首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies in animal models of myocardial ischemia-reperfusion revealed that the administration of insulin-like growth factor (IGF-1) can provide substantial cardioprotective effect. However, the mechanisms by which IGF-1 prevents myocardial ischemia-reperfusion injury are not fully understood. This study addresses whether mitochondrial bioenergetic pathways are involved in the cardioprotective effects of IGF-1. Single cardiomyocytes from adult rats were incubated in the absence or presence of IGF-1 for 60 min and subjected to 60 min hypoxia followed by 30 min reoxygenation at 37°C. Mitochondrial function was evaluated by assessment of enzyme activities of oxidative phosphorylation and Krebs cycle pathways. Hypoxia/reoxygenation (HR) caused significant inhibition of mitochondrial respiratory complex IV and V activities and of the Krebs cycle enzyme citrate synthase, whereas pretreatment with IGF-1 maintained enzyme activities in myocytes at or near control levels. Mitochondrial membrane potential, evaluated with JC-1 staining, was significantly higher in IGF-1 + HR- treated myocytes than in HR alone, with levels similar to those found in normal control cardiomyocytes. In addition, IGF-1 reduced both HR-induced lactate dehydrogenase (LDH) release and malondialdehyde production (an indicator of lipid peroxidation) in cardiomyocytes. These results suggest that IGF-1 protects cardiomyocytes from HR injury via stabilizing mitochondria and reducing reactive oxidative species (ROS) damage.  相似文献   

2.
Hypoxia/reoxygenation insult can be found in many tissues, including heart, brain, and tumor. It is believed that cell death may be resulted after cells were subjected to chronic hypoxia or reoxygenation after chronic hypoxia. The molecular mechanism for reoxygenation induced cell death is so far not clear and will require further study, in particular, to be distinguished from the pathways associated only with chronic hypoxia. In this study, the cell death mechanism in human squamous carcinoma A431 cells after hypoxia/reoxygenation insult is examined. It is demonstrated that although caspase-9 and -3 were activated during both hypoxia and reoxygenation, only those caspases activated during reoxygenation were responsible for reoxygenation induced apoptosis. Activation of caspase-9 and -3 during reoxygenation is believed to be triggered by the ROS formation at the time of reoxygenation. Addition of catalase during reoxygenation was found to attenuate reoxygenation induced apoptosis and caspase activation.  相似文献   

3.
Loss of cardiomyocytes through apoptosis has been proposed as a cause of ventricular remodeling and heart failure. Ischemia- and hypoxia-induced apoptosis of cardiomyocytes reportedly plays an important role in many cardiac pathologies. We investigated whether resveratrol (Res) has direct cytoprotective effects against ischemia/hypoxia for cardiomyocytes. Exposure of H9c2 embryonic rat heart-derived cells to hypoxia for 24 h caused a significant increase in apoptosis, as evaluated by TUNEL and flow cytometry, while treatment with 20 μM Res greatly decreased hypoxia-induced apoptosis in these cells. Exposure of the cells to Res (20 μM) caused rapid activation of SIRT1, which had a dual effect on FoxO1 function: SIRT1 increased FoxO1’s ability to induce cell cycle arrest, but inhibited FoxO1’s ability to induce cell death. This effect could be reversed by SIRT1 inhibition. Results of our study indicate that Res inhibits hypoxia-induced apoptosis via the SIRT1-FoxO1 pathway in H9c2 cells. This polyphenol may have potential in preventing cardiovascular disease, especially in coronary artery disease (CAD) patients.  相似文献   

