首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this technique, cells are cultured on a glass slide that is partly coated with indium-tin oxide (ITO), a transparent, electrically conductive material. A variety of molecules, such as peptides or oligonucleotides can be introduced into essentially 100% of the cells in a non-traumatic manner.  Here, we describe how it can be used to study intercellular, gap junctional communication. Lucifer yellow penetrates into the cells when an electric pulse, applied to the conductive surface on which they are growing, causes pores to form through the cell membrane. This is electroporation. Cells growing on the nonconductive glass surface immediately adjacent to the electroporated region do not take up Lucifer yellow by electroporation but do acquire the fluorescent dye as it is passed to them via gap junctions that link them to the electroporated cells. The results of the transfer of dye from cell to cell can be observed microscopically under fluorescence illumination. This technique allows for precise quantitation of gap junctional communication. In addition, it can be used for the introduction of peptides or other non-permeant molecules, and the transfer of small electroporated peptides via gap junctions to inhibit the signal in the adjacent, non-electroporated cells is a powerful demonstration of signal inhibition.  相似文献   

2.
Gap junction intercellular communication (GJIC) consists of intercellular exchange of low molecular weight molecules. Chemically induced alterations of this communication have been suggested to result in abnormal cell growth and tumour promotion. Several in vitro assays have been developed to determine the effect of chemicals on gap junction communication in cultured cells. The scrape loading dye transfer technique is based on studying the transfer of the fluorescent dye Lucifer Yellow in cells where the dye is loaded through a cut in the cell monolayer. This technique is rapid and relatively uncomplicated, but has only been used to qualitatively demonstrate communication, due to lack of an appropriate method for quantification of the dye spreading. We show here that analysis of digital fluorescence images of cells scrape loaded with Lucifer Yellow can be used for quantitative determination of GJIC. We have analysed the images both by means of distance of diffusion of the dye in the cell monolayer, as well as by area of dye-coupled cells. The results are consistent with that obtained using microinjection of Lucifer Yellow and the method offers a simple way for quantitative determination of GJIC.  相似文献   

3.
Gap junction intercellular communication (GJIC) consists of intercellular exchange of low molecular weight molecules. Chemically induced alterations of this communication have been suggested to result in abnormal cell growth and tumour promotion. Several in vitro assays have been developed to determine the effect of chemicals on gap junction communication in cultured cells. The scrape loading dye transfer technique is based on studying the transfer of the fluorescent dye Lucifer Yellow in cells where the dye is loaded through a cut in the cell monolayer. This technique is rapid and relatively uncomplicated, but has only been used to qualitatively demonstrate communication, due to lack of an appropriate method for quantification of the dye spreading. We show here that analysis of digital fluorescence images of cells scrape loaded with Lucifer Yellow can be used for quantitative determination of GJIC. We have analysed the images both by means of distance of diffusion of the dye in the cell monolayer, as well as by area of dye-coupled cells. The results are consistent with that obtained using microinjection of Lucifer Yellow and the method offers a simple way for quantitative determination of GJIC.  相似文献   

4.
Retinaldehyde and retinoic acid are derivatives of vitamin A, and retinaldehyde is the precursor for the synthesis of retinoic acid, a well-known inhibitor of gap junctional intercellular communication. In this investigation, we asked the question if retinaldehyde has similar effects on gap junctions. Gap junctional intercellular communication was measured by scrape-loading and preloading dye-transfer methods, and studies were carried out mainly on cultured liver epithelial cells. Retinaldehyde was found to be a more potent inhibitor (dye transfer reduced by 50% at 2.8 μM) than retinoic acid (dye transfer reduced by 50% at 30 μM) and glycyrrhetinic acid (dye transfer reduced by 50% at 65 μM). Both the 11-cis and all-trans forms of retinaldehyde were equally effective. Retinaldehyde inhibited dye transfer of both anionic Lucifer yellow and cationic Neurobiotin. Inhibition by retinaldehyde developed in less than two minutes at 50 μM, but unlike the reported case with retinoic acid, recovery was slower, though full. In addition to liver epithelial cells, retinaldehyde inhibited gap junctional communication in lens epithelial cells, retinal pigment epithelial cells and retinal ganglion cells.  相似文献   

