首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
S. K. Hasija 《Mycopathologia》1966,28(1-2):102-106
Summary Nitrogen and sulphur requirements ofColletotrichum inamdarii Lal isolated from the leaves ofCarissa carandas L. have been studied. DL-serine, L-asparagine and L-phenylalanine have been found to be of good nitrogen source followed by potassium nitrate, calcium nitrate, magnesium nitrate, DL-alanine, ammonium nitrate, glutamic acid, ammonium sulphate, DL-valine, aspartic acid, ammonium chloride, ammonium hydrogencarbonate, L-histidine and potassium nitrite. There was no growth in the absence of nitrogen.Sporulation was excellent on calcium nitrate and sodium nitrate, Very good on DL-serine, potassium nitrate, and magnesium nitrate. Good on L-asparagine, L-phenylalanine and ammonium oxalate. Fair on DL-alanine, DL-leucine, ammonium sulphate, DL-valine, ammonium chloride and L-histidine whereas poor on glutamic acid, aspartic acid, ammonium tartarate and ammonium nitrate. Few spores were observed on ammonium hydrogencarbonate but potassium nitrite did not show any sporulation.Amongst the sulphur compounds sodium bisulphate gave the best growth and good sporulation, followed by sodium thiosulphate, magnesium sulphate, ammonium sulphate and potassium sulphate. Thiourea gave negligible growth whereas it failed to grow on zinc sulphate and potassium persulphate.  相似文献   

2.
The sulphur nutrition of three isolates ofAlternaria tenuis Auct., isolated from the diseased leaves ofMangifera indica L.,Musa paradisiaca L. andPsidium guajava L., was studied. They were grown on the medium devoid of sulphur as well as on media containing various sources of sulphur viz., ammonium sulphate, sodium hyposulphite, sodium thiosulphate, magnesium sulphate, potassium sulphate, potassium metabisulphite, zinc sulphate and thiourea. Sodium hyposulphite, sodium thiosulphate, magnesium sulphate, potassium sulphate and zinc sulphate were generally found to be satisfactory sources for the growth of all the isolates under study. Poor growth of the different isolates was observed on the medium devoid of sulphur.  相似文献   

3.
The effect of different sulphur and phosphorus compounds on the growth and sporulation ofCurvularia pallescens Boed. has been studied. Nine different sulphur sources were tried but among them only magnesium sulphate yielded the best dry weight of the fungus. Zinc sulphate, sodium sulphate, sodium thiosulphate, potassium sulphate and calcium sulphate supported good growth. Poor growth was recorded on sodium bisulphite, ammonium sulphate, sodium sulphide and control. Sporulation was excellent on magnesium sulphate. It was good on zinc sulphate, sodium sulphate and potassium sulphate. On sodium thiosulphate, calcium sulphate, sodium bisulphite and control it was fair. Sodium sulphide and ammonium sulphate had inhibitory effect as sporulation was poor and nil on these two compounds respectively.Six phosphorus compounds were studied. Tripotassium phosphate gave best growth and excellent sporulation. Good growth and excellent sporulation was recorded on monobasic potassium phosphate and magnesium phosphate. Growth and sporulation were good on dibasic potassium phosphate and sodium dihydrogen phosphate. Ammonium phosphate was poorly utilized.  相似文献   

4.
Abstract The mycorrhizal fungi Amanita muscaria, Paxillus involutus, Hymenoscyphus ericae, Pisolithus tinctorius, Rhizopogon roseolus , and Suillus bovinus oxidized elemental sulphur to thiosulphate and sulphate in vitro. In some, but not all cases, tetrathionate was also formed. Limited oxidation of elemental sulphur by R. roseolus also occurred when growing in association with Pinus contorta in unsterilized peat. Although yeasts capable of oxidizing sulphur could not be isolated from a wide range of soils, a yeast-like fungus ( Monilia sp.) isolated from deciduous woodland soil oxidized elemental sulphur to sulphate, forming thiosulphate, but not tetrathionate. This fungus also oxidized tetrathionate to sulphate but showed only limited ability to oxidize thiosulphate to tetrathionate. Both Aspergillus niger and Trichoderma harzianum oxidized elemental sulphur in mixed culture with Mucor flavus . Larger amounts of sulphate were initially formed in mixed, compared to single culture; but by week 5 of the incubation period sulphate formation was greatest in single culture. The wood-rotting fungi, Hypholoma fasciculare and Phanerochaete velutina showed a limited ability to oxidize elemental sulphur in vitro but were incapable of oxidizing the element when growing as mycelial cords in non-sterilized soils. The relevance of these results to the possibility that fungi play a role in sulphur oxidation in soils is commented upon.  相似文献   