4.
Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.  相似文献   

5.
ABSTRACT

MiR-181a-5p’s mechanism in hypoxia–reoxygenation (H/R)-induced cardiomyocytes apoptosis has not been clarified. This study verified that SIRT1 was the target of miR-181a-5p. MiR-181a-5p expression was up-regulated or down-regulated in H/R-induced cardiomyocytes, and SIRT1 was transfected into cells alone or in combination with miR-181a-5p. Cell viability, apoptosis, levels of released lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD), as well as the Bcl-2, Bax, and Caspase 3 levels in treated cells were tested. On the one hand, down-regulated miR-181a-5p promoted cell viability, reduced released LDH and MDA, and increased SOD level in H/R-induced cardiomyocytes. On the other hand, miR-181a-5p inhibited apoptosis and elevated Bcl-2 expression while decreasing the expressions of Bax and Caspase 3 in treated cells, but the effects of miR-181a-5p could be rescued by SIRT1. In conclusion, miR-181a-5p involved in H/R-induced cardiomyocytes apoptosis through regulating SIRT1, which might become a novel direction for related diseases.  相似文献   

6.
Systemic or local delivery of human tissue kallikrein gene (hTK) has been shown to be an effective strategy to alleviate cerebral ischemia/reperfusion (I/R) injury, and tissue kallikrein (TK) administration can suppress glutamate- or acidosis-mediated neurotoxicity in vitro. In the present study, the role of TK in hypoxia/reoxygenation (H/R) induced neuronal cell death was investigated. We found that TK administration could remarkably alleviate H/R-induced neuronal injury by reduction of LDH release and promotion of neuron viability. The protective effects of TK could be counteracted by bradykinin B2 receptor (B2R) antagonist HOE140, which could suppress up-regulation of TK on the ERK signal pathway under H/R condition. These results indicate that TK plays an important role in preventing neurons from H/R damage at least partially through the TK-B2R-ERK1/2 pathway.  相似文献   

7.
The role of mitochondrial apoptotic pathway in cardiomyocytes subjected to hypoxia/reoxygenation(H/R) was studied. Cultured cardiomyocytes from neonatal Sprague-Dawley rats were exposed to hyoxia/reoxygenation, the apoptotic cardiomyocytes were stained with Annexin-V-FITC, Hoechst 33342 and TUNEL assay. Mitochondrial transmembrane potential of cardiomyocytes was assessed by JC-1 under fluorescence microscope, the expressions of bcl-2, bax, cytochrome c, apoptosis-induced factor (AIF), and caspase-3 were tested by western-blot. Our data showed apoptosis of cardiomyocytes was significantly increased during H/R, accompanied by translocation of bax to mitochondria, release of cytochrome c and AIF to cytosol. The results indicate that the mitochondrial-mediated apoptotic pathway is initiated as a result of H/R.  相似文献   

8.
Resveratrol is known to exert a cardioprotective effect against hypoxia/reoxygenation (H/R) injury. HS-1793 is a novel, more stable resveratrol analog, but its cardioprotective effects were unknown. The present study aimed to test the cardioprotective effect of HS-1793 against H/R injury and investigate the role of mitochondria in Sprague Dawley rat heart damage using an ex vivo Langendorff system. HS-1793 ameliorated H/R-induced mitochondrial dysfunction by reducing mitochondrial reactive oxygen species production, improving mitochondrial oxygen consumption and suppressing mitochondrial calcium (Ca2+) overload during reperfusion. Moreover, HS-1793-treated rat heart showed reduced infarct size. Our data suggest that HS-1793 can protect cardiac against mitochondrial damage following H/R, thereby suppressing injury.  相似文献   