5.
Gap junctional intercellular communication (GJIC) is recognized as playing an important role in normal cell proliferation and development. Chemically induced alteration of GJIC has been proposed to be associated with abnormal cellular growth and/or tumor promotion. Several in vitro assays are currently used to determine the effects of chemicals on GJIC between cultured mammalian cells. One of these assays, the scrape-loading dye transfer (SLIDT) technique, is based on monitoring the transfer of the fluorescent dye Lucifer yellow from one cell into adjacent cells via functional gap junctions. The objective of our study was to evaluate and compare various approaches for quantifying results obtained with the SL/DT technique. Confluent cultures of either WB rat liver epithelial cells or LC-540 rat leydig cells were exposed to the animal tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), solvent (0.1% ethanol), or culture medium for one hour at 37° C prior to analysis of GJIC. Inhibition of dye transfer was clearly evident following TPA exposure. Quantification of this dye transfer was assessed via four approaches: manually counting the number of labeled cells; measuring the distance of dye travel from the scrape line; quantifying the amount of cellular dye uptake; and determining the distribution of dye away from the scrape line. Our results suggest that while the SL/DT technique can be effectively used as a tool to determine the qualitative presence or absence of GJIC, its use in quantifying changes in GJIC following chemical exposure is limited. Since concentration-dependent responses are critical in chemical testing, application of the SLIDT method should be restricted to a screening assay for qualitatively assessing the presence or absence of GJIC. Another assay (e.g., electrical coupling, microinjection, metabolic cooperation, radioactive metabolite transfer, or fluorescence redistribution after photobleaching) should be considered to quantify changes in GJIC and construct chemical concentration-response curves.Abbreviations FBS, fetal bovine serum - GJIC, gap junctional intercellular communication - HBSS, Hank's balanced saline solution - SL/DT, scrape-loading/dye transfer - TPA, 12-O-tetradecanoylphorbol-13-acetate.  相似文献   

6.
In the Xenopus embryo, blastomeres are joined by gap junctions that allow the movement of small molecules between neighboring cells. Previous studies using Lucifer yellow (LY) have reported asymmetries in the patterns of junctional communication suggesting involvement in dorso-ventral patterning. To explore that relationship, we systematically compared the transfer of LY and neurobiotin in embryos containing 16-128 cells. In all cases, the junction-permeable tracer was coinjected with a fluorescent dextran that cannot pass through gap junctions. Surprisingly, while LY appeared to transfer in whole-mount embryos, in no case did we observe junctional transfer of LY in fixed and sectioned embryos. The lack of correspondence between data obtained from whole-mounts and from sections results from two synergistic effects. First, uninjected blastomeres in whole-mounts reflect and scatter light originating from the intensely fluorescent injected cell, creating a diffuse background interpretable as dye transfer. Second, the heavier pigmentation in ventral blastomeres masks this scattered signal, giving the impression of an asymmetry in communication. Thus, inspection of whole-mount embryos is an unreliable method for the assessment of dye transfer between embryonic blastomeres. A rigorous and unambiguous demonstration of gap junctional intercellular communication demands both the coinjection of permeant and impermeant tracers followed by the examination of sectioned specimens. Whereas LY transfer was never observed, neurobiotin was consistently transferred in both ventral and dorsal aspects of the embryo, with no apparent asymmetry. Ventralization of embryos by UV irradiation and dorsalization by Xwnt-8 did not alter the patterns of communication. Thus, our results are not compatible with current models for a role of gap junctional communication in dorso-ventral patterning.  相似文献   

