首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fate of 3H-thymidine incorporated into newly synthesized DNA of CHO cells was analyzed by either the estimation of the incorporated radioactivity per cell or sedimentation in alkaline sucrose gradient. Under conditions in which DNA synthesis proceeded continuously, of incorporated radioactivity was periodically lost and regained during a 90 min chase, corresponding to a cyclic change in the sedimentation profiles. When DNA synthesis was inhibited by hydroxyurea no cyclic change of the incorporated radioactivity was observed. The cyclic changes were regarded as the result of an actual metabolic change in3H-labelled DNA probaly joining to one of the newly formed sister strands of DNA and the loss of radioactivity seems to require active continued DNA synthesis.  相似文献   

2.
Mitochondria isolated from Misgurnus fossilis embryos at various developmental stages were incubated with 3H-dTTP in vitro and the incorporation into mtDNA was determined. It has been found that the rate of mtDNA labeling increases exponentially with a doubling time of 7 hr from 0.01 pmole of 3H-dTMP/mg protein/hr in mitochondria from unfertilized eggs to 0.4 pmoles of 3H-dTMP/mg protein/hr in mitochondria of 35 hr embryos. The pool of intramitochondrial dTTP decreases 2.5 times during the first 10 hr after fertilization, then remains practically constant up to 35 hr of development. The rate of exogenous 3H-dTTP incorporation into the acid soluble pool of isolated mitochondria at two stages is approximately proportional to the pool size. Thus identical specific activities of 3H-dTTP inside mitochondria would be obtained even with pools of different sizes. We conclude that the increase of 3H-dTMP incorporation into mtDNA in development reflects genuine activation of mtDNA synthesis. As early as 6 hr after fertilization the bulk of the label incorporated into mtDNA is found in the fraction associated with covalently closed molecules. This pattern of labeling characteristic for replicating mtDNA is maintained throughout early development. In contrast such preferential label incorporation into the closed circular fraction was not found with mitochondria of unfertilized eggs. Closed mtDNA from unfertilized eggs contains not more than 1% of molecules with D-loops. In 35 hr embryos the corresponding value is equal to about 4%. Activation of mtDNA replication in embryogenesis is probably due to the activation of mechanisms responsible for the generation of primers for replication. DNA polymerase activity solubilized from mitochondria remains unchanged in the course of embryogenesis.  相似文献   

3.
The thymidine degradation pathway established for other organisms is confirmed in insects. When 3H-TdR is used as a marker for DNA synthesis in developing silkmoths, some is incorporated into DNA and some degraded to compounds not incorporated into DNA. After a single injection, 3H-TdR is rapidly cleared from haemolymph and other tissue, resulting in, at most, a 4 hr pulse. In wing tissue, detection of DNA synthesis is possible for a maximum of 4 hr after injection of precursor and for 6 hr in vitro. Continuous monitoring of DNA synthesis can be attained by perfusion, which maintains high levels of circulating 3H-TdR.  相似文献   

4.
The synthesis of mitochondrial DNA (mtDNA) has been investigated by three independent methods of analysis during consecutive synchronous cell cycles in the yeast, Saccharomyces cerevisiae. The rates of pulse-label incorporation indicate maximal [3H]adenine uptake into mtDNA at the time of nuclear DNA synthesis. In contrast, the relative concentrations of mtDNA as determined by both the ratio of mtDNA to total cellular DNA and by the kinetics of isotope dilution analysis were found to increase continuously during synchronous growth. We conclude that whereas nuclear DNA replicates discontinuously during the cell cycle, mitochondrial DNA is synthesized continuously during this time. The discontinuous pattern of pulse-label incorporation into mtDNA is not considered to reflect its true mode of replication during the cell cycle.  相似文献   

5.
It has been proved that 3H-thymidine is incorporated into DNA of HeLa cells cultured at 4 °C and its labelling distribution in DNA is homogeneous. This incorporation of 3H-thymidine increased with the duration of incubation and only 30% of the cell population was labelled after 12 h. When synchronous cell populations were used, the rate and extent of DNA synthesis at 4 °C was proportional to the relative number of cells in S phase at that temperature. Thus, cellular labelling at 4 °C does not result from a non-specific absorption phenomenon, but indicates a DNA synthesis process.  相似文献   