5.
Summary The effects of wheat straw and pressed sugar beet pulp on sulphur oxidation were determined in a loam soil amended with 1% (w/w) elemental sulphur. Wheat straw stimulated the oxidation of elemental sulphur over the first 2 to 3 weeks of the incubation period, resulting in an increase in LiCl-extractable sulphate. After 4 to 7 weeks incubation however, the only significant increase in soil sulphate followed the 1% straw addition, while at week 7 sulphate concentrations in the 0.25% and 5.0% straw amended soils were lower than the control. Pressed sugar beet pulp (1% w/w) initially stimulated the oxidation of elemental sulphur in the soil, but by weeks 3 to 7 of the incubation period rates of oxidation in pulp-amended soils were lower than the control. Towards the end of the incubation period however, sulphate concentrations in the amended soils exceeded the control values, significantly so by week 11. The concentration of thiosulphate and tetrathionate also increased in soils receiving sugar beet pulp. Nitrification was inhibited in soils in which sulphur oxidation was actively occurring. Although possible alternatives are mentioned, such inhibition appears to result from a decrease in soil pH brought about by the oxidation of elemental sulphur to sulphuric acid.  相似文献   

6.
The influence of irrigation on yield response of tea to NPK fertilizers and the importance of the nitrogen source for yield response to nitrogen were investigated in two locations of northern Iran. There was a large difference between locations in green leaf yield due to differences in rate of precipitation. In both locations, irrigation at the rate of 420 mm during the 6-month growing period was more effective in increasing both yield and yield response to nitrogen, phosphorus and potassium than the most favourable rate of fertilizer. With a total water supply of up to 770 mm, tea showed a moderate response to nitrogen and phosphorus but no or low response to potassium, while with 1100 mm of water a considerably high response to each nutrient and their combinations was observed. Ammonium sulphate produced 15–20% more yield than corresponding urea treatment. Addition of sulphur together with urea reduced the differences. This work was supported by the Scientific Research Council of the University of Teheran, Teheran, Iran  相似文献   

7.
Alkaliphilic sulphur-oxidizing bacteria were isolated from samples from alkaline environments including soda soil and soda lakes. Two isolates, currently known as strains AL 2 and AL 3, were characterized. They grew over a pH range 8.0–10.4 with an optimum at 9.5–9.8. Both strains could oxidize thiosulphate, sulphide, polysulphide, elemental sulphur and tetrathionate. Strain AL 3 more actively oxidized thiosulphate and sulphide, while isolate AL 2 had higher activity with elemental sulphur and tetrathionate. Isolate AL 2 was also able to oxidize trithionate. The pH optimum for thiosulphate and sulphide oxidation was between 9–10. Some activity remained at pH 11, but was negligible at pH 7. Metabolism of tetrathionate by isolate AL 2 involved initial anaerobic hydrolysis to form sulphur, thiosulphate and sulphate in a sequence similar to that in other colourless sulphur-oxidizing bacteria. Sulphate was produced by both strains. During batch growth on thiosulphate, elemental sulphur and sulphite transiently accumulated in cultures of isolates AL 2 and AL 3, respectively. At lower pH values, both strains accumulated sulphur during sulphide and thiosulphate oxidation. Both strains contained ribulose bisphosphate carboxylase. Thiosulphate oxidation in isolate AL 3 appeared to be sodium ion-dependent. Isolate AL 2 differed from AL 3 by its high GC mol % value (65.5 and 49.5, respectively), sulphur deposition in its periplasm, the absence of carboxysomes, lower sulphur-oxidizing capacity, growth kinetics (lower growth rate and higher growth yield) and cytochrome composition.  相似文献   

