共查询到20条相似文献,搜索用时 15 毫秒
1.
Influence of phosphorus on the growth and ergot alkaloid content of Neotyphodium coenophialum-infected tall fescue (Festuca arundinacea Schreb.) 总被引:2,自引:0,他引:2
Tall fescue (Festuca arundinacea Schreb.) plants infected by the fungal endophyte Neotyphodium coenophialum (Morgan-Jones & Gams) (Glenn et al., 1996) often perform better than noninfected plants, especially in marginal resource environments. There is a lack of information about endophyte related effects on the rhizosphere of grasses. In a greenhouse experiment, four endophyte-infected (E+) tall fescue clones (DN2, DN4, DN7, DN11) and their endophyte-free (E–) forms were grown in limed (pH 6.3) Porter soil (low fertility, acidic, high aluminum and low phosphorus content, coarse-loamy mixed mesic Umbric Dystrochrept) at three soil P levels (17, 50, and 96 mg P kg-1 soil) for five months. Excluding the genotype effect, endophyte infection significantly increased cumulative herbage DM yield by 8% at 17 mg P kg-1 soil but reduced cumulative herbage DM yield by 12% at 96 mg P kg-1 soil. With increased P availability in the soil, shoot and root DM, and root/shoot ratio in E+ plants were significantly less when compared to E– plants. Endophyte infection increased specific root length at 17 and 50 mg P kg-1soil. At soil P level of 17 mg P kg-1soil, E+ plants had significantly higher P concentrations both in roots and shoots. Similar relationships were found for Mg and Ca. E+ plants had significantly higher Zn, Fe, and Al concentration in roots, and lower Mn and Al concentration in shoots when compared to E– plants. Ergot alkaloid concentration and content in shoot of E+ plants increased with increasing P availability in the soil from 17 to 50 mg P kg-1 but declined again at 96 mg P kg-1 soil. Ergot alkaloid accumulation in roots increased linearly with P availability in the soil. Results suggest that endophyte infection affects uptake of phosphorus and other mineral nutrients and may benefit tall fescue grown on P-deficient soils. Phosphorus seems also to be involved in ergot alkaloid accumulation in endophyte-infected tall fescue. 相似文献
2.
Neotyphodium, a seed-transmissible nonpathogenic fungal endophyte (symbiont) is considered beneficial because endophyte-infected grasses
are more drought-tolerant, produce more dry matter, utilize soil nitrogen more efficiently, and deter insects. In this study,
the effects of endophytes on physiological mechanisms of drought tolerance in tall fescue (Festuca arundinacea Schreb.) were studied in a greenhouse. Two clonally propagated genotypes of tall fescue (F. arundinacea Schreb.), naturally containing endophyte (EI), and their endophyte-free ramets (EF) were tested at three water stress treatments
exerted by PEG 6000 in a hydroponics system. Relative water content (RWC), cell membrane stability (CMS), proline and chlorophyll
contents in plant leaves were measured during water stress treatments. After harvest, K+, Ca2+, and Mg2+ contents were measured in plant roots and shoots. After 20 days under stress conditions, plants were transferred to basal
hydroponics medium, and their survival after stress relief was evaluated. The results showed that endophyte considerably contributes
to host grass water stress tolerance. Both genotypes of EI and EF plants did not differ in RWC, but, regardless of the infection
status, genotype 75 had the higher RWC than genotype 83. EI clones of both genotypes maintained slightly higher chlorophyll
content and membrane stability than EF clones, although these differences were not significant. The EI plants of genotype
83 concentrated significantly more proline than EF plants, but in the genotype 75, differences between EI and EF clones were
not significant. Plant mineral absorption was also influenced by the endophyte presence. EI clones had the higher concentrations
of K+ in the shoots of both genotypes. The Mg2+ and Ca2+ contents in EF plants of both genotypes were higher than EI plants in the roots, but in the shoots there were no differences
between EI and EF clones. EI clones survived longer after stress removal. These results strongly suggest that Neotyphodium endophytes exert their effects on tall fescue drought tolerance through alteration of various physiological mechanisms involved.
Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 4, pp. 563–570.
This test was submitted by the authors in English. 相似文献
3.
Effects of elevated CO2 , nitrogen and fungal endophyte-infection on tall fescue: growth, photosynthesis, chemical composition and digestibility 总被引:2,自引:0,他引:2
J. A. NEWMAN M. L. ABNER† R. G. DADO† D. J. GIBSON‡ A. BROOKINGS§ A. J. PARSONS¶ 《Global Change Biology》2003,9(3):425-437
Rising global carbon dioxide levels may lead to profound changes in plant composition, regardless of the degree of global warming that may result from the accumulation of this greenhouse gas. We studied the interaction of a CO2 doubling and two levels of nitrogen fertilizer on the growth and chemical composition of tall fescue (Festuca arundinacea Schreber cv. KY‐31) when infected and uninfected with the mutualistic fungal endophyte Neotyphodium coenophialum Morgan‐Jones and Gams. Two‐year‐old plants were harvested to 5 cm every 4 weeks, and after 12 weeks of growth plants grown in twice ambient CO2 concentrations: photosynthesized 15% more; produced tillers at a faster rate; produced 53% more dry matter (DM) yield under low N conditions and 61% more DM under high N conditions; the % organic matter (OM) was little changed except under elevated CO2 and high N when %OM increased by 3%; lignin decreased by 14%; crude protein (CP) concentrations (as %DM) declined by 21%; the soluble CP fraction (as %CP) increased by 13%; the acid detergent insoluble CP fraction (as %CP) increased by 12%, and in vitro neutral detergent fiber digestibility declined by 5% under high N conditions but not under low N. Plants infected with the endophytic fungus: photosynthesized 16% faster in high N compared with under low N; flowered earlier than uninfected plants; had 28% less lignin in high N compared with under low N; and had much smaller reductions in CP concentration (as %DM) and smaller increases in the soluble CP fraction (as %CP) and the acid detergent insoluble CP fraction (as %CP) under elevated CO2. Such large and varied changes in plant quality are likely to have large and significant effects on the herbivore populations that feed from these plants. 相似文献
4.
5.
Gregory P. Cheplick 《American journal of botany》1997,84(1):34-40
The effects of high vs. low levels of endophytic fungi on the phenotypic plasticity of cloned genotypes were examined in perennial ryegrass (Lolium perenne L.). The objectives were to determine whether endophytic fungi influence plastic responses of host genotypes to variable soil nutrients and whether or not endophyte infection and host genotype interact to determine the extent of this plasticity. Twelve infected genotypes were cloned into ramets: half the ramets were treated with the systemic fungicide Benomyl to reduce or eliminate the endophyte, while the other half were untreated. Ramets of each genotype were subjected to high, medium, or low levels of nutrients in the greenhouse for 11 wk. Tiller number, leaf area, and leaf mass were determined after 11 and 25 wk. The fungicide significantly reduced the level of endophyte infection. Responses to nutrient conditions in relation to fungicide treatment were genotype specific: for some genotypes, high levels of endophytic fungi appeared to reduce plasticity, while for other genotypes the endophyte had no effect. The potential for microscopic symbionts to affect phenotypic plasticity in genetically variable populations has not often been recognized. However, the clandestine effects of symbionts on the plasticity of host genotypes could impact microevolutionary processes occurring within plant populations that occupy heterogeneous environments. 相似文献
6.
Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum 总被引:3,自引:0,他引:3
Endophyte-infected (E+) tall fescue (Festuca arundinacea Schreb.) plants grown in phosphorus (P) deficient soils accumulate more P in roots and shoots than noninfected isolines. In a growth chamber experiment, four tall fescue genotypes DN2, DN4, DN7, and DN11, infected with their naturally occurring strains of Neotyphodium coenophialum (Morgan-Jones & Gams) Glenn, Bacon & Hanlin, and their noninfected isolines (E-), were cultivated in nutrient solution at two P levels: 31 ppm (P+) and 0 ppm (P-) for 4 wk. The Fe3+ reducing activity of extracellular reductants and intact root tissues, and total phenolic concentration in roots and shoots were measured. Endophyte infection significantly increased Fe3+ reducing activity rate of extracellular reductants (9.6 × 10-3 mol Fe3+ h-1 g-1 root FW) when compared to E- plants (3.9 × 10-3) and Fe3+ reduction rate of intact root tissues (6.16 and 4.48 mol Fe3+ h-1 g-1 root FW, respectively for E+ and E- plants). In response to P deficiency, Fe3+ reduction rate of intact root tissues increased in E+ plants by 375% when compared to E- plants, whereas no significant differences were observed when P was provided. Total phenolic concentration was 20% greater in shoots of E+ plants than in E- plants. In response to P deficiency, total phenolic concentration significantly increased in roots of E+ plants by 7%, and decreased in roots of E- plants by 10%. The most active Fe3+ reducing zones were located along branching of secondary and tertiary roots. The Fe3+ reducing activity on the root surface and total phenolic concentration in roots and shoots increased dramatically in response to endophyte infection, especially under P limiting conditions.Visiting Scientist sponsored by the Fulbright Program No. 21133 相似文献
7.
Abstract The perennial ryegrass, Lolium perenne, forms a symbiotic relationship with Neotyphodium lolii, a fungus that produces alkaloids. This relationship provides a competitive advantage to the host plant in grassland communities by increasing drought tolerance, and disease and herbivore resistance. Black cutworm, Agrotis ipsilon, is among the few insect species that are able to feed and develop on endophytic perennial ryegrass. Some insects can use plant secondary compounds to defend themselves against predators, therefore we hypothesized that the cutworms fed on endophytic grasses would exhibit greater defense against a lethal endoparasitic nematode, Steinernema carpocapsae. Laboratory experiments involving 4–5th instars support the hypothesis that A. ipsilon feeding on grass clippings from field plots with high (> 90%) incidence of endophyte infected perennial ryegrass are less susceptible to entomopathogenic nematodes than larvae fed grass clippings from plants with little or no incidence of endophyte. Laboratory studies resulted in similar overall mortality after 48 h. Field studies, however, show decreased susceptibility to S. carpocapsae when larvae were confined to areas of endophytic grass (> 75% infected). Early instars (2–3rd) fed on endophyte free grass suffered greater overall mortality at all nematode concentrations than 4–5th instars fed similarly. Early (2–3rd) instars were equally susceptible to nematode attack regardless of food source. Our results indicate that the fungal endosymbionts of grasses can influence the biology of natural enemies of an herbivorous insect. 相似文献
8.
Clonal tillers of a genotype of perennial ryegrass (Lolium perenne), either with or without the endophytic fungus Acremonium lolii, were grown under natural light in flowing nutrient solutions with mineral N maintained automatically at concentrations of 3 or 30μm NH4NO3 for 28 days. Uptake of N was monitored daily and dry matter production was assessed by sequential harvesting. The presence of endophyte had no significant effect on shoot or root biomass production at either N level, but shoot: root ratios were significantly increased by endophyte infection at both N levels at some harvests. All plants absorbed NH4+ preferentially to NO3- and the ratio was not affected by endophyte infection. Also, infection did not affect total N content of plants, which was significantly more in plants at the higher N level than at the lower level. It is concluded that endophyte infection had only minor effects on growth and N economy of the plant, under the conditions imposed in this experiment. 相似文献
9.