9.
Objectives: Our previous study has shown that slow or “controlled” reperfusion for the ischemic heart reduces cardiomyocyte injury and myocardial infarction, while the mechanisms involved are largely unclear. In this study, we tested the hypothesis that enhancement of survival and prevention of apoptosis in hypoxic/reoxygenated cardiomyocytes by hypoxic postconditioning (HPC) are associated with the reduction in peroxynitrite (ONOO) formation induced by hypoxia/reoxygenation (H/R). Methods: Isolated adult rat cardiomyocytes were exposed to 2 h of hypoxia followed by 3 h of reoxygenation. After 2 h of hypoxia the cardiomyocytes were either abruptly reperfused with pre-oxygenized culture medium or postconditioned by two cycles of 5 min of brief reoxygenation and 5 min of re-hypoxia followed by 160 min of abrupt reoxygenation. Results: H/R resulted in severe injury in cardiomyocytes as evidenced by decreased cell viability, increased LDH leakage in the culture medium, increased apoptotic index (P values all less than 0.01 vs. normoxia control group) and DNA ladder formation, which could be significantly attenuated by HPC treatment applied before the abrupt reoxygenation (P < 0.05 vs. H/R group). In addition, H/R induced a significant increase in ONOO formation as determined by nitrotyrosine content in cardiomyocytes (P < 0.01 vs. normoxia control). Treatment with the potent ONOO scavenger uric acid (UA) at reoxygenation significantly decreased ONOO production and protected myocytes against H/R injury, whereas the same treatment with UA could not further enhance myocyte survival in HPC group (P > 0.05 vs. HPC alone). Statistical analysis showed that cell viability closely correlated inversely with myocyte ONOO formation (P < 0.01). Conclusion: These data demonstrate that hypoxic postconditioning protects myocytes against apoptosis following reoxygenation and enhances myocytes survival, which is partly attributable to the reduced ONOO formation following reoxygenation. H.-C. Wang and H.-F. Zhang contributed equally to this study.  相似文献   

10.
Calcium-sensing receptors (CaSRs) are G-protein coupled receptors which regulate systemic calcium homeostasis and also participate in cell proliferation, differentiation and apoptosis. We have previously shown that CaSR can induce apoptosis in isolated rat adult hearts and in normal rat neonatal cardiomyocytes. However, no knowledge exists concerning the role of CaSR in apoptosis induced by ischemia and reperfusion in neonatal cardiac myocytes. Therefore, in the present study, we incubated primary neonatal rat ventricular cardiomyocytes in ischemia-mimetic solution for 2h, then re-incubated them in a normal culture medium for 24h to establish a model of simulated ischemia/reperfusion (I/R). We assayed the apoptotic ratio of the cardiomyocytes by flow cytometry; observed morphological alterations by transmission electron microscope; analyzed the expression of caspase-3, Bcl-2, CaSR, extracellular signal-regulated protein kinase (ERK), and Fas/Fas ligand (FasL) by Western blotting; and measured the concentration of intracellular calcium by Laser Confocal Scanning Microscopy. The results showed that simulated I/R increased the expression of CaSR and cardiomyocyte apoptosis. GdCl3, a specific activator of CaSR, further enhanced CaSR expression, along with increases in intracellular calcium and apoptosis in cardiomyocytes during I/R. Activation of CaSR down-regulated Bcl-2 expression, up-regulated caspase-3 and Fas/FasL expression and stimulated ERK1/2 phosphorylation. In summary, CaSR is involved in I/R injury and apoptosis of neonatal rat ventricular cardiomyocytes by inhibiting Bcl-2, inducing calcium overload and activating the Fas/FasL death receptor pathway.  相似文献   

11.
As a model of the reperfusion injury found in stroke, we have exposed neurons to hypoxia followed by reoxygenation. Neurons treated with hypoxia/reoxygenation (H/R) respond by activating nuclear factor-kappaB (NFkappaB), releasing cytochrome c from their mitochondria, and ultimately dying. Further supporting an apoptotic mechanism, expression of the antiapoptotic Bcl-2 and Bcl-x proteins was increased following H/R. In this model, adenoviral-mediated transduction of lkappaB expression inhibited NFkappaB activation and significantly accelerated cytochrome c release and caspase-dependent neuronal death. At the same time, expression of mutated lkappaB prevented the increased expression of endogenous Bcl-2 and Bcl-x. In the presence of mutated lkappaB, singular overexpression of only Bcl-2 by adenoviral-mediated transduction significantly inhibited cytochrome c release, caspase-3-like activation, and cell death in response to H/R. These findings suggest a pathway where NFkappaB activation induces overexpression of Bcl-2 and Bcl-x, which function to prevent apoptotic cell death following H/R treatments.  相似文献   

