首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cancer-associated retinopathy (CAR) is an ocular manifestation of a paraneoplastic syndrome whereby immunological reactions toward recoverin (Rec), a retina-specific Ca(2+) binding protein, and its aberrant expression in tumor cells lead to the retinal degeneration. To elucidate functional roles of the aberrantly expression in cancer cells, we performed immunoprecipitation using anti-human Rec mAb. We observed co-precipitation of G-protein-coupled receptor kinases (GRKs) and caveolin-1 with Rec from cell lysates of 293 or SSTW cells. Immunocytochemistry revealed that immunoreactivities toward Rec within the cancer cells were almost identical to those toward GRKs and caveolin-1. The present data strongly suggest that aberrantly expressed Rec should be involved in the GRK-dependent cellular regulation in cancer cells.  相似文献   

2.
3.
Lipid raft domains have attracted much recent attention as platforms for plasma membrane signalling complexes. In particular, evidence is emerging that shows them to be key regulators of G protein coupled receptor function. The G protein coupled gamma-aminobutyric acid receptor B (GABA(B) receptor) co-isolates with lipid raft domains from rat brain cerebellum. In the present study, we show that the GABA(B1a,2) receptor was also present in lipid raft domains when expressed ectopically in a Chinese hamster ovary cell line. Lipid raft-associated receptor was functionally active, displaying a concentration-dependent increase in GTPgammaS binding in response to the receptor agonist GABA. Compared with whole cell membranes, lipid raft-associated receptor displayed an increased EC(50) and a reduced magnitude of response to GABA. We conclude that lipid raft association is an intrinsic property of the GABA(B1a,2) receptor and is not cell-type specific. In addition, localisation to lipid raft domains may provide a mechanism to inhibit receptor function.  相似文献   

4.
5.
6.
Both intra- and extracellular calcium play multiple roles in the physiology and pathophysiology of cardiomyocytes, especially in stimulus-contraction coupling. The intracellular calcium level is closely controlled through the concerted actions of calcium channels, exchangers, and pumps; however, the expression and function(s) of the so-called calcium-sensing receptor (CaR) in the heart remain less well characterized. The CaR is a seven-transmembrane receptor, which, in response to noncovalent binding of extracellular calcium, activates intracellular effectors, including G proteins and extracellular signal-regulated kinases (ERK1/2). We have shown that cultured neonatal cardiomyocytes express the CaR messenger RNA and the CaR protein. Furthermore, increasing concentrations of extracellular calcium and a type II CaR activator "calcimimetic" caused inositol phosphate (IP) accumulation, downregulated tritiated thymidine incorporation, and supported ERK1/2 phosphorylation, suggesting that the CaR protein is functionally active. Interestingly, the calcimimetic induced a more rapid ERK1/2 phosphorylation than calcium and left-shifted the IP concentration-response curve for extracellular calcium, supporting the hypothesis that CaR is functionally expressed in cardiac myocytes. This notion was underscored by studies using a virus containing a dominant-negative CaR construct, because this protein blunted the calcium-induced IP response. In conclusion, we have shown that the CaR is functionally expressed in neonatal ventricular cardiomyocytes and that the receptor activates second messenger pathways, including IP and ERK, and decreases DNA synthesis. A specific calcium-sensing receptor on cardiac myocytes could play a role in regulating cardiac development, function, and homeostasis.  相似文献   

7.
8.
9.
10.
Members of the nuclear receptor superfamily play key roles in a host of physiologic and pathologic processes from embryogenesis to cancer. Some members, including the retinoic acid receptor (RAR), are activated by ligand binding but are unaffected in their subcellular distribution, which is predominantly nuclear. In contrast, several members of the steroid receptor family, including the glucocorticoid receptor, are cytoplasmic and only translocate to the nucleus after ligand binding. We have constructed chimeras between RAR and glucocorticoid receptor that selectively respond to RAR agonists but display cytoplasmic localization in the absence of ligand. These chimeric receptors manifest both nuclear translocation and gene activation functions in response to physiological concentrations of RAR ligands. The ability to achieve regulated subcellular trafficking with a heterologous ligand binding domain has implications both for current models of receptor translocation and for structural-functional conservation of ligand binding domains broadly across the receptor superfamily. When coupled to the green fluorescent protein, chimeric receptors offer a powerful new tool to 1) study mechanisms of steroid receptor translocation, 2) detect dynamic and graded distributions of ligands in complex microenvironments such as embryos, and 3) screen for novel ligands of "orphan" receptors in vivo.  相似文献   

