首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis plays an important role in regulating development and homeostasis of the immune system, yet the elements of the signaling pathways that control cell death have not been well defined. When expressed in Jurkat T cells, an activated form of the small GTPase Cdc42 induces cell death exhibiting the characteristics of apoptosis. The death response induced by Cdc42 is mediated by activation of a protein kinase cascade leading to stimulation of c-Jun amino terminal kinase (JNK). Apoptosis initiated by Cdc42 is inhibited by dominant negative components of the JNK cascade and by reagents that block activity of the ICE protease (caspase) family, suggesting that stimulation of the JNK kinase cascade can lead to caspase activation. The sequence of morphological events observed typically in apoptotic cells is modified in the presence of activated Cdc42, suggesting that this GTPase may account for some aspects of cytoskeletal regulation during the apoptotic program. These data suggest a means through which the biochemical and morphological events occurring during apoptosis may be coordinately regulated.  相似文献   

2.
Leukocyte Elastase Inhibitor (LEI, also called serpin B1) is a protein involved in apoptosis among other physiological processes. We have previously shown that upon cleavage by its cognate protease, LEI is transformed into L-DNase II, a protein with a pro-apoptotic activity. The caspase independent apoptotic pathway, in which L-DNase II is the final effector, interacts with other pro-apoptotic molecules like Poly-ADP-Ribose polymerase (PARP) or Apoptosis Inducing Factor (AIF). The screening of LEI/L-DNase II interactions showed a possible interaction with several members of the BCL-2 family of proteins which are known to have a central role in the regulation of caspase dependent cell death. In this study, we investigated the regulation of LEI/L-DNase II pathway by two members of this family of proteins: BAX and BCL-2, which have opposite effects on cell survival. We show that, in both BHK and HeLa cells, LEI/L-DNase II can interact with BCL-2 and BAX in apoptotic and non-apoptotic conditions. These proteins which are usually thought to be anti-apoptotic and pro-apoptotic respectively, both inhibit the L-DNase II pro-apoptotic activity. These results give further insight in the regulation of caspase independent pathways and highlight the involvement of the intracellular environment of a given protein in the determinism of its function. They also add a link between caspase-dependent and independent pathways of apoptosis.  相似文献   

3.
Apoptosis is an important mechanism of physiological and pathological cell death and is known to occur in various neurological disorders. Apoptosis is associated with activation of genetic programs in which apoptosis-effector genes promote cell death, thereby opposing repressor genes that enhance cell survival. In this review, we describe various apoptotic pathways, with a special reference to the caspase cascade and discuss the role of individual antiapoptotic factors in various target diseases. Apoptosis could be suppressed by in vivo gene delivery of antiapoptotic factors directly into the central nervous system. The adeno-associated virus (AAV) vector is a good candidate for such gene therapy because it can infect postmitotic neurons. We also describe our in vivo system for overexpression of apoptotic protease activating factor-1 (Apaf-1) caspase recruitment domain as an Apaf1-dominant negative inhibitor (Apaf-1-DN) to regulate the mitochondrial caspase cascade. Apaf-1-DN delivery using an AAV vector system inhibited mitochondrial apoptotic signaling pathway and prevented dopaminergic cell death in a mouse model of Parkinson's disease. Our results suggest that AAV-Apaf-1-DN is potentially useful as an antimitochondrial apoptotic gene therapy for neurodegenerative disorders such as Parkinson's disease.  相似文献   

4.
Stress-induced apoptosis: Toward a symmetry with receptor-mediated cell death   总被引:10,自引:0,他引:10  
Apoptosis is a form of programmed cell death executed by caspases activated along signalling pathways initiated by ligation of cell-surface death receptors ( extrinsic pathway ) or by perturbation of the mithocondrial membrane promoted by physical or chemical stress agents ( intrinsic pathway ). In metazoans, this evolutionary conserved, genetically controlled process has a role in a variety of physiological settings, as development, homeostasis of tissues and maintenance of the organism integrity. When deranged by impaired regulation or inappropriate activation apoptosis contributes to the pathogenesis of diseases as autoimmunity, cancer, restenosis, ischaemia, heart failure and neurodegenerative disorders. In this review we will present a survey of the stress-induced intrinsic, mithochondrial, pathway and, based on recent experimental data, we will propose a view compatible with an emergent conceptual symmetry between the two apoptogenic extrinsic and intrinsic pathways. Elements of symmetry present in both the apoptogenic signalling pathways include: early activation of initiator caspases (feed-forwarded by a direct or post-mitocondrial effector caspase-mediated amplification loop in some cell types) and mitochondrial membrane permeabilization with required release of antagonists of active caspase inhibitors (IAPs) in high-level IAPs-expressing cells and apoptosome-mediated amplification of the caspase cascade more or less needed in different cell types.  相似文献   