12.
Survivin, as an anti-apoptotic protein and a cell cycle regulator, is recently gaining importance for its regenerative potential in salvaging injured hypoxic cells of vital organs such as heart. Different strategies are being employed to upregulate survivin expression in dying hypoxic cardiomyocytes. We investigated the cardioprotective potential of a cell permeable survivin mutant protein SurR9C84A, for the management of hypoxia mediated cardiomyocyte apoptosis, in a novel and clinically relevant model employing primary human cardiomyocytes (HCM). The aim of this research work was to study the efficacy and mechanism of SurR9C84A facilitated cardioprotection and regeneration in hypoxic HCM. To mimic hypoxic microenvironment in vitro, well characterized HCM were treated with 100 µm (48 h) cobalt chloride to induce hypoxia. Hypoxia induced (HI) HCM were further treated with SurR9C84A (1 µg/mL) in order to analyse its cardioprotective efficacy. Confocal microscopy showed rapid internalization of SurR9C84A and scanning electron microscopy revealed the reinstatement of cytoskeleton projections in HI HCM. SurR9C84A treatment increased cell viability, reduced cell death via, apoptosis (Annexin-V assay), and downregulated free cardiac troponin T and MMP-9 expression. SurR9C84A also upregulated the expression of proliferation markers (PCNA and Ki-67) and downregulated mitochondrial depolarization and ROS levels thereby, impeding cell death. Human Apoptosis Array further revealed that SurR9C84A downregulated expression of pro-apoptotic markers and augmented expression of HSPs and HTRA2/Omi. SurR9C84A treatment led to enhanced levels of survivin, VEGF, PI3K and pAkt. SurR9C84A proved non-toxic to normoxic HCM, as validated through unaltered cell proliferation and other marker levels. Its pre-treatment exhibited lesser susceptibility to hypoxia/damage. SurR9C84A holds a promising clinical potential for human cardiomyocyte survival and proliferation following hypoxic injury.  相似文献   

13.
Reactive oxygen species (ROS) are critical in tissue responses to ischemia-reperfusion. The enzyme methionine sulfoxide reductase-A (MsrA) is capable of protecting cells against oxidative damage by reversing damage to proteins caused by methionine oxidation or by decreasing ROS through a scavenger mechanism. The current study employed adenovirus mediated over-expression of MsrA in primary neonatal rat cardiac myocytes to determine the effect of this enzyme in protecting against hypoxia/reoxygenation in this tissue. Cells were transduced with MsrA encoding adenovirus and subjected to hypoxia/reoxygenation. Apoptotic cell death was decreased by greater than 45% in cells over-expressing MsrA relative to cells transduced with a control virus. Likewise total cell death as determined by levels of LDH release was dramatically decreased by MsrA over-expression. These observations indicate that MsrA is protective against hypoxia/reoxygenation stress in cardiac myocytes and point to MsrA as an important therapeutic target for ischemic heart disease.  相似文献   

14.
Studies have shown that lipoxin A4 (LXA4) and activation of LXA4 receptor provided protection against myocardial ischemia/reperfusion injury in animal models. However, the mechanisms by which LXA4 induced protective role on myocardial ischemia/reperfusion injury remains unclear. In the present studies, we investigated the protective effects of LXA4 on H9c2 cardiomyocytes exposed to hypoxia/reoxygenation (H/R) injury and involvement of heme oxygenase-1 (HO-1)- and K+ channel-dependant pathways in the LXA4 action. H9c2 cardiomyocytes were pretreated with or without LXA4 or HO-1 specific interfering RNA (siRNA) or various blockers and openers of K+ channels before exposing to H/R injury. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) in cellular supernatants and necrosis factor-α (TNF-α) in cellular lysates were measured by using ELISA. Expressions of HO-1 mRNA and protein were analyzed by using RT-PCR and Western blot respectively. Pretreatment of the cells undergoing H/R injury with LXA4 significantly reduced the LDH and CK levels induced by H/R injury, and increased the expressions and activity of HO-1. However, the protective effects of LXA4 were completely blocked by transfection of the cells with HO-1 siRNA, and were partially but significantly blocked by pretreatment of the cells with various blockers of K+ channels. The LXA4-induced expressions of HO-1 in the cells were also inhibited by HO-1 siRNA and various blockers of K+ channels. The inhibitory effects of LXA4 on enhanced TNF-α levels induced by H/R injury were abolished by transfection of the cells with HO-1 siRNA. In conclusion, the protective role of LXA4 on cardiomyocytes against H/R injury is related to upregulation of HO-1 via reduced production of TNF-α and activation of ATP-sensitive K+ channels and calcium-sensitive K+ channel.  相似文献   