7.
S Lee  N B Gilula  A E Warner 《Cell》1987,51(5):851-860
The ability of gap junction antibodies to block dye transfer and electrical coupling was examined in the compacted 8-cell mouse zygote. In control zygotes, Lucifer yellow injected into 1 cell transferred to the rest of the embryo. When antibodies raised against the major protein extracted from gap junctions were co-injected with Lucifer yellow, dye transfer failed in 86% of the zygotes tested and electrical coupling was almost completely inhibited. Subsequently, the antibody-containing cells were extruded. When the antibodies were injected into 1 cell at the 2-cell stage, 82% of the zygotes divided normally to the 8-cell stage. Cells containing gap junction antibodies were uncompacted, but continued to divide. We conclude that these antibodies inhibit gap junctional communication in the early mouse zygote and that communication through gap junctions may be involved in the maintenance of compaction.  相似文献   

8.
Lindane (gamma-hexachlorocyclohexane) is a commonly used pesticide that bioaccumulates in mammalian adipose tissue. Lindane inhibits gap junctional intercellular communication and oscillatory contractions of pregnant rat myometrium in vitro. The present study investigated the role of oxidative stress in lindane's inhibition of myometrial function in mid-gestation pregnant rat uteri. Lucifer yellow dye was microinjected into cultured myocytes to assess gap junctional intercellular communication. Lindane exposure (100 microM) resulted in a time-dependent, biphasic inhibition of dye transfer. This pattern of inhibition was also seen upon cell exposure to the pro-oxidant, tert-butyl hydroperoxide (100 microM). Lindane's initial and secondary-onset dye transfer inhibitions were reversed by cotreatment and pretreatment with the antioxidants, alpha-tocopherol (25-100 microM), diphenyl-1,4-phenylene diamine (10-30 microM), and superoxide dismutase (100-400 U/ml). D-mannitol (100-300 mM) also reversed lindane's initial dye transfer inhibition. Nitro blue tetrazolium reduction to formazan (measured spectrophotometrically) was elevated upon exposure of cultured cells to lindane or tert-butyl hydroperoxide, indicating the presence of reducing agents. Lipid peroxidation, assessed as thiobarbituric acid-reactive substances, was also elevated in lindane-exposed cell cultures. alpha-Tocopherol reversed this elevation. Finally, uterine contractility was assessed by measuring isometric contractions of uterine strips hung in standard muscle baths. Pretreatment with alpha-tocopherol prevented lindane's abolishment of uterine contractions in vitro. These data support the hypothesis that lindane inhibits uterine contractility and myometrial gap junctions by establishing an oxidative stress environment.  相似文献   

9.
Effects of cAMP on intercellular coupling and osteoblast differentiation   总被引:4,自引:0,他引:4  
Bone-forming cells are organized in a multicellular network interconnected by gap junctions. Direct intercellular communication via gap junctions is an important component of bone homeostasis, coordinating cellular responses to external signals and promoting osteoblast differentiation. The cAMP pathway, a major intercellular signal transduction mechanism, regulates osteoblastic function and metabolism. We investigated the effects of this second messenger on junctional communication and on the expression of differentiation markers in human HOBIT osteoblastic cells. Increased levels of cAMP induce posttranslational modifications (i.e., phosphorylations) of connexin43 and enhancement of gap junction assembly, resulting in an increased junctional permeance to Lucifer yellow and to a positive modulation of intercellular Ca(2+) waves. Increased intercellular communication, however, was accompanied by a parallel decrease of alkaline phosphatase activity and by an increase of osteocalcin expression. cAMP-dependent stimulation of cell-to-cell coupling induces a complex modulation of bone differentiation markers.  相似文献   