8.
Abstract Morphogenesis of two K. zeae isolates (V7486 and ZP24986) on carbon, nitrogen and sulphur solid nutritive media after 2, 10, 18 and 28 days of incubation were studied. Highly significant differences were found between the isolates in regard to the use of compounds containing these elements. On carbon sources the fungus generally developed smaller colonies of branchy, loose, creamy-brown appearance, with abundant sporulation and abnormal conidia. Sucrose and D-glucose were the best carbon sources for K. zeae because both isolates had the maximum growth, abundant to medium abundant sporulation and mostly typical conidia. K. zeae colonies on organic and inorganic nitrogen and on sulphur sources too were leathery, creased, predominantly pink. Organic nitrogen sources lead to maximum growth and abundant sporulation, whereas ammonium and nitrate compounds caused intermediary growth and medium to very poor fungus sporulation. Addition of different sulphur sources, except sodium thiosulphate and thiocarbamide, did not affect the growth and sporulation of V7486. The growth of ZP 24986 depended on potassium and ammonium sulphate and sodium bisulphate.  相似文献   

9.
A free-living aspartate-fermenting Campylobacter spec. was shown to utilize hydrogen produced in mixed culture by Clostridium cochlearium from glutamate. Resting cells of Campylobacter were shown to reduce aspartate, fumarate and malate as well as nitrate, nitrite, hydroxylamine, sulphite, thiosulphate and elemental sulphur with molecular hydrogen. Growth of Campylobacter spec. was demonstrated with formate as electron donor and nitrate, thiosulphate, elemental sulphur or oxygen as electron acceptor in the presence of acetate as carbon source.  相似文献   

10.
Erwinia soft rot causes destructive and serious damage to many vegetable crops including potato in the field, transit and storage periods. The effect of certain cultural practices on the susceptibility of potato tubers to soft rot bacteria was studied and the results of this work can be summarised in the following: potato tubers harvested on 1 May first exhibited the highest disease incidence compared with those harvested on 15 May or 30 May. Harvesting on 15 June resulted in the lowest disease infection. The application of high levels of nitrogen fertiliser as urea (46.5%), ammonium nitrate (31%) and ammonium sulphate (20.5%) resulted in an increase of the susceptibility of potato tubers to bacterial soft rot disease. In contrast, the addition of phosphorous as superphosphate (15.5%) fertiliser caused the reverse effect. The addition of potassium as potassium sulphate (48%) alone at any of the tested levels showed no effect. The susceptibility of potato tubers to bacterial soft rotting disease was increased by increasing storage periods at 4°C for 1, 2, 3 and 4 months. Spraying copper sulphate exhibited the highest decrease in soft rot incidence disease followed by manganese, zinc and iron. However, spraying of boron increased susceptibility to the disease. Potato tubers obtained from plants sprayed with copper and stored for different periods showed the lowest susceptibility to disease incidence. Tuber sprayed with zinc, iron, manganese and finally boron came next.  相似文献   

11.
Dynamics of oxidation of inorganic sulphur compounds to sulphate by the soil of spruce forests was investigated. Sulphide, sulphite and thiosulphate are oxidized to sulphate at a maximal rate at the beginning of the reaction, oxidation of elemental sulphur exhibits a lag phase. Linear relationships between the amounts of the produced sulphate and concentrations of substrates in the soil could be detected. On the basis of this finding a method for comparison of the oxidative activity of various soils was proposed.  相似文献   

