self-deconvolution was applied to the infrared spectra of five globular proteins with a high beta-structure content and to the essentially alpha-helical protein hemoglobin. The featureless amide I' bands around 1650 cm-1 were thereby resolved into six to nine components, depending on the protein. Specific components were assigned to the beta-structure segments in each protein. The frequencies and the number of 'beta-bands' differ from one protein to another. The areas of the components were evaluated by means of a Gauss-Newton iteration procedure. It appears that the total area of the beta-bands, as a fraction of the total amide I' band area, reflects the relative beta-structure content of each protein studied.  相似文献   

6.
7.
Decatur SM 《Biopolymers》2000,54(3):180-185
The effect of N-acetylation on the conformation of alanine-rich helical peptides is examined using isotope-edited Fourier transform infrared (FTIR) spectroscopy. A series of peptides with sequence AA(AAKAA)(3)AAY has been prepared; each peptide incorporates four (13)C-labeled alanines. These peptides have two amide I' bands in their FTIR spectra: one corresponding to the (12)C amino acids, and one assigned to the (13)C amino acids. The intensity and frequency of the (13)C amide I' band varies systematically with the position of the labels in the sequence and the presence or absence of an N-acetyl capping group. The intensity of the (13)C amide I' band correlates with helix stability at the labeled residues as predicted by thermodynamic models of the helix-coil transition. These results suggest that FTIR spectroscopy combined with specific isotope labeling can be used to dissect the conformation of helical peptides at the residue level.  相似文献   

8.
The redox-dependent changes in secondary structure of cytochromes c from horse, cow, and dog hearts in water at 20 degrees C have been determined by amide I infrared spectroscopy. Second derivative amide I spectra were obtained by use of a procedure that includes a convenient method for the effective subtraction of the spectrum of water vapor in the system. The band at 1657 cm-1 representing the helix structure was unaffected by a change in redox state whereas changes in bands due to turns at 1680, 1672, and 1666 cm-1, unordered structure at 1650 cm-1, and beta-structures at 1632 and 1627 cm-1 occurred. About one-fourth of the beta-extended chain spectral region and one-fifth of the beta-turn region (involving a total of approximately 9-13 residues) were sensitive to the oxidation state of heme iron. No significant changes in the secondary structure of either the reduced or oxidized protein due to changes in ionic strength were detected. The localized structural rearrangements triggered by the changes in oxidation state of heme iron are consistent with differences in the binding of heme iron to a histidine imidazole nitrogen and a methionine sulfur atom from the beta-extended chain. The demonstrated ability to obtain highly reproducible second derivative amide I infrared spectra confirms the unique utility of such spectral measurements for localization of subtle changes in secondary structure within a protein, especially for changes among the multiple turns and beta-structures.  相似文献   

9.
In order to characterize the molecular composition of oral streptococci, infrared transmission spectroscopy on freeze-dried cells dissolved in KBr was used. All infrared spectra show similar absorption bands for the strains studied with the most important absorption bands located at 2930 cm-1 (CH), 1653 cm-1 (AmI), 1541 cm-1 (AmII) and two bands at 1236 cm-1 and 1082 cm-1, which were assigned to phosphate and sugar groups. However, calculation of absorption band ratios normalized with respect to the integrated intensity of the CH stretching region around 2930 cm-1, show significant differences between the strains. Both Streptococcus mitis strains possess high AmI/CH and AmII/CH absorption band ratios compared to the other strains. Streptococcus salivarius HBC12, a mutant strain devoid of all proteinaceous surface appendages, shows significantly lower AmI/CH and AmII/CH band ratios with respect to its parent strain S. salivarius HB. Two positive relationships could be established both between the AmII/CH absorption band ratio and the N/C elemental surface concentration ratio of the strains previously, determined from X-ray photoelectron spectroscopy (XPS) and also between AmI/CH and the fraction of carbon atoms at the surface involved in amide bonds, determined by XPS as well. From this comparison, it is concluded that transmission infrared spectroscopy can be employed as a technique to study the molecular surface composition of freeze-dried microorganisms.  相似文献   