10.
The assembly of gap junction channels was studied using mammalian cells expressing connexin (Cx) 26, 32 and 43 in which the carboxyl terminus was fused to green, yellow or cyan fluorescent proteins (GFP, YFP, CFP). Intracellular targeting of Cx32-CFP and 43-GFP to gap junctions was disrupted by brefeldin A treatment and resulted in a severe loss of gap junctional intercellular communication reflected by low intercellular dye transfer. Cells expressing Cx43-GFP exposed to nocodazole showed normal targeting to gap junctions and dye transfer. Cx32 and 43 thus appear to be transported and assembled into gap junctions via the classical secretory pathway. In contrast, we found that assembly of Cx26-GFP into functional gap junctions was relatively unaffected by treatment of cells with brefeldin A, but was extremely sensitive to nocodazole treatment. Coexpression of Cx26-YFP and Cx32-CFP indicated a different intracellular distribution that was accentuated in the presence of brefeldin A, with the gap junctions in these cells constructed predominantly of Cx26-YFP. A site specific mutation in the first transmembrane domain that distinguished Cx32 from Cx26 (Cx32128L) resulted in the adoption of the trafficking properties of Cx26 as well as its unusual post-translational membrane integration characteristics. The results indicate that multiple intracellular connexin trafficking routes exist and provide a further mechanism for regulating the connexin composition of gap junctions and thus specificity in intercellular signalling.  相似文献   

11.
The assembly of gap junction channels was studied using mammalian cells expressing connexin (Cx) 26, 32 and 43 in which the carboxyl terminus was fused to green, yellow or cyan fluorescent proteins (GFP, YFP, CFP). Intracellular targeting of Cx32-CFP and 43-GFP to gap junctions was disrupted by brefeldin A treatment and resulted in a severe loss of gap junctional intercellular communication reflected by low intercellular dye transfer. Cells expressing Cx43-GFP exposed to nocodazole showed normal targeting to gap junctions and dye transfer. Cx32 and 43 thus appear to be transported and assembled into gap junctions via the classical secretory pathway. In contrast, we found that assembly of Cx26-GFP into functional gap junctions was relatively unaffected by treatment of cells with brefeldin A, but was extremely sensitive to nocodazole treatment. Coexpression of Cx26-YFP and Cx32-CFP indicated a different intracellular distribution that was accentuated in the presence of brefeldin A, with the gap junctions in these cells constructed predominantly of Cx26-YFP. A site specific mutation in the first transmembrane domain that distinguished Cx32 from Cx26 (Cx32128L) resulted in the adoption of the trafficking properties of Cx26 as well as its unusual post-translational membrane integration characteristics. The results indicate that multiple intracellular connexin trafficking routes exist and provide a further mechanism for regulating the connexin composition of gap junctions and thus specificity in intercellular signalling.  相似文献   

12.
The assembly of gap junction channels was studied using mammalian cells expressing connexin (Cx) 26, 32 and 43 in which the carboxyl terminus was fused to green, yellow or cyan fluorescent proteins (GFP, YFP, CFP). Intracellular targeting of Cx32-CFP and 43-GFP to gap junctions was disrupted by brefeldin A treatment and resulted in a severe loss of gap junctional intercellular communication reflected by low intercellular dye transfer. Cells expressing Cx43-GFP exposed to nocodazole showed normal targeting to gap junctions and dye transfer. Cx32 and 43 thus appear to be transported and assembled into gap junctions via the classical secretory pathway. In contrast, we found that assembly of Cx26-GFP into functional gap junctions was relatively unaffected by treatment of cells with brefeldin A, but was extremely sensitive to nocodazole treatment. Coexpression of Cx26-YFP and Cx32-CFP indicated a different intracellular distribution that was accentuated in the presence of brefeldin A, with the gap junctions in these cells constructed predominantly of Cx26-YFP. A site specific mutation in the first transmembrane domain that distinguished Cx32 from Cx26 (Cx32128L) resulted in the adoption of the trafficking properties of Cx26 as well as its unusual post-translational membrane integration characteristics. The results indicate that multiple intracellular connexin trafficking routes exist and provide a further mechanism for regulating the connexin composition of gap junctions and thus specificity in intercellular signalling.  相似文献   