12.
A moderately thermophilic, facultatively chemolithoautotrophic thiobacillus isolated from a thermal sulphur spring is described. It differs from all other species currently known to be in culture. It grows lithoautotrophically on thiosulphate, trithionate or tetrathionate, which are oxidized to sulphate. Batch cultures on thiosulphate do not produce tetrathionate, but do precipitate elemental sulphur during growth. In autotrophic chemostat cultures the organism produces yields on thiosulphate, trithionate and tetrathionate that are among the highest observed for a Thiobacillus. Autotrophic cultures contain ribulose bisphosphate carboxylase. Heterotrophic growth has been observed only on complex media such as yeast extract and nutrient broth. It is capable of autotrophic growth and denitrification under anaerobic conditions with thiosulphate and nitrate. It grows between 30 to 55° C, and pH 7 to 9, with best growth at about 43°C and pH 7.6. It contains ubiquinone Q-8, and its DNA contains 65.7 mol% G+C. The organism is formally described and named as Thiobacillus aquaesulis.Now the Department of Biological Sciences  相似文献   

13.
Summary A study of the inorganic amendments (N, P and K) to soil, and their effect on the rhizosphere microflora, as well as their relation to the control of wilt of antirrhinum plants caused byVerticillium dahliae Kleb. was done. Ammonium sulphate was the only chemical found to be significantly inhibitory toV. dahliae in vitro. Soil amendments (NPK) affected the rhizosphere microorganisms of the antirrhinum plants. Higher concentration of the chemicals were phytotoxic. It was further observed that ammonium sulphate, and the combined chemicals (NPK 25%) in soil delayed the senescence in healthy plants, suggests that chemical fertilisers affected the host plants directly. Addition of ammonium sulphate (0.25%), calcium nitrate (0.25%, 0.5%) combined NPK (0.25%) to soil caused considerable reduction in disease severity. It is assumed that this reduction may be caused by the (1) fungitoxic nature of the chemicali.e. ammonium sulphate, (2) antagonistic environment for the pathogen in the rhizosphere was boostedi.e. where calcium nitrate was added as soil amendments and (3) reduction in disease severity in soil-amended with combined NPK, may be due to the fact that antagonistic actinomycete population was boosted in the rhizosphere.  相似文献   

14.
Oxidation of reduced sulphur compounds by Thiobacillus acidophilus was studied with cell suspensions from heterotrophic and mixotrophic chemostat cultures. Maximum substrate-dependent oxygen uptake rates and affinities observed with cell suspensions from mixotrophic cultures were higher than with heterotrophically grown cells. ph Optima for oxidation of sulphur compounds fell within the pH range for growth (pH 2–5), except for sulphite oxidation (optimum at pH 5.5). During oxidation of sulphide by cell suspensions, intermediary sulphur was formed. Tetrathionate was formed as an intermediate during aerobic incubation with thiosulphate and trithionate. Whether or not sulphite is an inter-mediate during sulphur compound oxidation by T. acidophilus remains unclear. Experiments with anaerobic cell suspensions of T. acidophilus revealed that trithionate metabolism was initiated by a hydrolytic cleavage yielding thiosulphate and sulphate. A hydrolytic cleavage was also implicated in the metabolism of tetrathionate. After anaerobic incubation of T. acidophilus with tetrathionate, the substrate was completely converted to equimolar amounts of thiosulphate, sulphur and sulphate. Sulphide- and sulphite oxidation were partly inhibited by the protonophore uncouplers 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) and by the sulfhydryl-binding agent N-ethylmaleimide (NEM). Oxidation of elemental sulphur was completely inhibited by these compounds. Oxidation of thiosulphate, tetrathionate and trithionate was only slightly affected. The possible localization of the different enzyme systems involved in sulphur compound oxidation by T. acidophilus is discussed.  相似文献   

15.
Urea and superphosphate dramatically increased the concentrations of exchangeable ammonium-N and water-soluble P in incubated forest floor samples. Urea also increased absolute but not relative nitrate production. Superphosphate depressed pH while urea elevated it. Microarthropod numbers and fungal activity were depressed by fertilizer addition. Mites were more sensitive to urea than were collembola, which were more sensitive to superphosphate. Both groups were more adversely effected by superphosphate than urea. In contrast, fungal activity was more retarded by urea than superphosphate. It is uncertain whether the observed changes resulted from increased osmotic potentials, pH or pH induced toxicities.  相似文献   