15.
《Genomics》2020,112(1):574-580
BackgroundlncUCA1 is abundantly expressed in the heart, indicating it may be important in maintaining normal myocardial function. However, the underlying mechanism of lncUCA1 in heart disease, particularly myocardial infarction (MI), is still in its infancy.MethodsLncUCA1 and miR-143 expression were measured in hearts of MI models. Overexpression and knockdown of lncUCA1 in neonatal rat cardiomyocytes were performed to confirm the effects of lncUCA1 in hypoxia-induced apoptosis.ResultsThe expression of lncUCA1 decreased but miR-143 increased inversely in MI heart. Overexpressing lncUCA1 protected cardiomyocytes from H/R induced apoptosis via inhibiting miR-143, which regulates apoptosis by targeting MDM2/p53 pathway. While silencing lncUCA1 caused miR-143 upregulation and H/R-induced apoptosis increase. Moreover, miR-143 was proved to be a competitive target of lncUCA1.ConclusionslncUCA1 might protect cardiomyocyte against H/R induced apoptosis by suppressing miR-143 and modulated the following downstream MDM2/p53 signaling pathway, indicating the therapeutic potential of targeting lncUCA1 for MI.  相似文献   

16.
脂联素对乳鼠心肌细胞缺氧/复氧损伤的保护作用   总被引:1,自引:0,他引:1  
本研究通过在大鼠乳鼠心室肌细胞上建立缺氧/复氧(hypoxia/reoxygenation,H/R)模型,模拟在体心肌缺血/再灌注损伤,观察脂联素(adiponectin,APN)对心肌细胞H/R损伤的影响,并探讨其作用机制。采用胰蛋白酶消化法原代培养乳鼠心室肌细胞,α-肌动蛋白免疫荧光法进行鉴定。选用培养72h的单层心肌细胞进行实验,随机分为5组:对照组、单纯H/R组、H/R+APN组、H/R+APN+腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)特异性抑制剂阿糖胞苷(AraA)组、H/R+AraA组。观察各组心肌细胞形态及自发搏动频率,用琼脂糖凝胶电泳和流式细胞术检测各组心肌细胞凋亡情况,并测定细胞丙二醛(MDA)含量及培养液中超氧化物歧化酶(SOD)活性,激光共聚焦显微镜观察心肌细胞内钙荧光强度,Western blot检测各组心肌细胞AMPK磷酸化水平。结果显示,与对照组相比,单纯H/R组细胞生长状态较差,搏动频率减慢甚至消失,DNA电泳呈凋亡特征性的梯状条带,细胞凋亡率显著增加,胞浆MDA水平增高,上清液中SOD活性下降,胞内钙荧光强度明显增高,AMPK磷酸化水平升高(P0.05)。与H/R组细胞相比,APN预处理后再进行H/R的心肌细胞搏动频率较快,凋亡率明显减少,MDA水平明显下降,SOD活性明显升高,心肌细胞AMPK磷酸化水平明显增高(P0.05)。AraA可以阻断APN的上述保护作用。以上结果表明,APN可减轻H/R导致的心肌细胞凋亡,减轻脂质过氧化及细胞内钙超载,这一保护作用可能与AMPK途径激活有关。  相似文献   