5.
Apoptosis is a mechanism that regulates hepatic tissue homeostasis and contributes to both acute and chronic injury in liver disease. The apoptotic signaling cascade involves activation of the death-inducing signaling complex (DISC) and subsequent recruitment of proteins containing death effector domains (DED), which regulate downstream effector molecules. Prominent among these are the Fas-associated death domain (FADD) and the cellular caspase 8-like inhibitory protein (cFLIP), and alterations in these proteins can lead to severe disruption of physiological processes, including acute liver failure or hepatocellular carcinoma. Their role in cell signaling events independent of the DISC remains undetermined. Oxidative stress can cause cell injury from direct effects on molecules or by activating intracellular signaling pathways including the mitogen-activated protein kinases (MAPKs). In this context, prolonged activation of the cJun N-terminal kinase (JNK)/AP-1/cJun signaling pathway promotes hepatocellular apoptosis, whereas activation of the extracellular signal-regulated kinase (Erk) exerts protection. We investigated the roles of FADD and cFLIP in acute oxidant stress induced by the superoxide generator menadione in hepatocytes. Menadione resulted in dose-dependent predominantly necrotic cell death. Hepatocytes expressing a truncated, dominant-negative FADD protein were partially protected, whereas cFLIP-deficient hepatocytes displayed increased cell death from menadione. In parallel, Erk phosphorylation was enhanced in hepatocytes expressing dnFADD and decreased in cFLIP-deficient hepatocytes. Hepatocyte injury was accompanied by increased release of proapoptotic factors and increased JNK/cJun activation. Thus, FADD and cFLIP contribute to the regulation of cell death from acute oxidant stress in hepatocytes involving MAPK signaling. This implies that DED-containing proteins are involved in the regulation of cellular survival beyond their role in cell death receptor-ligand-mediated apoptosis.  相似文献   

6.
Apoptosis is a highly organized form of cell death that is important for tissue homeostasis, organ development and senescence. To date, the extrinsic (death receptor mediated) and intrinsic (mitochondria derived) apoptotic pathways have been characterized in mammalian cells. Reduced glutathione, is the most prevalent cellular thiol that plays an essential role in preserving a reduced intracellular environment. glutathione protection of cellular macromolecules like deoxyribose nucleic acid proteins and lipids against oxidizing, environmental and cytotoxic agents, underscores its central anti-apoptotic function. Reactive oxygen and nitrogen species can oxidize cellular glutathione or induce its extracellular export leading to the loss of intracellular redox homeostasis and activation of the apoptotic signaling cascade. Recent evidence uncovered a novel role for glutathione involvement in apoptotic signaling pathways wherein post-translational S-glutathiolation of protein redox active cysteines is implicated in the potentiation of apoptosis. In the present review we focus on the key aspects of glutathione redox mechanisms associated with apoptotic signaling that includes: (a) changes in cellular glutathione redox homeostasis through glutathione oxidation or GSH transport in relation to the initiation or propagation of the apoptotic cascade, and (b) evidence for S-glutathiolation in protein modulation and apoptotic initiation.  相似文献   

7.
Apoptosis is a morphologically defined form of programmed cell death (PCD) that is mediated by the activation of members of the caspase family. Analysis of death-receptor signaling in lymphocytes has revealed that caspase-dependent signaling pathways are also linked to cell death by nonapoptotic mechanisms, indicating that apoptosis is not the only form of PCD. Under physiological and pathological conditions, cells demonstrate a high degree of flexibility in cell-death responses, as is reflected in the existence of a variety of mechanisms, including necrosis-like PCD, autophagy (or type II PCD), and accidental necrosis. In this review, we discuss recent data suggesting that canonical apoptotic pathways, including death-receptor signaling, control caspase-dependent and -independent cell-death pathways.  相似文献   