11.
We have previously shown that all-trans retinoic acid (atRA), the active metabolite of vitamin A, enhances the activation of the inducible nitric oxide synthase (NOS II) pathway, a component of innate immunity, in rats in vivo. We investigated the relative contribution of retinoic acid receptor-alpha (RARalpha) and retinoid X receptors (RXRs) to NOS II activation triggered by LPS. Five-day supplementation with 10 mg/kg of either atRA or the RARalpha selective agonist Ro-40-6055, but not with 10 mg/kg of the pan-RXR agonist Ro-25-7386, enhanced the LPS-induced NOS II mRNA, protein expression in liver, and plasma nitrite/nitrate concentration. Both atRA and the RARalpha agonist (but not the RXR agonist) increased the number of peripheral T helper lymphocytes and plasma interferon-gamma concentration. Synergism between retinoids and LPS on NOS II activation within an organ coincided with synergism on interferon regulatory factor-1 mRNA expression but not with the level of expression of the RARalpha protein. These results suggest that, in vivo, atRA activates NOS II through RARalpha and contributes to characterizing the complex effect of retinoids on the host inflammatory/immune response.  相似文献   

12.
The cDNA sequences of isoforms of retinoic acid receptor beta from the chick have been determined. The sequence is different from that reported previously only in the 5' region, suggesting a product of alternative splicing and differential usage of promoters. One of them, the novel RAR-beta 4 isoform, is presumed to encode an amino-terminal truncated region A of retinoic acid receptor beta.  相似文献   

13.
14.
15.
The bioactivity of retinol (vitamin A) is in part dependent on its metabolism to retinoic acid (RA). We investigated the ability of breast epithelial cells to synthesize RA when challenged with a physiological retinol dose (2 microM). Normal human mammary epithelial cells (HMEC) cultured from reduction mammoplasties were competent in RA synthesis and the ability to synthesize RA was retained by immortal, nontumorigenic breast epithelial cell lines (MTSV1.7, MCF-10F, and 184B5). In contrast, most (five of six) breast cancer cell lines could not synthesize RA or did so at low rates relative to normal cells. A notable exception was the MDA-MB-468 cell line, which was fully competent in RA synthesis. Most (>/=68%) of the RA synthesized by breast cells was recovered from the culture medium. Cellular retinol binding protein and cellular RA binding protein II, both expressed in HMEC, had various expression patterns in the cell lines that did not correlate with the observed differences in RA synthesizing ability. Strong RA induction of the RA hydroxylase P450RAI (CYP26) was confined to ERalpha-positive T47D and MCF-7 breast cancer cells and did not appear to explain the lack of detectable RA levels in these cells since RA remained undetectable when the cells were treated with 5-10 microM liarozole, a P450RAI inhibitor. We hypothesize that retinol bioactivity is impaired in breast cancer cells that cannot synthesize RA. In preliminary support of this hypothesis, we found that retinol (0.5-2 microM) inhibited MCF-10F but not T47D or MCF-7 cell growth.  相似文献   

16.
Elevated expression of the Eph receptor tyrosine kinase EphA3 is associated with lymphocytic leukaemia, but little is known about its expression or function in solid tumours. Out of a panel of cancer cell lines, we found that EphA3 was expressed only on two rhabdomyosarcoma (RMS) cell lines of the embryonal histological subtype and on one of the alveolar RMS subtype, whereas it was not detected on two other cell lines of the alveolar subtype. Other EphA receptors (1-7) were, either not expressed in any, or expressed in all five RMS cell lines. Stimulation of EphA3-expressing TE671 and RD RMS cells with ephrinA5 resulted in loss of adhesion to fibronectin, decreased migration towards the stromal cell-derived growth factor-I (SDF-I), increased EphA3 phosphorylation, and increased Rho GTPase activity. In contrast, ectopic expression of EphA3 in the EphA3 negative CRL2061 cell line resulted in decreased cell adhesion. Finally, suppression of EphA3 expression by siRNA in RD cells results in increased SDF-I-mediated motility. These data indicate that EphA3 expression may define subsets of RMS tumours, and that EphA3 suppresses motility through regulation of Rho GTPases in RMS cells.  相似文献   

17.
Lysophosphatidic acid (LPA) is an extracellular signaling lipid that regulates cell proliferation, survival, and motility of normal and cancer cells. These effects are produced through G protein-coupled LPA receptors, LPA(1) to LPA(5). We generated an LPA(1) mutant lacking the SerValVal sequence of the C-terminal PDZ-binding domain to examine the role of this domain in intracellular signaling and other cellular functions. B103 neuroblastoma cells expressing the mutant LPA(1) showed rapid cell proliferation and tended to form colonies under serum-free conditions. The enhanced cell proliferation of the mutant cells was inhibited by exogenous expression of the plasmids inhibiting G proteins including G(betagamma), G(alphai) and G(alphaq) or G(alpha12/13), or treatment with pertussis toxin, phosphoinositide 3-kinase (PI3K) inhibitors or a Rho inhibitor. We confirmed that the PI3K-Akt and Rho pathways were intrinsically activated in mutant cells by detecting increases in phosphorylated Akt in western blot analyses or by directly measuring Rho activity. Interestingly, expression of the mutant LPA(1) in non-tumor mouse fibroblasts induced colony formation in a clonogenic soft agar assay, indicating that oncogenic pathways were activated. Taken together, these observations suggest that the mutant LPA(1) constitutively activates the G protein signaling leading to PI3K-Akt and Rho pathways, resulting in enhanced cell proliferation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号