Rasmussen S Parsons AJ Bassett S Christensen MJ Hume DE Johnson LJ Johnson RD Simpson WR Stacke C Voisey CR Xue H Newman JA 《The New phytologist》2007,173(4):787-797
The relationship between cool-season grasses and fungal endophytes is widely regarded as mutualistic, but there is growing uncertainty about whether changes in resource supply and environment benefit both organisms to a similar extent. Here, we infected two perennial ryegrass (Lolium perenne) cultivars (AberDove, Fennema) that differ in carbohydrate content with three strains of Neotyphodium lolii (AR1, AR37, common strain) that differ intrinsically in alkaloid profile. We grew endophyte-free and infected plants under high and low nitrogen (N) supply and used quantitative PCR (qPCR) to estimate endophyte concentrations in harvested leaf tissues. Endophyte concentration was reduced by 40% under high N supply, and by 50% in the higher sugar cultivar. These two effects were additive (together resulting in 75% reduction). Alkaloid production was also reduced under both increased N supply and high sugar cultivar, and for three of the four alkaloids quantified, concentrations were linearly related to endophyte concentration. The results stress the need for wider quantification of fungal endophytes in the grassland-foliar endophyte context, and have implications for how introducing new cultivars, novel endophytes or increasing N inputs affect the role of endophytes in grassland ecosystems. 相似文献
10.
An expedment was designed to determine the effect of the fungal endophyte Neotyphodium lolii on the growth, physiological parameters and mineral element content of perennial ryegrass (Lolium perennel L.), when growing at two N supply levels. Endophyfe infection had a significant positive effect on both shoot and root growth of ryegrass, but this difference was only significant in the high N supply treatment. At high N supply, endophyte-infected (EI) plants accumulated more soluble sugar in the sheath and the root than endophyte-free (EF) plants. Endophyte infection affected mineral element concentrations In the root more than in the shoot. We found a significant effect of endophyte infection on B, Mn and Mg in the root, but significant effect was only found on B in the shoot. EI plants tended to accumulate less B in the shoot at both N levels, but accumulated more B, Mn and Mg in the root at low N levels. The difference of growth parameters in different periods was significant. The content of soluble sugar and crude protein in the sheath were also dependent on the growth stages of both EI and EF plants. 相似文献
11.
12.
A high level of genetic variability was detected in North American fall armyworm (FA W), Spodoptera frugiperda (J. E. Smith), populations by restriction fragment length polymorphism (RFLP) analysis of genomic DNA. In nearly all cases individual larvae could be differentiated using 22 probe-enzyme combinations. Laboratory colonies formed distinct groups based on RFLP analysis. Individuals from a colony of the previously determined ‘rice strain’ formed a group showing obvious deviation in RFLP patterns from the other five populations, which included a population from a ‘com strain’ colony. The results were consistent with previous studies using allozymes which indicated that there are two genetically differentiated forms of the fall armyworm. Diagnostic markers were also found that distinguish these two groups. 相似文献
13.
Background and Aims Neotyphodium lolii is a fungal endophyteof perennial ryegrass (Lolium perenne), improving grass fitnessthrough production of bioactive alkaloids. Neotyphodium speciescan also affect growth and physiology of their host grasses(family Poaceae, sub-family Pooideae), but little is known aboutthe mechanisms. This study examined the effect of N. lolii onnet photosynthesis (Pn) and growth rates in ryegrass genotypesdiffering in endophyte concentration in all leaf tissues. Methods Plants from two ryegrass genotypes, Nui D andNui UIV, infected with N. lolii (E+) differing approx. 2-foldin endophyte concentration or uninfected clones thereof (E)were grown in a controlled environment. For each genotype xendophyte treatment, plant growth rates were assessed as tilleringand leaf extension rates, and the light response of Pn, darkrespiration and transpiration measured in leaves of young (3045d old) and old (>90 d old) plants with a single-chamber openinfrared gas-exchange system. Key Results Neotyphodium lolii affected CO2-limited ratesof Pn, which were approx. 17 % lower in E+ than E plants(P < 0·05) in the young plants. Apparent photon yieldand dark respiration were unaffected by the endophyte (P >0·05). Neotyphodium lolii also decreased transpiration(P < 0·05), but only in complete darkness. There wereno endophyte effects on Pn in the old plants (P > 0·05).E+ plants grew faster immediately after replanting (P < 0·05),but had approx. 10 % lower growth rates during mid-log growth(P < 0·05) than E plants, but there was noeffect on final plant biomass (P > 0·05). The endophyteeffects on Pn and growth tended to be more pronounced in NuiUIV, despite having a lower endophyte concentration than NuiD. Conclusions Neotyphodium lolii affects CO2 fixation,but not light interception and photochemistry of Pn. The impactof N. lolii on plant growth and photosynthesis is independentof endophyte concentration in the plant, suggesting that theendophyte mycelium is not simply an energy drain to the plant.However, the endophyte effects on Pn and plant growth are stronglydependent on the plant growth phase. 相似文献
14.