10.
Fourier transform infrared (FTIR) spectroscopy has been used to examine the conformationally sensitive amide I' bands of calmodulin and troponin C. These are observed to undergo a sequence of spectroscopic changes which reflect conformational rearrangements that take place when Ca2+ is bound. Calmodulin and troponin C show similar though not identical changes on Ca2+ binding, and the effect of Mg2+ on troponin C is quite different from that of Ca2+. Both proteins show absorption maxima in the amide I' region at 1644 cm-1 which is significantly lower in frequency than has been generally observed for proteins that contain a high percentage of alpha-helix. It is proposed that an unusually high proportion of the helices in the structures of these proteins are distorted from the normal alpha-helical configuration such that the carbonyl stretching frequencies are lowered. It is further proposed that the shift to lower frequency is due to backbone carbonyl groups in the distorted helices that form strong hydrogen bonds with solvent molecules. A decrease in intensity at 1654 cm-1, the normal frequency assignment for alpha-helical structure, is observed as Ca2+ binds to calmodulin and troponin C. This suggests that Ca2+ binding results in a net decrease in "normal" alpha-helix conformation. There is a corresponding increase in intensity of the band at 1644 cm-1, possibly due to an increase in distorted helix content, allowing for a net increase in helix consistent with circular dichroism estimates of the Ca2+-dependent changes in helix content in calmodulin.  相似文献   

11.
J F Carpenter  J H Crowe 《Biochemistry》1989,28(9):3916-3922
Fourier-transform infrared spectroscopy was used to characterize the interaction of stabilizing carbohydrates with dried proteins. Freeze-drying of trehalose, lactose, and myo-inositol with lysozyme resulted in substantial alterations of the infrared spectra of the dried carbohydrates. In the fingerprint region (900-1500 cm-1), there were large shifts in the frequencies of bands, a decrease in absorbance, and a loss of band splitting. These effects mimic those of water on hydrated trehalose. Bands assigned to hydroxyl stretching modes (around 3350 cm-1) were decreased in intensity and shifted to higher frequencies in the presence of the protein. In complementary experiments, it was found that dehydration-induced shifts in the positions of amide I and amide II bands for lysozyme could be partially and fully reversed, respectively, when the protein was freeze-dried in the presence of either trehalose or lactose. In addition, the carboxylate band, which was not detectable in the protein dried without the sugar, was apparent when these sugars were present. myo-Inositol was less effective at shifting the amide bands, and the carboxylate band was not detected in the presence of this carbohydrate. Also tested was the concentration dependency of the carbohydrates' influence on the position of the amide II band for dried lysozyme. The results showed that the ability of a given concentration of a carbohydrate to shift this band back toward the position noted with the hydrated protein coincided, at least in the extreme cases, with the capacity of that same level of carbohydrate to preserve the activity of rabbit skeletal muscle phosphofructokinase during freeze-drying.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Time-resolved infrared difference spectra of the ATP-induced phosphorylation of the sarcoplasmic reticulum Ca2+-ATPase have been recorded in H2O and 2H2O at pH 7.0 and 1 degrees C. The reaction was induced by ATP release from P3-1-(2-nitro)phenylethyladenosine 5'-triphosphate (caged ATP) and from [gamma-18O3]caged ATP. A band at 1546 cm-1, not observed with the deuterated enzyme, can be assigned to the amide II mode of the protein backbone and indicates that a conformational change associated with ATPase phosphorylation takes place after ATP binding. This is also indicated between 1700 and 1610 cm-1, where bandshifts of up to 10 cm-1 observed upon protein deuteration suggest that amide I modes of the protein backbone dominate the difference spectrum. From the band positions it is deduced that alpha-helical, beta-sheet, and probably beta-turn structures are affected in the phosphorylation reaction. Model spectra of acetyl phosphate, acetate, ATP, and ADP suggest the tentative assignment of some of the bands of the phosphorylation spectrum to the molecular groups of ATP and Asp351, which participate directly in the phosphate transfer reaction: a positive band at 1719 cm-1 to the C==O group of aspartyl phosphate, a negative band at 1239 cm-1 to the nuas(PO2-) modes of the bound ATP molecule, and a positive band at 1131 cm-1 to the nuas(PO32-) mode of the phosphoenzyme phosphate group, the latter assignment being supported by the band's sensitivity toward isotopic substitution in the gamma-phosphate of ATP. Band positions and shapes of these bands indicate that the alpha- and/or beta-phosphate(s) of the bound ATP molecule become partly dehydrated when ATP binds to the ATPase, that the phosphoenzyme phosphate group is unprotonated at pH 7.0, and that the C==O group of aspartyl phosphate does not interact with bulk water. The Ca2+ binding sites seem to be largely undisturbed by the phosphorylation reaction, and a functional role of the side chains of Asn, Gln, and Arg residues was not detected.  相似文献   