8.
Apoptosis is a critical process that intrinsically links organism survival to its ability to induce controlled death. Thus, functional apoptosis allows organisms to remove perceived threats to their survival by targeting those cells that it determines pose a direct risk. Central to this process are apoptotic caspases, enzymes that form a signalling cascade, converting danger signals via initiator caspases into activation of the executioner caspase, caspase‐3. This enzyme begins disassembly of the cell by activating DNA degrading enzymes and degrading the cellular architecture. Interaction of pathogenic bacteria with caspases, and in particular, caspase‐3, can therefore impact both host cell and bacterial survival. With roles outside cell death such as cell differentiation, control of signalling pathways and immunomodulation also being described for caspase‐3, bacterial interactions with caspase‐3 may be of far more significance in infection than previously recognized. In this review, we highlight the ways in which bacterial pathogens have evolved to subvert caspase‐3 both through effector proteins that directly interact with the enzyme or by modulating pathways that influence its activation and activity.  相似文献   

9.
Apoptosis in prostate carcinogenesis   总被引:7,自引:0,他引:7  
Development of effective therapeutic modalities for the treatment of human cancer relies heavily upon understanding the molecular alterations that result in initiation and progression of the tumorigenic process. Many of the molecular changes identified in human prostate tumorigenesis so far play key roles in apoptosis regulation. Apoptosis represents a universal and exquisitely efficient cellular suicide pathway. Since the therapeutic goal is to trigger tumor-selective apoptotic cell death (without clinically significant effects on the host), elucidation of the mechanisms underlying apoptosis deregulation will lead to the identification of specific cellular components for targeting therapeutic interventions. As our understanding of its vital role in the development and growth of the prostate gland has expanded, numerous genes that encode apoptotic regulators have been identified that are severely impaired in prostate cancer cells. In addition, the expression of apoptotic modulators within prostatic tumors appears to correlate with tumor sensitivity to traditional therapies such as hormonal ablation and radiotherapy. No strict correlation between apoptosis induction and a patient's long-term prognosis has emerged, perhaps due to the fact that the ability to achieve initial remission alone does not adequately predict long-term outcome. This review will encompass the known molecular changes intimately involved in the apoptotic pathway which have potential prognostic value in disease progression, as well as therapeutic significance in the enhancement of the apoptotic response to novel and established treatment strategies for the treatment of androgen-dependent and androgen-independent prostatic tumors. The main focus will be on the role of the transforming growth factor-beta (TGF-beta) signaling pathway, bcl-2 and the bcl-2 family members, the caspase cascade (apoptosis executioners), and the Fas pathway in induction and regulation of apoptosis following therapeutic stimuli for the management of advanced prostate cancer.  相似文献   

10.
Molecular signal transduction in vascular cell apoptosis   总被引:18,自引:0,他引:18  
GengYJ 《Cell research》2001,11(4):253-264
INTRODUCTIONApoptosis represents a model of genetically pro--grammed ce1l death and a major mechanism bywhiCh tissue removes unwanted, aged or damagedce1ls. Although cells of mammalian tissues consist ofa broad dtwsity of phenotypes and g6notypes, during the developmeat of apoptosis, all cell types un-dergo similar morphological alteratiOns include chro-matin compaction and margination, nuclear conden-sation and fragmentation, and cell body sbIinkageand b1ebbingf1l. Characteristic apopto…  相似文献   

11.
Apoptosis proceeds through a set of evolutionarily conserved processes that co-ordinate the elimination of damaged or unneeded cells. This program of cell death is carried out by organelle-directed regulators, including the Bcl-2 proteins, and ultimately executed by proteases of the caspase family. Although the biochemical mechanisms of apoptosis are increasingly understood, the underlying cell biology orchestrating programmed cell death remains enigmatic. In this review, we summarize the current understanding of Bcl-2 protein regulation and caspase activation while examining cell biological mechanisms and consequences of apoptotic induction. Organellar contributions to apoptotic induction include death receptor endocytosis, mitochondrial and lysosomal permeabilization, endoplasmic reticulum calcium release and fragmentation of the Golgi apparatus. These early apoptotic events are accompanied by stabilization of the microtubule cytoskeleton and translocation of organelles to the microtubule organizing center. Together, these phenomena establish a model of apoptotic induction whereby a cytoskeletal-dependent coalescence and 'scrambling' of organelles in the paranuclear region co-ordinates apoptotic communication, caspase activation and cell death.  相似文献   

