首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Xu  M Naraghi  H Kang    E Neher 《Biophysical journal》1997,73(1):532-545
The Ca2+ binding kinetics of fura-2, DM-nitrophen, and the endogenous Ca2+ buffer, which determine the time course of Ca2+ changes after photolysis of DM-nitrophen, were studied in bovine chromaffin cells. The in vivo Ca2+ association rate constants of fura-2, DM-nitrophen, and the endogenous Ca2+ buffer were measured to be 5.17 x 10(8) M-1 s-1, 3.5 x 10(7) M-1 s-1, and 1.07 x 10(8) M-1 s-1, respectively. The endogenous Ca2+ buffer appeared to have a low affinity for Ca2+ with a dissociation constant around 100 microM. A fast Ca2+ uptake mechanism was also found to play a dominant role in the clearance of Ca2+ after flashes at high intracellular free Ca2+ concentrations ([Ca2+]), causing a fast [Ca2+]i decay within seconds. This Ca2+ clearance was identified as mitochondrial Ca2+ uptake. Its uptake kinetics were studied by analyzing the Ca2+ decay at high [Ca2+]i after flash photolysis of DM-nitrophen. The capacity of the mitochondrial uptake corresponds to a total cytosolic Ca2+ load of approximately 1 mM.  相似文献   

2.
P S Liu  L S Kao 《Cell calcium》1990,11(9):573-579
Bovine adrenal chromaffin cells were loaded with Na+ via either acetylcholine receptor-associated ion channels or voltage-sensitive Na+ channels. There were increases in [Ca2+]i, 45Ca2+ uptake and catecholamine secretion in both types of Na(+)-loaded cells relative to control cells in which Na+ loading had been prevented by hexamethonium and tetrodotoxin, respectively. These results show the presence of Na(+)-dependent Ca2+ influx activity in chromaffin cells which is probably mediated by the reverse mode of a Na+/Ca2+ exchanger.  相似文献   

3.
Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells   总被引:5,自引:0,他引:5  
T R Cheek  O Thastrup 《Cell calcium》1989,10(4):213-221
Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3)-mobilizing muscarinic agonists to induce secretion reflects the fact that the 50 nM rise in [Ca2+]i they elicit is insufficient to trigger the exocytotic machinery. A recent report, however, has demonstrated that some of the nicotine-induced rise in [Ca2+]i could originate from the InsP3-releasable Ca2+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist and the sesquiterpene lactone thapsigargin (TG), which releases internal Ca2+ without concomitant breakdown of inositol lipids or protein kinase C activation, to examine the events which follow depletion of the releasable Ca2+ store in these cells. Monitoring [Ca2+]i using Fura-2 demonstrated that TG released Ca2+ from the InsP3-sensitive store and, additionally, that the Ca2+ response to TG was composed of two distinct, temporally separated, components: a) a slow (1 min) increase in [Ca2+]i to approximately 50 nM above basal that was independent of extracellular Ca2+ and b) the maintenance of this level at a new steady-state that was dependent on the continual entry of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Alamethicin causes a concentration-dependent increase of [Ca2+]i in suspensions of bovine adrenal chromaffin cells loaded with fura-2. The basal levels of Cai2+ (234 +/- 37 nM; n = 4) increased to a maximum of 2347 +/- 791 nM (n = 3) with 100 micrograms/ml alamethicin. In the presence of 1 mM Cae2+ the increase reached a plateau within about 2-5 s. This increase was due to Ca2+ entry into chromaffin cells, since in the absence of Cae2+ alamethicin did not modify [Ca2+]i. This contrasts with ionomycin (1 microM) which produced a Cai2+ transient even in the absence of Cae2+. Mn2+ ions also entered chromaffin cells in the presence of alamethicin, as measured by the quenching of fura-2 fluorescence following excitation at 360 nm. Resting chromaffin cells had a measurable permeability to Mn2+ which was drastically increased by cell depolarization by K+ (50 mM) addition. This suggests that Mn2+ is able to permeate voltage-dependent Ca2+ channels. Ni2+ uptake into either resting or K(+)-stimulated chromaffin cells was undetectable, but addition of alamethicin induced rapid uptake of this cation. The alamethicin-induced entry of Ni2+ was decreased by 50 mM K+. Overall, the results are compatible with the formation by alamethicin of ion channels in chromaffin cell plasma membranes.  相似文献   