13.
The conformational changes associated with the redox transition of plastocyanin (PC) were investigated by absorption and reaction-induced infrared spectroscopy. In addition to spectral features readily ascribed to beta and turn protein secondary structures, the amide I band shows a major component band at 1647 cm(-1) in both redox states of the protein. The sensitivity of this component to deuteration and increasing temperature suggests that PC adopts an unusual secondary structure in solution, which differs from those described for other type I copper proteins, such as azurin and halocyanin. The conformations of oxidized and reduced PC are different, as evidenced (1) by analysis of their amide I band contour and the electrochemically induced oxidized-minus-reduced difference spectrum and (2) by their different thermal stability. The redox-induced difference spectrum exhibits a number of difference bands within the conformationally sensitive amide I band that could be assigned to peptide C=O modes, in light of their small shift upon deuteration, and to signals attributable to side chain vibrational modes of Tyr residues. Lowering the pH to 4.8 induces destabilization of both redox states of the protein, more pronounced for reduced PC, without significantly affecting their secondary structure. Besides the conformational differences obtained at neutral pH, the oxidized-minus-reduced difference spectrum shows two broad and strong negative bands at 1405 and 1571 cm(-1), assigned to COO(-) vibrations, and a broad positive band at 1710 cm(-1), attributed to the C=O vibration of a COOH group(s). These bands are indicative of a protonation of (an) Asp or Glu side chain(s) upon plastocyanin oxidation at acidic pH.  相似文献   

14.
Peptide-chain secondary structure of bacteriorhodopsin.   总被引:7,自引:3,他引:4       下载免费PDF全文
Ultraviolet circular dichroism spectroscopy in the interval from 190 to 240 nm and infrared spectroscopy in the region of the amide I band (1,600 cm-1 to 1,700 cm-1) has been used to estimate the alpha-helix content and the beta-sheet content of bacteriorhodopsin. Circular dichroism spectroscopy strongly suggests that the alpha-helix content is sufficient for only five helices, if each helix is composed of 20 or more residues. It also suggests that there is substantial beta-sheet conformation in bacteriorhodopsin. The presence of beta-sheet secondary structure is further suggested by the presence of a 1,639 cm-1 shoulder on the amide I band in the infrared spectrum. Although a structural model consisting of seven alpha-helical rods has been generally accepted up to this point, the spectroscopic data are more consistent with a model consisting of five alpha-helices and four strands of beta-sheet. We note that the primary amino acid sequence can be assigned to segments of alpha-helix and beta-sheet in a way that does not require burying more than two charged groups in the hydrophobic membrane interior, contrary to the situation for any seven-helix model.  相似文献   