13.
We investigated intercellular communication during the seventh and tenth cell cycles of Xenopus laevis development using microinjection of Lucifer yellow and FITC-dextran as well as freeze-fracture electron microscopy. We found that gap junction-mediated dye coupling visualized using Lucifer yellow was strongly cell cycle modulated in the tenth cell cycle. Cytoplasmic bridge-mediated dye coupling visualized via FITC-dextran was also, of course, cell cycle modulated. The basis of cell cycle-modulated gap junctional coupling was investigated by measuring the abundance of morphologically detectable gap junctions through the tenth cell cycle. These proved to be six times more abundant at the beginning than at the end of this cell cycle.  相似文献   

14.
Cultured myometrial cells establish communicating gap junctions   总被引:5,自引:0,他引:5  
Myometrial cells were isolated and cultured from term rat uterus. The myometrial origin of the cultures was verified by antibody staining of cellular desmin and alpha-smooth muscle actin. The presence of functional gap junctions was indicated by transfer of radiolabeled nucleotide and microinjected Lucifer yellow dye. The cultured cells expressed mRNA recognized by a connexin43 gap junction cDNA probe. To our knowledge, this is the first report that isolated myometrial cells form gap junctions in culture.  相似文献   

15.
Electrophysiological remodeling involving gap junctions has been demonstrated in failing hearts and may contribute to intercellular uncoupling, delayed conduction, enhanced arrhythmias, and vulnerability to sudden death in patients with heart failure. Recently, we showed that failing human hearts exhibit marked increases in connexin45 (Cx45) expression in addition to previously documented decreases in connexin43 (Cx43) expression. Each of these changes results in reduced gap junction coupling. The objective of the present study was to examine functional consequences of increased Cx45 in cardiac gap junctions. Transgenic mice with cardiac-selective overexpression of the developmentally downregulated cardiac connexin, connexin45 (Cx45OE mice) were subjected to in vivo electrophysiology studies in which an intracardiac catheter was used to induce ventricular arrhythmias in anesthetized mice, and in which ambulatory ECG monitoring was used to detect spontaneous arrhythmias in unanesthetized mice. Hearts were analyzed by TaqMan RT-PCR, immunostaining, immunoblotting, and echocardiography. Lucifer yellow and neurobiotin dye transfer was used to assess coupling in transgenic and control myocyte cultures. Cx45 mRNA was two orders of magnitude greater in Cx45OE mice. Cx45-immunoreactive signal at gap junctions increased twofold and total Cx45 protein by immunoblotting increased 25% in Cx45OE mice compared with nontransgenic littermate controls. Functionally, Cx45OE mice exhibited more inducible ventricular tachycardia than controls but did not exhibit any other functional or structural derangements as assessed by echocardiography. Ventricular myocytes isolated from Cx45OE mice exhibited diminished intercellular transfer of Lucifer yellow dye and increased transfer of neurobiotin, consistent with altered cell-to-cell communication. Thus increased myocardial expression of Cx45 results in remodeling of intercellular coupling and greater susceptibility to ventricular arrhythmias in vivo.  相似文献   

16.
Intercellular communication in the early human embryo   总被引:5,自引:0,他引:5  
A preliminary study on intercellular communicative devices in the early human embryo has been made using dye-coupling techniques and electron microscopy (EM). Lucifer yellow injected into single blastomeres of embryos at the 4-cell stage up to the late morula stage did not spread to neighbouring cells, indicating that gap junctions and cytoplasmic bridges are not significant pathways for information transfer. Dye spread was first observed in the blastocyst stage, where trophectoderm cells and inner mass cells were shown to be in communication through gap junctions. Studies at the EM level confirmed this finding. Tight junctions and desmosome-like structures, apparent from the 6-cell stage onward, were located both peripherally and centrally and were initially nonzonular. The role of intercellular devices in the primary differentiation of the human embryo is discussed.  相似文献   