5.
Bödding M 《Cell calcium》2000,27(3):139-151
Whole-cell patch-clamp experiments and optical measurements with the Ca2+ fluorescent dye fura-2 were performed to examine histamine induced cytosolic Ca2+ changes in bovine adrenal chromaffin cells. The purpose of this study was to find out whether the sustained plateau phase, which followed the rapid transient increase, was due to Ca2+ influx. The extracellular Ca2+ dependence appeared to be minor, because substitution of Ca2+ with EGTA or BAPTA did not cause obvious changes in the biphasic Ca2+ response. Application of histamine in a Mn2+ containing external solution did not quench the fura-2 signal. It was neither possible to detect a histamine induced depolarisation, nor a Ca2+ permeable current. Changing the driving force for Ca2+ during the plateau phase did not result in a correlating fura-2 signal. Metal ions like Cd2+, La3+ and Co2+ which are known to block Ca2+ influx were unable to abolish the typical histamine induced Ca2+ response. These results suggest that primarily intracellular Ca2+ was responsible for generating the characteristic biphasic Ca2+ response due to histamine in bovine adrenal chromaffin cells.  相似文献   

6.
In fura-2-loaded bovine adrenal chromaffin cells, 0.5 microM angiotensin II (AII) stimulated a 185 +/- 19 nM increase of intracellular-free calcium [( Ca2+]i) approximately 3 s after addition. The time from the onset of the response until achieving 50% recovery (t 1/2) was 67 +/- 10 s. Concomitantly, AII stimulated both the release of 45Ca2+ from prelabeled cells, and a 4-5-fold increase of [3H]inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) levels. In the presence of 50 microM LaCl3, or when extracellular-free Ca2+ [( Ca2+]o) was less than 100 nM, AII still rapidly increased [Ca2+]i by 95-135 nM, but the t 1/2 for recovery was then only 23-27 s. In medium with 1 mM MnCl2 present, AII also stimulated a small amount of Mn2+ influx, as judged by quenching of the fura-2 signal. When [Ca2+]o was normal (1.1 mM) or low (less than 60 nM), 1-2 microM ionomycin caused [Ca2+]i to increase 204 +/- 26 nM, while also releasing 45-55% of bound 45Ca2+. With low [Ca2+]o, ionomycin pretreatment abolished both the [Ca2+]i increase and 45Ca2+ release stimulated by AII. However, after ionomycin pretreatment in normal medium, AII produced a La3+-inhibitable increase of [Ca2+]i (103 +/- 13 nM) with a t 1/2 of 89 +/- 8 s, but no 45Ca2+ release. No pretreatment condition altered AII-induced formation of [3H]Ins(1,4,5)P3. We conclude that AII increased [Ca2+]i via rapid and transient Ca2+ mobilization from Ins(1,4,5)P3- and ionomycin-sensitive stores, accompanied (and/or followed) by Ca2+ entry through a La3+-inhibitable divalent cation pathway. Furthermore, the ability of AII to activate Ca2+ entry in the absence of Ca2+ mobilization (i.e. after ionomycin pretreatment) suggests a receptor-linked stimulus other than Ca2+ mobilization initiates Ca2+ entry.  相似文献   

7.
Single channel currents through Ca2+-activated K+ channels of bovine chromaffin cells were measured to determine the effects of small ions on permeation through the channel. The channel selects strongly for K+ over Na+ and Cs+, and Rb+ carries a smaller current through the channel than K+. Tetraethylammonium ion (TEA+) blocks channel currents when applied to either side of the membrane; it is effective at lower concentrations when applied externally. Millimolar concentrations of internal Na+ reduce the average current through the channel and produce large fluctuations (flicker) in the open channel currents. This flickery block is analyzed by a new method, amplitude distribution analysis, which can measure block and unblock rates in the microsecond time range even though individual blocking events are not time-resolved by the recording system. The analysis shows that the rate of block by Na+ is very voltage dependent, but the unblock rate is voltage independent. These results can be explained easily by supposing that current flow through the channel is diffusion limited, a hypothesis consistent with the large magnitude of the single channel current.  相似文献   