15.
The secondary structure of streptokinase (Sk) in aqueous solution was quantitatively examined by using Fourier transform infrared (FT-IR) spectroscopy. Resolution enhancement techniques, including Fourier deconvolution and derivative spectroscopy, were combined with band curve-fitting procedures to quantitate the spectral information from the amide I bands. Nine component bands were found under the broad, nearly featureless amide I bands which reflect the presence of various substructures. The relative areas of these component bands indicate an amount of beta-sheet between 30 and 37% and an alpha-helix content of only 12-13% in Sk. Further conformational substructures are assigned to turns (25-26%) and to "random" structures (15-16%). Additionally, the correlation of a pronounced component band near 1640 cm-1 (10-16% fractional area) with the possible presence of 3(10)-helices is discussed.  相似文献   

16.
Ye M  Zhang QL  Li H  Weng YX  Wang WC  Qiu XG 《Biophysical journal》2007,93(8):2756-2766
The infrared (IR) absorption of the amide I band for the loop structure may overlap with that of the alpha-helices, which can lead to the misassignment of the protein secondary structures. A resolution-enhanced Fourier transform infrared (FTIR) spectroscopic method and temperature-jump (T-jump) time-resolved IR absorbance difference spectra were used to identify one specific loop absorption from the helical IR absorption bands of horse heart cytochrome c in D2O at a pD around 7.0. This small loop consists of residues 70-85 with Met-80 binding to the heme Fe(III). The FTIR spectra in amide I' region indicate that the loop and the helical absorption bands overlap at 1653 cm(-1) at room temperature. Thermal titration of the amide I' intensity at 1653 cm(-1) reveals that a transition in loop structural change occurs at lower temperature (Tm=45 degrees C), well before the global unfolding of the secondary structure (Tm approximately 82 degrees C). This loop structural change is assigned as being triggered by the Met-80 deligation from the heme Fe(III). T-jump time-resolved IR absorbance difference spectra reveal that a T-jump from 25 degrees C to 35 degrees C breaks the Fe-S bond between the Met-80 and the iron reversibly, which leads to a loop (1653 cm(-1), overlap with the helical absorption) to random coil (1645 cm(-1)) transition. The observed unfolding rate constant interpreted as the intrachain diffusion rate for this 16 residue loop was approximately 3.6x10(6) s(-1).  相似文献   

17.
We have studied the conformation of the peptide Ac-EPKRSVAFKKTKKEVKKVATPKK (CH-1), free in solution and bound to the DNA, by Fourier-transform infrared spectroscopy. The peptide belongs to the COOH-terminal domain of histone H1(0) (residues 99-121) and is adjacent to the central globular domain of the protein. In aqueous (D(2)O) solution the amide I' is dominated by component bands at 1643 cm(-1) and 1662 cm(-1), which have been assigned to random coil conformations and turns, respectively. In accordance with previous NMR results, the latter component has been interpreted as arising in turn-like conformations in rapid equilibrium with unfolded states. The peptide becomes fully structured either in 90% trifluoroethanol (TFE) solution or upon interaction with the DNA. In these conditions, the contributions of turn (1662 cm(-1)) and random coil components virtually disappear. In TFE, the spectrum is dominated by the alpha-helical component (1654 cm(-1)). The band at 1662 cm(-1) shifts to 1670 cm(-1), and has been assigned to the COOH-terminal TPKK motif in a more stable turn conformation. A band at 1637 cm(-1), also present in TFE, has been assigned to 3(10) helical structure. The amide I' band of the complexes with the DNA retains the components that were attributed to 3(10) helix and the TPKK turn. In the complexes with the DNA, the alpha-helical component observed in TFE splits into two components at 1657 cm(-1) and 1647 cm(-1). Both components are inside the spectral region of alpha-helical structures. Our results support the presence of inducible helical and turn elements, both sharing the character of DNA-binding motifs.  相似文献   