17.
Dye coupling experiments were performed to determine whether the gap junctions connecting Sertoli cells with other Sertoli cells and different germ cell stages in rats showed functional variations. Chop loading of adult rat seminiferous tubules was conducted using fluorescent dextran controls and a variety of low-molecular-weight tracers (lucifer yellow, biotin-X-cadaverine, biotin cadaverine, and neurobiotin) to evaluate dye coupling in situ, and scrape loading was used to study dye coupling in Sertoli-germ cell cocultures established using prepuberal rats. Sertoli-Sertoli coupling is relatively short range and nonselective in situ, whereas coupling between Sertoli cells and chains of spermatogonia is strongly selective for the positively charged biotin tracers relative to negatively charged lucifer yellow. Coupling between Sertoli cells and spermatogonia was also asymmetric; lucifer yellow in germ cells never diffused into Sertoli cells, and biotinylated tracers only weakly diffused from spermatogonia to Sertoli cells. Asymmetric coupling would facilitate the concentration in germ cells of molecules diffusing through junctions from Sertoli cells. Dye coupling between Sertoli cells and adluminal germ cells was too weak to detect by fluorescence microscopy, suggesting that the junctional communication between these cells may be functionally different from that between Sertoli and basal germ cells. The results show that there are multiple routes of gap junction communication in rat seminiferous tubules that differ in permeability properties and show alternative gating states. Functional diversity of gap junctions may permit regulated communication among the many interacting Sertoli cells and germ cell stages in the seminiferous epithelium.  相似文献   

18.
Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion.  相似文献   

19.
Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion.  相似文献   

20.
To evaluate the influence of intracellular domains of connexin (Cx) on channel transfer properties, we analyzed mouse connexin (Cx) Cx26 and Cx30, which show the most similar amino acid sequence identities within the family of gap junction proteins. These connexin genes are tightly linked on mouse chromosome 14. Functional studies were performed on transfected HeLa cells stably expressing both mouse connexins. When we examined homotypic intercellular transfer of microinjected neurobiotin and Lucifer yellow, we found that gap junctions in Cx30-transfected cells, in contrast to Cx26 cells, were impermeable to Lucifer yellow. Furthermore, we observed heterotypic transfer of neurobiotin between Cx30-transfectants and HeLa cells expressing mouse Cx30.3, Cx40, Cx43 or Cx45, but not between Cx26 transfectants and HeLa cells of the latter group. The main differences in amino acid sequence between Cx26 and Cx30 are located in the presumptive cytoplasmic loop and C-terminal region of these integral membrane proteins. By exchanging one or both of these domains, using PCR-based mutagenesis, we constructed Cx26/30 chimeric cDNAs, which were also expressed in HeLa cells after transfection. Homotypic intercellular transfer of injected Lucifer yellow was observed exclusively with those chimeric constructs that coded for both cytoplasmic domains of Cx26 in the Cx30 backbone polypeptide chain. In contrast, cells transfected with a construct that coded for the Cx26 backbone with the Cx30 cytoplasmic loop and C-terminal region did not show transfer of Lucifer yellow. Thus, Lucifer yellow transfer can be conferred onto chimeric Cx30 channels by exchanging the cytoplasmic loop and the C-terminal region of these connexins. In turn, the cytoplasmic loop and C-terminal domain of Cx30 prevent Lucifer yellow transfer when swapped with the corresponding domains of Cx26. In chimeric Cx30/Cx26 channels where the cytoplasmic loop and C-terminal domains had been exchanged, the unitary channel conductance was intermediate between those of the parental channels. Moreover, the voltage sensitivity was slightly reduced. This suggests that these cytoplasmic domains interfere directly or indirectly with the diffusivity, the conductance and voltage gating of the channels. Received: 26 July 2000/Revised: 15 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号