6.
DNA chain growing during semiconservative replication was studied using both in vitro systems described in the preceding paper (preceding paper, ref 1) 3H-Labeled, 4-S Okazaki fragments synthesized in vivo just prior to permeabilization or lysis with Brij-58 were metabolically stable and quantitatively chased into high molecular weight DNA (20--100 S) during a subsequent incubation in vitro. Thus, DNA replication continued in vitro at the same growing points that were active in vivo. After a 20-s pulse at 30 degress C in vitro, more than 50% of incorporated radioactivity was found in the 4 S region of alkaline sucrose gradients suggesting a totally discontinuous mode of DNA chain growth. If the pulse were followed by a 1-min chase, 4-S molecules were converted into 6--12-S intermediates which upon continued incubation were joined with growing 20--100-S molecules (replicon-sized chains). Formation of all three classes of replicative intermediates, Okazaki fragments, 6--12-S intermediates, and 20--100-S molecules, occurred in vitro at least during the first 20 min. During this time, average rates of DNA chain growth and overall DNA synthesis were reduced to about the same extent, if compared to rates of intact cells. Thus, reduced chain growth rates appear to reflect primary deficiences of our in vitro systems, while initiation of replicative intermediates still occurs.  相似文献   

7.
Paul T. Englund 《Cell》1978,14(1):157-168
Kinetoplast DNA from the mitochondria of Crithidia is in the form of a two-dimensional network of thousands of minicircles each containing about 2.5 kb, and a small number of maxicircles each containing about 40 kb. Fractionation of kinetoplast DNA by equilibrium centrifugation in a CsCl-propidium dilodide gradient resolves it into three types of networks. Form I networks band at high density and contain minicircles which are covalently closed; form II networks band at low density and contain minicircles which are nicked or gapped; and replicating networks band at intermediate density and contain some minicircles of each type. Form I networks contain about 5000 minicircles; form II networks contain about 11,000; and replicating networks contain an intermediate number. When cells are pulse-labeled with 3H-thymidine, radioactivity in mitochondrial DNA is preferentially incorporated into replicating networks, but after a chase it appears first in form II networks and finally in form I. Examination of replicating networks by electron microscopy in the presence of ethidium bromide reveals that minicircles in the central region of the network are twisted and therefore covalently closed, whereas those in the peripheral region are not twisted and therefore must be nicked or gapped. The pulse-label is incorporated into the nicked or gapped minicircles of the replicating networks. These results indicate that replication of form I networks begins in peripheral minicircles and that progeny minicircles remain nicked or gapped. As replication proceeds, the size of the network increases, and the peripheral zone of nicked or gapped minicircles enlarges. Finally, when all minicircles have replicated, the network, now form II, is double the size of form I and contains only nicked or gapped minicircles. The final step in replication presumably includes both the cleavage of the network into two form I species and the covalent closure of all the minicircles.  相似文献   

8.
Studies on the mechanism of DNA replication in Physarum polycephalum   总被引:5,自引:0,他引:5  
The synthesis of single-stranded DNA subunits (4 × 107 daltons) in Physarum polycephalum was studied by alkaline sucrose density gradient centrifugation. The results were compared with the synthesis of the double-stranded DNA molecules (2.3 × 108 daltons) which they comprise, as determined from neutral sucrose density gradient centrifugation patterns. Although the initiation of synthesis of most double-stranded DNA molecules takes place relatively early in the S period, synthesis of the subunits within them is initiated throughout at least the first two hours of this period. Similarly, replicating (presumably forked) DNA molecules appear to split into daughter DNA molecules prior to the completion of synthesis of the subunits therein. The average rate of DNA chain elongation within subunits is 0.3 × 106 daltons/minute. It is suggested that alkaline sucrose density gradient centrifugation may be a more sensitive method for determining the time required for the completion of replication than other methods based solely on the incorporation of radioactive DNA precursors into an acid-insoluble product.  相似文献   

9.
Isolated cell nuclei were used as the source of template DNA to investigate the role of a cytosolic aprotinin-binding protein (ADR) in the initiation of eukaryotic DNA replication. Computerized image cytometry demonstrated that the DNA content of individual nuclei increased significantly following incubation with ADR-containing preparations, and the extent of DNA synthesis is consistent with that allowed by the limiting concentration of dTTP. Thus, dTTP incorporation into isolated nuclei represents DNA synthesis and not parent strand repair. We found that dTTP incorporation into the isolated nuclei is dependent on DNA polymerase α (a principal polymerase in DNA replication) but that DNA polymerase β (a principal polymerase in DNA repair processes) does not play a significant role in this system. Finally, neither aprotinin nor a previously described cytosolic ADR inhibitor can block the replication of nuclease-treated calf thymus DNA, while both strongly inhibit replication of DNA in isolated nuclei. This result, coupled with the relative ineffectiveness of nuclease-treated DNA compared with nuclear DNA to serve as a replicative template in this assay, argues against a significant contribution from repair or synthesis which initiates at a site of DNA damage. These data indicate that ADR-mediated incorporation of 3H-dTTP into isolated nuclei results from DNA replicative processes that are directly relevant to in vivo S phase events. © 1993 Wiley-Liss, Inc.  相似文献   