8.
We have studied the effects of GABA on cytosolic free Ca2+ concentration ([Ca2+]i) as a means of investigating the role of GABA in adrenal catecholamine (CA) secretion. It was demonstrated that GABA caused an elevation of [Ca2+]i via the GABAA receptor in a concentration-dependent manner, which was well correlated with an increase of 45Ca uptake, an increase of CA release and a depolarization of chromaffin cells assessed with bis-oxonol fluorescence. Since the GABA-induced rise of [Ca2+]i was absolutely dependent on the presence of extracellular Ca2+ and partly sensitive to nifedipine, at least one entry route for Ca2+ facilitated by GABA via a voltage-sensitive Ca2+ channel was suggested. When extracellular Cl- was lowered, GABA-induced CA release, depolarization, and rise of [Ca2+]i were all markedly enhanced. It is possible that GABA plays a modulatory role in the regulation of adrenal CA secretion as a facilitatory modulator.  相似文献   

9.
Stimulations of chromaffin cells with histamine and ionomycin produced rises in cellular free Ca2+ level. The removal of Na+ ions from the medium prolongated the rises without changing the magnitude. The stimulations also facilitated 45Ca2+ efflux from cells by over 3-fold. The facilitation was, however, largely abolished by the Na+ removal, indicating the Na(+)-dependent efflux is a major system to expel Ca2+ from the stimulated cells. The Na+ removal also enhanced secretions evoked by these stimuli. The results suggest the Na(+)-dependent Ca2+ efflux by lowering the elevated cellular Ca2+ plays a role in terminating the stimulus-induced secretion.  相似文献   

10.
The effects of G-protein activation were investigated on tonic, large depolarization-induced Ca2+ channel facilitation in cultured bovine adrenal chromaffin cells. Under whole-cell voltage clamp, activation of G proteins by intracellular dialysis with 200 M GTP-S did not significantly affect prepulse facilitation or whole-cell Ba2+ current (I Ba) density. In contrast, inactivation of G proteins by intracellular GDP-S or pertussis toxin (PTX) pretreatment completely abolished or markedly attenuated facilitation of I Ba, respectively. GDP-S dialysis resulted in nearly a threefold increase in peak I Ba density, whereas PTX pretreatment resulted in a 50% increase. Our results indicate that under control recording conditions (200 m intracellular GTP), G proteins are tonically activated and suppress high-voltage-activated (HVA) Ca2+ channels in a voltage-dependent and voltage-independent manner. Local superfusion of chromaffin cells with normal bath solution produced a rapid and reversible increase (50%) in I Ba amplitudes that also abolished prepulse facilitation. Together, these results demonstrate that tonic facilitation of HVA Ca2+ channels in bovine chromaffin cells involves the voltage-dependent relief of a G-protein-mediated suppression, imposed by chromaffin cell secretory products that feedback and activate G-protein-coupled autoreceptors.This work was supported by a National Science Foundation grant (DCB-8812562), American Heart Association-Ohio Affiliate grant (SW-91-18), and an American Parkinson's Disease Association grant. C.A.D. was supported by a predoctoral National Research Service Award (National Institutes of Health training grant HL07571-08). The authors thank Kluener's Packing Co. for their generous supply of adrenal glands.  相似文献   

11.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

12.
NCS-1/frequenin belongs to a family of EF-hand-containing Ca(2+) sensors expressed mainly in neurons. Overexpression of NCS-1/frequenin has been shown to stimulate neurotransmitter release but little else is known of its cellular roles. We have constructed an EF-hand mutant, NCS-1(E120Q), as a likely dominant inhibitor of cellular NCS-1 function. Recombinant NCS-1(E120Q) showed an impaired Ca(2+)-dependent conformational change but could still bind to cellular proteins. Transient expression of this mutant, but not NCS-1, in bovine adrenal chromaffin cells increased non-L-type Ca(2+) channel currents. Cells expressing NCS-1(E120Q) no longer responded effectively to the removal of autocrine purinergic/opioid inhibition of Ca(2+) currents but still showed voltage-dependent facilitation. These data are consistent with the existence of both voltage-dependent and voltage-independent pathways for Ca(2+) channel inhibition in chromaffin cells. Our results suggest a novel function for NCS-1 specific for the voltage-independent autocrine pathway that negatively regulates non-L-type Ca(2+) channels in chromaffin cells.  相似文献   