12.
Jeong SY  Seol DW 《BMB reports》2008,41(1):11-22
Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. Ca2+ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize Ca2+ signaling. Massive accumulation of Ca2+ in the mitochondria leads to apoptosis. The Ca2+ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.  相似文献   

13.
Cell apoptosis and proliferation are two counterparts in sharing the responsibility for maintaining normal tissue homeostasis. In recent years, the process of the programmed cell death has gained much interest because of its influence on malignant cell growth and other pathological states. Apoptosis is characterized by a distinct series of morphological and biochemical changes that result in cell shrinkage, DNA breakdown, and, ultimately, phagocytic death. Diverse external and internal stimuli trigger apoptosis, and enhanced K+ efflux has been shown to be an essential mediator of not only early apoptotic cell shrinkage, but also of downstream caspase activation and DNA fragmentation. The goal of this review is to discuss the role(s) played by K+ transport or flux across the plasma membrane in the regulation of the apoptotic volume decrease and apoptosis. Attention has also been paid to the role of inner mitochondrial membrane ion transport in the regulation of mitochondrial permeability and apoptosis. We provide specific examples of how deregulation of the apoptotic process contributes to pulmonary arterial medial hypertrophy, a major pathological feature in patients with pulmonary arterial hypertension. Finally, we discuss the targeting of K+ channels as a potential therapeutic tool in modulating apoptosis to maintain the balance between cell proliferation and cell death that is essential to the normal development and function of an organism.  相似文献   

14.
Caspase family proteases and apoptosis   总被引:45,自引:0,他引:45  
Apoptosis, or programmed cell death, is an essential physiological process that plays a critical role in development and tissue homeostasis. The progress of apoptosis is regulated in an orderly way by a series of signal cascades under certain circumstances. The caspase-cascade system plays vital roles in the induction, transduction and amplification of intracellular apoptotic signals. Caspases, closely associated with apoptosis, are aspartate-specific cysteine proteases and members of the interleukin- 1 ~-converting enzyme family. The activation and function of caspases, involved in the delicate caspase-cascade system, are regu- lated by various kinds of molecules, such as the inhibitor of apoptosis protein, Bcl-2 family proteins, calpain, and Ca^2+. Based on the latest research, the members of the caspase family, caspase-cascade system and caspase-regulating molecules involved in apoptosis are reviewed.  相似文献   

15.
Mitogen-activated protein (MAP) kinase signaling cascades are multi-functional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase that triggers apoptogenic kinase cascade leading to the phosphorylation/activation of c-Jun N-terminal kinases and p38-MAP kinase, which are responsible for inducing apoptotic cell death. This pathway plays a pivotal role in transduction of signals from different apoptotic stimuli. In the present review, we summarized the recent evidence concerning MAP kinase-dependent apoptotic pathway and its regulation in the mammalian cells and organism in vivo. We have shown that the key messengers of regulation of this pathway are the reactive oxygen and nitrogen species. The role of protein oxidation and S-nitrosation in induction of apoptotic cell death via ASK1 is discussed. Also we have outlined other recently discovered signal transduction processes involved in the regulation of ASK1 activity and downstream pathway.  相似文献   

16.
The caspase family of cysteine proteases is essential for implementation of physiological cell death. Since a wide variety of cellular proteins is cleaved by caspases during apoptosis, it has been predicted that digestion of proteins crucial to maintaining the life of a cell is central to apoptosis. To assess the role of the proteolytic destruction during apoptosis, we introduced the non-specific protease proteinase K into intact cells. This introduction led to extensive digestion of cellular proteins, including physiological caspase-substrates. Caspase-3-like activity was induced rapidly, followed by morphological signs of apoptosis such as membrane blebbing and nuclear condensation. The caspase inhibitor Z-VAD-fmk inhibited the appearance of these morphological changes without reducing the extent of intracellular proteolysis by proteinase K. Loss of integrity of the cell membrane, however, was not blocked by Z-VAD-fmk. This system thus generated conditions of extensive destruction of caspase substrates by proteinase K in the absence of apoptotic morphology. Taken together, these experiments suggest that caspases implement cell death not by protein destruction but by proteolytic activation of specific downstream effector molecules.  相似文献   