10.
The question of amino acid requirements for DNA synthesis and cell division has been studied in Tetrahymena pyriformis by depriving cells of histidine and tryptophan at defined stages in the interdivision interval. Deprivation any time before DNA synthesis does not prevent the initiation of such synthesis but completely inhibits the following division and limits the increase in DNA, as measured microspectrophotometrically, to 20 per cent. H3-thymidine added to the medium is not incorporated during the 20 per cent increase. Deprivation after DNA synthesis is initiated does not prevent the continuation (to completion) of DNA synthesis, and cell division ensues. H3-thymidine added to the medium under these conditions is incorporated into macronuclear DNA. The data indicate that some amino acid-dependent event occurs, about the time of the beginning of the DNA synthesis period, which is not essential for initiation of DNA synthesis but which is essential for the maintenance of synthesis once it has begun. These results are further discussed in terms of enzymes required to convert thymidine (and possibly the other three deoxyribonucleosides) to the immediate precursor of DNA synthesis.  相似文献   

11.
The mechanism of Col E 1 DNA replication was investigated in a plasmolysed cell system prepared from chloramphenicoltreated E. coli JC 411 (Col E 1). After pulse-labelling with (3)H-dTTP a considerable fraction of the newly synthesized DNA was recovered as single-stranded fragments. Upon alkali denaturation the pulse label was found in DNA chains sedimenting slower than unit length Col E 1 strands with a prominent peak at 5 S. During a chase with unlabeled precursors the label is transferred nearly completely into supercoiled Col E 1 DNA. DNA ligase appears to be required for the joining of the 5 S pieces since in the absence of NAD an accumulation of short fragments is observed.  相似文献   

12.
The [14C] moiety from [3H]UDP[14C]glucose was incorporated by intact cotton fibers into hot water soluble, acetic-nitric reagent soluble and insoluble components, and chloroform-methanol soluble lipids; the [3H] UDP moiety was not incorporated. The 3H-label can be exchanged rapidly with unlabeled substrate in a chase experiment. The cell wall apparent free space of cotton fibers was in the order of 30 picomoles per milligram of dry fibers; 25 picomoles per milligram easily exchanged and about 5 picomoles per milligram more tightly adsorbed. At 50 micromolar UDPglucose, 70% of the [14C]glucose was found in the lipid fraction after both a short labeling period and chase. The percent of [14C]glucose incorporated into total glucan increased slightly with chase, but the fraction of total glucans incorporated into insoluble acetic-nitric reagent (cellulose) did increase within a 30-minute chase period. The data supports the concept that glucan synthesis, including cellulose, as well as the synthesis of steryl glucosides, acetylated steryl glucosides, and glucosyl-phosphoryl-polyprenol from externally supplied UDPglucose occurs at the plasma membrane-cell wall interface. The synthase enzymes for such synthesis must be part of this interfacial membrane system.  相似文献   

13.
A method is presented for the study of the entrance of in vitro stimulated cells into their first poststimulation S phase. PHA-stimulated lymphocytes were incubated continuously with 14C-TdR. This isotope was then removed at different intervals and the cells were incubated for 8 h in medium containing 3H-TdR. Cells which had incorporated 3H-TdR but not 14C-TdR were considered to have entered their first post-stimulation S phase during the 8 h incubation with 3H-TdR. These cells were identified by double-layer autoradiography.The majority of PHA-stimulated lymphocytes entered their first period of DNA synthesis between 48 and 72 h after the addition of PHA. However, the variability was pronounced, some cells entering their first S phase at about 24 h and others some 100 h later. Cells entering their first S phase accounted for a considerable part of the population of cells in DNA synthesis still as late as 72 h after the addition of PHA.Calculation of the total number of cells that entered their first S phase during the 6 day culture period showed that DNA synthesis was initiated in some 40 % of the cells of the initial population.  相似文献   