16.
The effects of application of nitrogen as calcium nitrate, urea or ammonium sulphate at two rates through the trickle irrigation system on pH and nutrient status of the wetted volume of soil below the emitters and on growth and nutrition of courgette (zucchini) plants (Cucurbita pepo L.) was investigated. Soil acidification, caused by nitrification, occurred to a large extent in the volume of soil immediately below the emitters in the urea and ammonium sulphate treatments. Acidification was greater at the high rate of N addition and more pronounced with ammonium sulphate than urea. A significant amount of applied urea appeared to move through the soil as urea and consequently, at the same rate of N addition, levels of ammonium were lower directly below the emitter and those of nitrate were higher further away from the emitters for the urea than ammonium sulphate treatments. Soil acidification below the emitters resulted in significant decreases in levels of exchangeable Ca, Mg and K and increases in levels of exchangeable Al, EDTA-extractable Fe, Mn, Zn and Cu and bicarbonate-extractable P. Vegetative growth and harvestable yields of courgettes were increased by both irrigation and nitrogen applications. Vegetative growth was generally greater at the low rate of N addition than at the high one and generally followed the order calcium nitrate > urea > ammonium sulphate. However, fruit yields followed the order urea > ammonium sulphate > calcium nitrate and were larger at the high rate of N for urea and ammonium sulphate treatments and unaffected by rate for the calcium nitrate treatments. It is suggested that with fertigation, the form of applied N can have significant physiological effects of plant growth and yields because N may be applied into the root zone on numerous occasions during the growing season.  相似文献   

17.
The effect of a long-term application of sulphite, thiosulphate and sodium sulphate on the soil microflora and spruce seedlings was investigated in a pot experiment. Sulphur compounds decreased the concentration of bacteria, including thiobacilli, increased the concentration of microscopic fungi and sulphate-reducing bacteria; they inhibited respiration, nitrification and oxidation of thiosulphate, stimulated ammonification and oxidation of elemental sulphur. In certain cases the spruce rhizosphere exhibited just the opposite effect. In the rhizosphere the sulphate-reducing bacteria were suppressed together with thiobacilli, whose unit oxidative activity increased substantially. Growth of seedlings was inhibited by sulphite and stimulated by thiosulphate and sulphate. Sulphite, the effects of which were similar to those of sulphur dioxide immissions, was the most effective compound. In regions influenced by immissions the soil is apparently intoxicated by the absorbed sulphite.  相似文献   

18.
N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.  相似文献   

19.
1. The optimal level of sodium in an artificial diet for the house cricket was found to be 1126 ppm, of potassium 6487 ppm and of calcium 1366 ppm. 2. The revised salt mixture for the house cricket is 68.02 g NaCl, 120.00 g KCl, 310.00 g KH2PO4, 37.65 g CaHPO4, 53.34 g CaCO3, 90.50 g MgSO4.7H2O, 14.70 g FePO4.4H2O, 0.23 g MnSO4.H2O, 0.55 g ZnCO3 and 0.72 g CnSO4 in a total of 695.71 g salts.  相似文献   

20.
The effect on D-xylose utilization and the corresponding xylitol and ethanol production by Candida shehatae (ATCC 22984) were examined with different nitrogen sources. These included organic (urea, asparagine, and peptone) and inorganic (ammonium chloride, ammonium nitrate, ammonium sulphate, and potassium nitrate) sources. Candida shehatae did not grow on potassium nitrate. Improved ethanol production (Y(p/s), yield coefficient (grams product/grams substrate), 0.34) was observed when organic nitrogen sources were used. Correspondingly, the xylitol production was also higher with organic sources. Ammonium sulphate showed the highest ethanol:xylitol ratio (11.0) among all the nitrogen sources tested. The ratio of NADH- to NADPH-linked D-xylose reductase (EC 1.1.1.21) appeared to be rate limiting during ethanologenesis of D-xylose. The levels of xylitol dehydrogenase (EC 1.1.1.9) were also elevated in the presence of organic nitrogen sources. These results may be useful in the optimization of alcohol production by C. shehatae during continuous fermentation of D-xylose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号