13.
Regulation by Ca2+ of membrane elasticity of bovine chromaffin granules   总被引:3,自引:0,他引:3  
S Miyamoto  S Fujime 《FEBS letters》1988,238(1):67-70
In a range of [Ca2+] similar to cytosolic transient, a drastic reduction from about 20 dyn/cm to almost zero was observed in the membrane elastic modulus of bovine chromaffin granules, isolated in a solution containing 0.3 M sucrose and 5 mM Hepes at pH 7.0, and measured by combination of osmotic swelling and dynamic light-scattering (DLS) methods. This result suggests that the granule membrane becomes extremely flexible as a prelude to exocytosis.  相似文献   

14.
The localization and function of Ca(2+) stores in isolated chromaffin cells of rat adrenal medulla were investigated using confocal laser microscopy and amperometry. Binding sites for BODIPY-inositol 1,4,5-trisphosphate (IP(3)), -ryanodine (Ry), and -thapsigargin (Thap) were both perinuclear and at the cell periphery. The endoplasmic reticulum (ER), which was identified by ER Tracker dye, took up fluorescent Ry and IP(3), and the majority of BODIPY-Ry-binding area was bound by fluorescent IP(3). Under Ca(2+)-free conditions, the amount of caffeine-induced catecholamine secretion was 33% of that of muscarine-induced secretion, but muscarine induced little or no secretion after exposure to caffeine. Muscarine-induced Ca(2+) increases, as observed with fluo-3, lasted for a few tens of seconds under Ca(2+)-free conditions, whereas a caffeine-induced Ca(2+) transient diminished rapidly with a half decay time of 3s and this spike-like Ca(2+) transient was then followed by a sustained increase with a low level. These results indicate that IP(3) receptors and Ry receptors (RyRs) are present in common ER Ca(2+) storage and the lower potency of caffeine for secretion may be due to a rapid decrease in RyR channel activity to a low level.  相似文献   

15.
The effect of caffeine on catecholamine secretion and intracellular free Ca2+ concentration [( Ca2+]i) in bovine adrenal chromaffin cells was examined using single fura-2-loaded cells and cell populations. In cell populations caffeine elicited a large (approximately 200 nM) transient rise in [Ca2+]i that was independent of external Ca2+. This rise in [Ca2+]i triggered little secretion. Single cell measurements of [Ca2+]i showed that most cells responded with a large (greater than 200 nM) rise in [Ca2+]i, whereas a minority failed to respond. The latter, whose caffeine-sensitive store was empty, buffered a Ca2+ load induced by a depolarizing stimulus more effectively than those whose store was full. The caffeine-sensitive store in bovine chromaffin cells may be involved in Ca2+ homeostasis rather than in triggering exocytosis.  相似文献   

16.
Thermodynamics of the Ca2+ binding to bovine alpha-lactalbumin   总被引:1,自引:0,他引:1  
Bovine alpha-lactalbumin contains one strong Ca2+-binding site. The free energy (delta G0), enthalpy (delta H0), and entropy (delta S0) of binding of Ca2+ to this site have been calculated from microcalorimetric experiments. The enthalpy of binding was dependent on the metal-free bovine alpha-lactalbumin concentration. At 0.8 mg ml-1, metal-free bovine alpha-lactalbumin delta H0 was -110 +/- 6 kJ mol-1. At this concentration the binding constant was estimated from a mathematical analysis of the titration curves to be greater than 10(7) M-1. This means that delta G0 is smaller than -40 kJ mol-1 and delta S0 is less negative than -235 J.K-1 mol-1. The binding of Ca2+ is therefore enthalpy-driven. From binding experiments as a function of temperature, a delta Cp value of -4.1 kJ.K-1 mol-1 was calculated. This value is dependent on the protein concentration. A tentative explanation for this large value is given.  相似文献   