14.
The pulse-chase technique was employed to determine the synthesis of the subunits of ligandin (glutathione S-transferase 1–2) by isolated hepatocytes. Ligandin comprised 2.5–3% of the total proteins synthesized. A slightly higher incorporation of [35S]methionine into the 22 k than the 25 k subunit was observed. However, the ratio of [35S]methionine incorporation into the subunits remained constant throughout the chase period, suggesting that, in spite of the considerable sequence homology, the conversion of 25 k to 22 k subunit does not occur in vivo  相似文献   

15.
The uptake of 3H-uridine into RNA and of 3H-thymidine into DNA was investigated in synchronized Chinese hamster cells which had been exposed to thiopyrimidine ribonucleosides. The cells were synchronized at metaphase by reversal of colcemid inhibition; these cells were then labeled with either 3H-thymidine or 3H-uridine at selected times, and analyzed in autoradiographs. Incorporation of 3H-thymidine into DNA was not inhibited by administration to the cells of 2-thiouridine or 4-thiouridine (4 × 10−3 M). Exposure of the cells to the anti-metabolites for over 15 h significantly reduced the incorporation of 3H-uridine into nuclear RNA and completely blocked the labeling of cytoplasmic RNA. This finding is interpreted as an indication that RNA synthesis was inhibited in cells which continued to synthesize DNA. The inhibition of RNA synthesis hindered cell division and decreased cell viability. This lethal effect is similar to the “unbalanced growth” induced by inhibitors of DNA synthesis. The thiopyrimidine ribonucleosides, however, killed mammalian cells without inhibiting DNA synthesis.  相似文献   

16.
W M Bonner  R S Wu  H T Panusz  C Muneses 《Biochemistry》1988,27(17):6542-6550
Procedures are presented which permit the identification and analysis of cellular histone that is not bound to chromatin. This histone, called soluble histone, could be distinguished from that bound to chromatin by the state of H4 modification and the lack of H2A ubiquitination. Changes in the levels of newly synthesized soluble histone were analyzed with respect to the balance between histone and DNA synthesis in hamster ovary cells. Pulse-chase protocols suggested that the chase of newly synthesized histone from the soluble fraction into chromatin may have two kinetic components with half-depletion times of about 1 and 40 min. When protein synthesis was inhibited, the pulse-chase kinetics of newly synthesized histone from the solubl fraction into chromatin were not significantly altered from those of the control. However, in contrast to the control, when protein synthesis was inhibited, DNA synthesis was also inhibited with kinetics similar to those of the chase of newly synthesized histone from the soluble fraction. There was a rapid decrease in the rate of DNA synthesis with a half-deceleration time of 1 min down to about 30% of the control rate, followed by a slower decrease with an approximate half-deceleration time of 40 min. When DNA synthesis was inhibited, newly synthesized histone accumulated in the soluble fraction, but H2A and H2B continued to complex with chromatin at a significant rate. Soluble histone in G1 cells showed the same differential partitioning of H4/H3 and H2A/H2B between the soluble and chromatin-bound fractions as was found in cycling cells with inhibited DNA synthesis. These results support a unified model of reciprocal regulatory mechanisms between histone and DNA synthesis in the assembly of chromatin.  相似文献   

17.
The thymidine analogue 5-bromodeoxyuridine (BUdR) has a differential effect on the synthesis of tissue-specific products and molecules required for growth and division. Proliferating myogenic cells cultured in BUdR fail to fuse and fail to initiate the synthesis of contractile protein filaments. Conversely, BUdR has but a minor effect on cell viability and reproductive integrity. Low concentrations of BUdR result in an enhancement of cell number relative to the controls; higher concentrations are cytotoxic. Suppression of myogenesis is reversible after at least 10 cell generations of growth in the analogue. Cells that do not synthesize DNA, such as postmitotic myoblasts and myotubes, are not affected by BUdR. Incorporation of BUdR for one round of DNA synthesis was accomplished by first incubating myogenic cells, prior to fusion, in 5-fluorodeoxyuridine (FUdR) to block DNA synthesis and collect cells in the presynthetic phase. The cells were then allowed to synthesize either normal DNA or BU-DNA for one S period by circumventing the FUdR block with BUdR or BUdR plus thymidine (TdR). The cultures were continued in FUdR to prevent dilution of the incorporated analogue by further division. After 3 days, the cultures from the FUdR-BUdR series showed the typical BUdR effect; the cells were excessively flattened and few multinucleated myotubes formed. Cells in the control cultures were of normal morphology, and multinucleated myotubes were present. These results were confirmed in another experiment in which BUdR-3H was added to 2-day cultures in which myotubes were forming. Fusion of thymidine-3H-labeled cells begins at 8 hr after the preceding S phase. In contrast, cells which incorporate BUdR-3H for one S period do not fuse with normal myotubes.  相似文献   