15.
16.
17.
Influence of drought and flowering on growth and water relations of perennial ryegrass populations 总被引:1,自引:0,他引:1
Spring-sown (vegetative) and autumn-sown (flowering) swards of Lolium perenne cvs Melle, Aurora and their hybrid growing in 0.9 m deep bins of soil in the glasshouse were compared, a) as drought progressed from June to August 1986, and b) after cutting, fertilising and re-watering.
During drought, vegetative plants produced more herbage, had initially higher leaf extension rates, had longer and wider leaves, maintained more tillers, had lower mortality, adjusted osmotic potential more effectively and had stomata less sensitive to stress than did flowering plants. On re-watering, previously stressed flowering plants regrew more slowly than the irrigated controls, whereas previously stressed vegetative plants regrew more rapidly than the controls.
Aurora was the most drought-resistant population, mainly because of low tiller death rates. The hybrid tended to have the lowest leaf water potentials and conductances and grew poorly during drought. Possible underlying physiological mechanisms are discussed. 相似文献
During drought, vegetative plants produced more herbage, had initially higher leaf extension rates, had longer and wider leaves, maintained more tillers, had lower mortality, adjusted osmotic potential more effectively and had stomata less sensitive to stress than did flowering plants. On re-watering, previously stressed flowering plants regrew more slowly than the irrigated controls, whereas previously stressed vegetative plants regrew more rapidly than the controls.
Aurora was the most drought-resistant population, mainly because of low tiller death rates. The hybrid tended to have the lowest leaf water potentials and conductances and grew poorly during drought. Possible underlying physiological mechanisms are discussed. 相似文献
18.
Rapid selection and characterization of Cry1F resistance in a Brazilian strain of fall armyworm 总被引:1,自引:0,他引:1 下载免费PDF全文
Natália A. Leite Simone M. Mendes Oscar F. Santos‐Amaya Chritiane A. Santos Thaís P. M. Teixeira Raul N. C. Guedes Eliseu J. G. Pereira 《Entomologia Experimentalis et Applicata》2016,158(3):236-247
Transgenic maize (Zea mays L., Poaceae) event TC1507, producing the Cry1F protein of Bacillus thuringiensis Berliner, has been used for management of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in Brazil since 2009. A strain of S. frugiperda, obtained from field collections of larvae in TC1507 maize in Minas Gerais state in 2010, was selected in the laboratory for resistance to Cry1F using leaves of TC1507 maize in two selection regimes. Continuous exposure of larvae to Cry1F was more effective than exposure for 6, 8, and 10 days in the selection of resistant S. frugiperda individuals. With only four generations of laboratory selection, a strain with high levels of resistance to Cry1F was obtained, as indicated by the survival of insects reared on leaves of TC1507 maize plants and by the more than 300‐fold resistance level measured in bioassays with the purified Cry1F protein. Importantly, reciprocal crosses between control and the Cry1F‐selected strains revealed that the resistance is autosomal and incompletely recessive, and the response obtained in the backcross of the F1 generation with the resistant strain was consistent with simple monogenic inheritance. Additionally, there were no apparent fitness costs associated with resistance either for survival or larval growth on non‐Bt maize leaves. Our findings provide experimental evidence for rapid evolution of Cry1F resistance in S. frugiperda in the laboratory and further reinforce the potential of this species to evolve field resistance to the TC1507 maize as previously reported. The resistant strain isolated in this study provides an opportunity to estimate the resistance allele frequency in the field and to determine the biochemical and molecular basis of the resistance, which should provide further information to assist in the resistance management of S. frugiperda on transgenic maize producing B. thuringiensis proteins. 相似文献
19.