18.
We have used time-resolved Fourier transformed infrared difference spectroscopy to characterize the amplitude, frequency, and kinetics of the absorbance changes induced in the infrared (IR) spectrum of sarcoplasmic reticulum Ca(2+)-ATPase by calcium binding at the high-affinity transport sites. 1-(2-Nitro-4,5-dimethoxyphenyl)-N,N,N',N'-tetrakis [(oxycarbonyl)methyl]-1,2-ethanediamine (DM-nitrophen) was used as a caged-calcium compound to trigger the release of calcium in the IR samples. Calcium binding to Ca(2+)-ATPase induces the appearance of spectral bands in difference spectra that are all absent in the presence of the inhibitor thapsigargin. Spectral bands above 1700 cm-1 indicate that glutamic and/or aspartic acid side chains are deprotonated upon calcium binding, whereas other bands may be induced by reactions of asparagine, glutamine, and tyrosine residues. Some of the bands appearing in the 1690-1610 cm-1 region arise from modifications of peptide backbone carbonyl groups. The band at 1653 cm-1 is a candidate for a change in an alpha-helix, whereas other bands could arise from modifications of random, turn, or beta-sheet structures or from main-chain carbonyl groups playing the role of calcium ligands. Only a few residues are involved in secondary structure changes. The kinetic evolution of these bands was recorded at low temperature (-9 degrees C). All bands exhibited a monophasic kinetics of rate constant 0.026 s-1, which is compatible with that measured in previous study at the same temperature in a suspension of sarcoplasmic reticulum vesicles by intrinsic fluorescence of Ca(2+)-ATPase.  相似文献   

19.
Fourier transform infrared study of the N intermediate of bacteriorhodopsin   总被引:8,自引:0,他引:8  
Visible absorption spectroscopic experiments show that the N intermediate is the main photoproduct of a highly hydrated film of the light-adapted bacteriorhodopsin (70% water by weight) at pH 10 and 274 K. The difference Fourier transform infrared spectrum between the N intermediate and unphotolyzed light-adapted bacteriorhodopsin was recorded under these conditions. A small amount of the M intermediate present did not affect this spectrum significantly. The difference spectrum exhibited a positive band at 1755 cm-1 (probably due to Asp-85) and a negative band at 1742 cm-1 (due to Asp-96), neither of which was observed for the M intermediate. The spectrum of the N intermediate at pH 7 was nearly identical with that at pH 10. Spectra at pH 10 also were measured with isotope-substituted samples. A vibrational band at 1692 cm-1 due to the peptide bond disappeared, and a band at 1558 cm-1 emerged upon formation of the N intermediate. The spectrum also displayed bands containing the N-H and C15-H in-plane bending vibrational modes at 1394 and 1303 cm-1. These frequencies are similar to those of the L intermediate while the intensities of these bands are larger than those in the L intermediate, suggesting that the Schiff bases of both the L and N intermediates have a strong hydrogen-bonding interaction with the protein and that the C12-H to C15-H region of the chromophore is less twisted in the N intermediate than in the L intermediate.  相似文献   

20.
We have undertaken a new and more detailed Fourier-transform infrared (FTIR) spectroscopic study of alpha-lactalbumin (in D2O solution) aimed at correlating its secondary structures to observed Amide I' infrared bands. The spectra reported here were interpreted in light of the recently determined crystal structure of alpha-lactalbumin and by comparison with the spectra and structure of the homologous protein lysozyme. Of particular importance is the new evidence supporting the assignment of the band at 1639 cm-1 to 3(10)-helices. This assignment is in excellent agreement with one based on theoretical and experimental studies of 3(10)-helical polypeptides. The frequency observed for 3(10)-helices is distinctly different from that at which alpha-helices are typically found (viz., around 1655 cm-1). In the present study, two bands are clearly resolved in the latter region at 1651 and 1659 cm-1. Both are apparently associated with alpha-helices. These results suggest that for D2O solutions of globular proteins. FTIR spectroscopy can be a facile method for detecting the presence of these two different types of helical conformation and distinguishing between them. This provides a distinct advantage over ultraviolet circular dichroism spectroscopy (UV-CD). This work also provides a basis for future studies of alpha-lactalbumin which examine the effects of environment (e.g., pH, temperature) and ligands (e.g., Ca2+, Mn2+) on its conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号