18.
EAT chalone effects on nascent DNA synthesis and DNA polymerase were examined. Concentration related inhibition of 3H-thymidine (3H-TdR) incorporation into EAT cell DNA was noted over a chalone range of 50–200 μg/ml. RNA synthesis was not affected, but protein synthesis decreased an average of 82% during 3 hr. Nascent DNA pulse-labeled for 2 min was normally incorporated into bulk DNA in the presence of chalone, but crude α and β-polymerase activities were inhibited. Crude DNA polymerase from C3H mouse kidney and spleen was also partially inhibited by EAT chalone, suggesting non-specific inhibition of DNA polymerase. Preincubation studies of chalone with crude EAT DNA polymerase or ‘gapped’ DNA primer had no effect on chalone activity. Chalone may control mitotic activity by inhibiting α- and β-polymerase activity, thereby decreasing nascent DNA synthesis. Nascent DNA is incorporated normally into bulk DNA in the presence of chalone, indicating that DNA ligase is not inhibited.  相似文献   

19.
The programmes of replication of hetero- and euchromatin regions, mitotic cell cycle and the DNA content in metaphases in brain ganglia from late third instar larvae ofDrosophila melanogaster (wild type and a tumour bearing mutant, 1(2)gl, strain) and ofDrosophila nasuta were examined by autoradiography of [3H]thymidine labelled (continuous or pulse) cells and by cytophotometry, respectively. Brain ganglia labelled continuously with [3H]thymidine for 24 hin vitro showed a significantly high proportion of cells with incorporation of radioactivity restricted to heterochromatin only. Pulse labelling of brain ganglia from larvae ofDrosophila melanogaster andDrosophila nasuta followed by chase for different time intervals showed that (i) the frequency of labelled metaphases was more than 50% within 15 to 30 min of chase and remained higher than 50% in nearly all the chase samples till 24 h, (ii) euchromatin labelled metaphases appeared with a low frequency within 1 to 4 h chase period but the heterochromatin labelled metaphases continued to be more common in the later chase samples also, (iii) single chromatid labelled second cycle metaphases were seen within 1 to 4 h after the pulse, but their frequency did not increase in the later samples. Cytophotometry of feulgen-DNA and Hoechst 33258 stained metaphases in late third instar larval brain ganglia revealed a greater variation in the DNA content of individual metaphases, although the means were close to the expected 4 C content. It appears that in relation to the known asymmetric cell divisions of neuroblast and other neural cells, the mitotically active cells in brain ganglia comprise a heterogenous population with widely varying lengths of the different phases of cell cycle; some of them may not cycle regularly and may possibly have a discontinuous S-phase.  相似文献   

20.
The incorporation of thymidine-H3 and lysine-H3 into human leukocyte chromosomes was studied in order to determine the temporal relationships between the syntheses of chromosomal deoxyribonucleic acid and chromosomal protein. The labeled compounds were incorporated into nuclei of interphase cells. Label from both precursors became apparent over the chromosomes of dividing cells. Incorporation of thymidine-H3 occurred during a restricted period of midinterphase (S) which was preceded by a nonsynthetic period (G1) and followed by a nonsynthetic period (G2). Incorporation of lysine-H3 into chromosomal protein occurred throughout interphase. Grain counts made over chromosomes of dividing cells revealed that the rate of incorporation of lysine-H3 into chromosomal protein differed during various periods of interphase. The rate of incorporation was diminished during G1. During early S period the rate of incorporation increased, reaching a peak in late S. The high rate continued into G2. Thymidine-H3 incorporated into DNA was distributed to mitotic chromosomes of daughter cells in a manner which has been referred to as a "semi-conservative segregation." No such semi-conservative mechanism was found to affect the distribution of lysine-H3 to the mitotic chromosomes of daughter cells. Therefore, it is concluded that synthesis of chromosomal protein and its distribution to chromosomes of daughter cells are not directly influenced by synthesis and distribution of the chromosomal DNA with which the protein is associated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号