Influence of genetic variation in the fungal endophyte of a grass on an herbivore and its parasitoid
Thomas L. Bultman John L. Rodstrom Kara R. Radabaugh Joshua D. VanDop James M. Librizzi Leanna L. Longwell Christina Pulas LaShawn Grant & Terrence J. Sullivan 《Entomologia Experimentalis et Applicata》2009,130(2):173-180
Neotyphodium coenophialum (Glenn, Bacon, Price & Hanlin) (Ascomycota: Clavicipitaceae) is an endophytic fungus that lives symbiotically within grasses and produces alkaloids that can help protect its hosts from some insect pests. We used laboratory‐based experiments to investigate whether fungal genotype influences an herbivore and its parasitoid. We tested whether variation in novel isolates, plus a control lacking fungal infection, affected preference by fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae: Amphipyrini), and growth and survival of Euplectrus comstockii Howard (Hymenoptera: Eulophidae: Euplectrini), a parasitoid of fall armyworm. Caterpillars preferred leaf blades in choice experiments from uninfected tall fescue [Lolium arundinaceum (Schreb.) Darbysh., cultivar Jesup (Poaceae)] and tended to avoid blades from plants containing fungal isolates AR502, AR542, or the most common strain from pastures in Georgia, USA, in tall fescue. However, caterpillars fed as much on leaf blades from plants containing isolate AR502 as from those lacking infection. Parasitoid pupal mass was not influenced by fungal isolate, yet fungal isolate did influence parasitoid survival. Survival was higher than expected for parasitoids reared from hosts fed plants lacking fungal infection, but was lower than expected for those reared from hosts fed plants infected with the common strain or AR542 isolates. In contrast, parasitoids reared from hosts fed plants infected with isolate AR502 did not experience higher mortality than expected by chance. Our results show that N. coenophialum can modify bottom‐up trophic cascades through direct effects on herbivores, as well as indirect effects on a natural enemy of the herbivores and that the fungus may influence the tritrophic interaction in ways that counterbalance herbivore protection provided by the symbiont. Our work also shows that these effects are influenced by fungal genotype. As attempts are made to produce forage cultivars with strains of fungal endophyte that lack negative influences on livestock, it will be prudent for investigators to assess the multi‐trophic effects of these novel associations within agroecosystems. 相似文献
20.
Volatiles in perennial ryegrass infected with strains of endophytic fungus: impact on African black beetle host selection 下载免费PDF全文
Perennial ryegrass (Lolium perenne) is often infected with the fungal‐endophyte Neotyphodium lolii. In addition to the ‘wild‐type’ strain (EWT), several ‘selected’ strains of N. lolii are now being marketed as AR1 (EAR1) and AR37 (EAR37). Each of these strains impact positively on L. perenne's resistance against many insects, including the African black beetles (Heteronychus arator). The impact of volatile oils produced specifically by each strain in the endophyte–grass association in enhancing the grass's resistance to insects is still largely unknown. Keeping these in view, we determined the volatile oil profiles produced by L. perenne infected with either EWT or EAR1 or EAR37 and determined the impacts of these volatiles on the host‐selection behaviour of H. arator adults. In the absence of endophyte infection (E–), L. perenne produced 18 different volatile oils. In L. perenne EWT, quantities of 2‐ethyl‐1‐hexanol acetate (Rt = 14.5 min), (Z)‐2‐octen‐1‐ol (Rt = 22.2 min), and butylated hydroxyl toluene (Rt = 23.2 min) were 24, 16 and 26%, respectively, greater than L. perenne E–. The strains EAR1 and EAR37 affected differently the quantities of the volatile compounds but not their identity. In the four‐choice bioassay, males and females of H. arator were equally attracted to each strain. In Y‐tube olfactometer, compared against E–, H. arator adults were less attracted to L. perenne EWT and EAR1. The attractiveness of EAR37 was similar in effect to E– to H. arator. The results indicate that each strain of N. lolii alters the profile of volatile oils in L. perenne differently and that alteration can influence H. arator adult‐host selection. 相似文献