17.
Li(+) transport, intracellular immobilisation and Li(+)/Mg(2+) competition were studied in Li(+)-loaded bovine chromaffin cells. Li(+) influx rate constants, k(i), obtained by atomic absorption (AA) spectrophotometry, in control (without and with ouabain) and depolarising (without and with nitrendipine) conditions, showed that L-type voltage-sensitive Ca(2+) channels have an important role in Li(+) uptake under depolarising conditions. The Li(+) influx apparent rate constant, k(iapp), determined under control conditions by (7)Li NMR spectroscopy with the cells immobilised and perfused, was much lower than the AA-determined value for the cells in suspension. Loading of cell suspensions with 15 mmol l(-1) LiCl led, within 90 min, to a AA-measured total intracellular Li(+) concentration, [Li(+)](iT)=11.39+/-0.56 mmol (l cells)(-1), very close to the steady state value. The intracellular Li(+) T(1)/T(2) ratio of (7)Li NMR relaxation times of the Li(+)-loaded cells reflected a high degree of Li(+) immobilisation in bovine chromaffin cells, similar to neuroblastoma, but larger than for lymphoblastoma and erythrocyte cells. A 52% increase in the intracellular free Mg(2+) concentration, Delta[Mg(2+)](f)=0.27+/-0.05 mmol (l cells)(-1) was measured for chromaffin cells loaded with the Mg(2+)-specific fluorescent probe furaptra, after 90-min loading with 15 mmol l(-1) LiCl, using fluorescence spectroscopy, indicating significant displacement of Mg(2+) by Li(+) from its intracellular binding sites. Comparison with other cell types showed that the extent of intracellular Li(+)/Mg(2+) competition at the same Li(+) loading level depends on intracellular Li(+) transport and immobilisation in a cell-specific manner, being maximal for neuroblastoma cells.  相似文献   

18.
The patterns of agonist-induced elevations of cytosolic free Ca2+ ([Ca2+]i) were characterized and compared by the use of single adrenal chromaffin cells. Initial histamine- or angiotensin II (AII)-induced elevations of [Ca2+]i were equal in magnitude (peaks 329 +/- 20 [SE] and 338 +/- 46 nM, respectively). These initial increases of [Ca2+]i were transient, insensitive to either Gd3+ or removing external Ca2+, and were primarily the result of Ca2+ release from intracellular stores. After the initial peak(s) of [Ca2+]i, a second phase of moderately elevated [Ca2+]i was observed, and this response was sensitive to either Gd3+ or removing external Ca2+, supporting a role for Ca2+ entry. In most cases, the second phase of elevated [Ca2+]i was sustained during histamine stimulation but transient during AII stimulation. Maintenance of the second phase was a property of the agonist rather than of the particular cell being stimulated. Thus, individual cells exposed sequentially to histamine and AII displayed distinct patterns of [Ca2+]i changes to each agonist, regardless of the order of addition. Histamine also stimulated twice as much [3H]catecholamine release as AII, and release was completely dependent on external Ca2+. Therefore, the ability of histamine and AII to sustain (or promote) Ca2+ entry appears to underlie their efficacy as secretagogues. These data provide evidence linking agonist-dependent patterns of [Ca2+]i changes in single cells with agonist-dependent functional responses.  相似文献   

19.
Chromobindin A. A Ca2+ and ATP regulated chromaffin granule binding protein   总被引:3,自引:0,他引:3  
A variety of studies have shown that about 20 proteins can be isolated from bovine adrenal medullary cytosol by virtue of their ability to bind to chromaffin granule membranes in the presence of Ca2+. In the present study we have examined the properties of a group of seven of these proteins. This group of proteins binds to granule membranes in the presence of Ca2+, however, the proteins are not released from the membrane by the removal of Ca2+ unless ATP is present. The proteins range from 53 to 59 kDa and they form a multisubunit complex of about 800 kDa. This complex, which we have named chromobindin A, has 13 subunits joined together in a ring, 175 A in diameter and 115 A in height. The binding of chromobindin A to membranes is stimulated by Ca2+, Sr2+, and Ba2+. The release is stimulated by a variety of nucleotides, including the nonhydrolyzable nucleotide analog adenyl-5'-yl imidodiphosphate. At present the function of chromobindin A in vivo is not clear, although the observation that Ca2+ stimulates chromobindin A binding together with observations that imply that chromobindin A binds to a protease-sensitive receptor on the granule membrane suggest that the complex is involved in exocytosis and that it may be partially responsible for the ATP dependence of this process.  相似文献   

20.
The spatial distribution of the intracellular free Ca2+ (Ca2+i) rise elicited by different stimuli in bovine adrenal chromaffin cells was examined in single fura-2-loaded cells. In response to the potent secretagogues nicotine and high K+, Ca2+i was initially localized exclusively to the entire subplasmalemmal area of the cell. In response to the ineffective secretagogues, methacholine and muscarine, the rise in Ca2+i originated only in one pole of the cell and even at the peak of the response Ca2+ was still generally restricted to this same area of the cell. These results suggest that the triggering of exocytosis from these cells requires a specific spatial distribution of Ca2+i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号