17.
Our current research aimed to decipher the role and underlying mechanism with regard to miR-29b-3p involving in myocardial ischemia/reperfusion (I/R) injury. In the present study, cardiomyocyte H9c2 cell was used, and hypoxia/reoxygenation (H/R) model was established to mimic the myocardial I/R injury. The expressions of miR-29b-3p and pentraxin 3 (PTX3) were quantified deploying qRT-PCR and Western blot, respectively. The levels of LDH, TNF-α, IL-1β and IL-6 were detected to evaluate cardiomyocyte apoptosis and inflammatory response. Cardiomyocyte viability and apoptosis were examined employing CCK-8 assay and flow cytometry, respectively. Verification of the targeting relationship between miR-29b-3p and PTX3 was conducted using a dual-luciferase reporter gene assay. It was found that miR-29b-3p expression in H9c2 cells was up-regulated by H/R, and a remarkable down-regulation of PTX3 expression was demonstrated. MiR-29b-3p significantly promoted of release of inflammatory cytokines of H9c2 cells, and it also constrained the proliferation and promoted the apoptosis of H9c2 cells. Additionally, PTX3 was inhibited by miR-29b-3p at both mRNA and protein levels, and it was identified as a direct target of miR-29b-3p. PTX3 overexpression could reduce the inflammatory response, increase the viability of H9c2 cells, and inhibit apoptosis. Additionally, PTX3 counteracted the function of miR-29b-3p during the injury of H9c2 cells induced by H/R. In summary, miR-29b-3p was capable of aggravating the H/R injury of H9c2 cells by repressing the expression of PTX3.  相似文献   

18.
Increased endothelial ICAM-1 expression is found in normal aging and in atherosclerosis and is related to the chronic effects of oxidative stress. We examined the Ca(2+)-dependence of ICAM-1 mRNA expression in human aortic endothelial cells (HAEC) exposed to hypoxia/reoxygenation (H/R) as a model of oxidative stress. HAEC were exposed to glucose-free hypoxia (95% N(2)/5% CO(2)) for 60 min and were then reoxygenated (21% O(2)/5% CO(2)) and observed for up to 6h. Reactive oxygen species (ROS) generation was measured by dichlorofluorescein fluorescence and ICAM-1 mRNA was assessed by Northern blot. Upon reoxygenation after hypoxia, ROS production occurred in HAEC and was inhibited by diphenyleneiodonium and by polyethylene glycol-catalase, suggesting the involvement of NADPH oxidase-derived hydrogen peroxide. Hypoxia alone did not increase either ROS production or ICAM-1 mRNA levels, but a 2.5-fold increase in ICAM-1 mRNA was noted by 30 min of reoxygenation. This was not observed in Ca(2+)-free buffer or in cells treated with diphenyleneiodonium. Thus, H/R upregulates ICAM-1 mRNA in HAEC by a Ca(2+)- and ROS-dependent mechanism. Characterizing the signaling pathways involved in H/R-induced adhesion molecule expression may result in a better understanding of the vascular biology of normal aging and the pathobiology of atherosclerosis.  相似文献   

19.
The significance of circular RNAs (circRNAs) is reported in various kidney diseases including acute kidney injury (AKI). Specific circRNAs have the capacity to function as novel indicators of AKI. Circ_0023404 exhibits an important role in several diseases. Nevertheless, the detailed biological role of circ_0023404 in AKI remains poorly known. The present study aimed to investigate the effect of circ_0023404 on renal ischaemia/reperfusion (I/R) injury in vitro. Here, we evaluated the function of circ_0023404 in HK-2 cells in response to hypoxia/reoxygenation (H/R). We established a cell AKI model induced by H/R in HK-2 cells. We found circ_0023404 was significantly increased in AKI. Then, we found loss of circ_0023404 increased cell growth, repressed apoptosis, reduced inflammatory factors secretion and oxidative stress generation in vitro. Besides, circ_0023404 sponged miR-136. miR-136 overturned the effects of circ_0023404 on HK-2 cell injury. We assumed IL-6 receptor (IL-6R) as a target of miR-136 and IL-6R was activated by circ_0023404 via sponging miR-136. In conclusion, we revealed circ_0023404 contributed to HK-2 cells injury stimulated by H/R via sponging miR-136 and activating IL-6R.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号