17.
Caspases belong to a family of highly conserved aspartate-specific cysteine proteases and are members of the interleukin-1beta-converting enzyme family, present in multicellular organisms. The caspase gene family consists of 15 mammalian members that are grouped into two major sub-families, namely inflammatory caspases and apoptotic caspases. The apoptotic caspases are further subdivided into two sub-groups, initiator caspases and executioner caspases. The caspases form a caspase-cascade system that plays the central role in the induction, transduction and amplification of intracellular apoptotic signals for cell fate determination, regulation of immunity, and cellular proliferation and differentiation. The substrates of apoptotic caspases have been associated with cellular dismantling, while inflammatory caspases mediate the proteolytic activation of inflammatory cytokines. The activation of this delicate caspase-cascade system and its functions are regulated by a variety of regulatory molecules, such as the inhibitor of apoptosis protein (IAP), FLICE, calpain, and Ca(2+). Based on the available literature we have reviewed and discussed the members of the caspase family, caspase-cascade system, caspase-regulating molecules and their apoptotic and non-apoptotic functions in cellular life and death. Also recent progress in the molecular structure and physiological role of non-mammalian caspases such as paracaspases, metacaspases and caspase-like-protease family members are included in relation to that of mammalian species.  相似文献   

18.
Cells infected with the protozoan parasite Toxoplasma gondii are resistant to diverse apoptotic stimuli. In this study, we perform a detailed analysis of the manipulation of the mitochondrial arm of the apoptotic cascade by the parasite. Apoptosis was induced using irradiation with ultraviolet light (UV), and the kinetics of caspase activation, cytochrome c release and activation of the upstream signalling pathways were examined. The evidence clearly points to T. gondii targeting multiple steps in the transmission [inhibition of c-Jun N-terminal kinase (JNK) activation in response to UV], triggering (inhibition of cytochrome c release by affecting the balance of pro- and anti-apoptotic BCL-2 family members) and execution (inhibition of caspase 9 and caspase 3) phases of the apoptotic cascade. Interestingly, the multilevel pattern of inhibition that emerges suggests that the global inhibition of the mitochondrial arm of apoptosis is not likely to be contributed to by the small subset of mitochondria recruited to the T. gondii parasitophorous vacuole membrane.  相似文献   

19.
Apoptosis is an evolutionally conserved cellular suicide mechanism that can be activated in response to a variety of stressful stimuli. Increasing evidence suggests that apoptotic regulation relies on specialized cell death signaling pathways and also integrates diverse signals from additional regulatory circuits, including those of cellular homeostasis. We present a genome-wide RNA interference screen to systematically identify regulators of apoptosis induced by DNA damage in Drosophila melanogaster cells. We identify 47 double- stranded RNA that target a functionally diverse set of genes, including several with a known function in promoting cell death. Further characterization uncovers 10 genes that influence caspase activation upon the removal of Drosophila inhibitor of apoptosis 1. This set includes the Drosophila initiator caspase Dronc and, surprisingly, several metabolic regulators, a candidate tumor suppressor, Charlatan, and an N-acetyltransferase, ARD1. Importantly, several of these genes show functional conservation in regulating apoptosis in mammalian cells. Our data suggest a previously unappreciated fundamental connection between various cellular processes and caspase-dependent cell death.  相似文献   

20.
Apoptosis is a complex process that plays a central role in physiological and pathological cell death. This fast evolving research area has experienced incredible development in the past few years. Progress in the knowledge of the structure of many of the main molecular actors of the apoptotic signal transduction pathways has driven the design of synthetic peptides that in some cases can function as simplified versions of their parent proteins. These molecules are contributing to a better understanding of the activity and regulation of apoptotic proteins and also are setting the basis for the discovery of effective drugs to combat important diseases related to apoptosis. Most applications of peptides in apoptosis research are so far related to caspases, caspase regulatory proteins, such as LAPs and Smac, and proteins of the Bcl-2 family. Additionally, important perspectives are open to other systems, such as the macromolecular assemblies that are responsible for the activation of initiator caspases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号