首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin A derivatives (retinoids) are actively involved during vertebrate embryogenesis. However, exogenous retinoids have also long been known as potent teratogens. The defects caused by retinoid treatment are complex. Here, we provided evidence that RAR-mediated retinoid signaling can repress Xenopus blastula Wnt signaling and impair dorsal development. Exogenous retinoic acid (RA) could antagonize the dorsalizing effects of lithium chloride-mediated Wnt activation in blastula embryos. The Wnt-responsive reporter gene transgenesis and luciferase assay showed that excess RA can repress the Wnt signaling in blastula embryos. In addition, the downstream target genes of the Wnt signaling that direct embryonic dorsal development, were also down-regulated in the RA-treated embryos. Mechanically, RA did not interfere with the stability of beta-catenin, but promoted its nuclear accumulation. The inverse agonist of retinoic acid receptors (RAR) rescued the Wnt signaling repression by RA and relieved the RA-induced nuclear accumulation of beta-catenin. Our results explain one of the reasons for the complicated teratogenic effects of retinoids and shed light on the endogenous way of interactions between two developmentally important signaling pathways.  相似文献   

2.
Wnt signaling plays important roles in development and disease. The X-chromosomal Porcupine homolog gene (Porcn) encodes an evolutionary conserved member of the membrane bound O-acyl transferase (MBOAT) superfamily that has been shown to be required for the palmitoylation and secretion of Wnt3a, a mechanism that has been suggested to be conserved for all mammalian Wnt ligands. PORCN mutations in humans cause Focal Dermal Hypoplasia (FDH), a disorder causing developmental defects in heterozygous females and embryonic lethality in hemizygous males. In this study, Porcn mutant mouse embryonic stem (ES) cells were used to analyze the role of Porcn in mammalian embryonic development. In vitro, we show an exclusive requirement for Porcn in Wnt secreting cells and further, that any of the four Porcn isoforms is sufficient to allow for the secretion of functional Wnt3a. Embryos generated by aggregation of Porcn mutant ES cells with wildtype embryos fail to complete gastrulation in vivo, but remain in an epiblast-like state, similar to Wnt3 and Gpr177/Wls mutants. Consistent with this phenotype, in vitro differentiated mutant ES cells fail to generate endoderm and mesoderm derivatives. Taken together, these data confirm the importance of Porcn for Wnt secretion and gastrulation and suggest that disruption of early development underlies the male lethality of human PORCN mutants.  相似文献   

3.
Wu J  Yang J  Klein PS 《Developmental biology》2005,279(1):220-232
While Wnt signaling is known to be involved in early steps of neural crest development, the mechanism remains unclear. Because Wnt signaling is able to posteriorize anterior neural tissues, neural crest induction by Wnts has been proposed to be an indirect consequence of posteriorization of neural tissues rather than a direct effect of Wnt signaling. To address the relationship between posteriorization and neural crest induction by Wnt signaling, we have used gain of function and loss of function approaches in Xenopus to modulate the level of Wnt signaling at multiple points in the pathway. We find that modulating the level of Wnt signaling allows separation of neural crest induction from the effects of Wnts on anterior-posterior neural patterning. We also find that activation of Wnt signaling induces ectopic neural crest in the anterior region without posteriorizing anterior neural tissues. In addition, Wnt signaling induces neural crest when its posteriorizing activity is blocked by inhibition of FGF signaling in neuralized explants. Finally, depletion of beta-catenin confirms that the canonical Wnt pathway is required for initial neural crest induction. While these observations do not exclude a role for posteriorizing signals in neural crest induction, our data, together with previous observations, strongly suggest that canonical Wnt signaling plays an essential and direct role in neural crest induction.  相似文献   

4.
5.
Frizzled7 mediates canonical Wnt signaling in neural crest induction   总被引:1,自引:0,他引:1  
The neural crest is a multipotent cell population that migrates from the dorsal edge of the neural tube to various parts of the embryo where it differentiates into a remarkable variety of different cell types. Initial induction of neural crest is mediated by a combination of BMP, Wnt, FGF, Retinoic acid and Notch/Delta signaling. The two-signal model for neural crest induction suggests that BMP signaling induces the competence to become neural crest. The second signal involves Wnt acting through the canonical pathway and leads to expression of neural crest markers such as slug. Wnt signals from the neural plate, non-neural ectoderm and paraxial mesoderm have all been suggested to play a role in neural crest induction. We show that Xenopus frizzled7 (Xfz7) is expressed in the dorsal ectoderm including early neural crest progenitors and is a key mediator of the Wnt inductive signal. We demonstrate that Xfz7 expression is induced in response to a BMP antagonist, noggin, and that Xfz7 can induce neural crest specific genes in noggin-treated ectodermal explants (animal caps). Morpholino-mediated or dominant negative inhibition of Xfz7 inhibits Wnt induced Xslug expression in the animal cap assay and in the whole embryo leading to a loss of neural crest derived pigment cells. Full-length Xfz7 rescues the morpholino-induced phenotype, as does activated beta-catenin, suggesting that Xfz7 is signaling through the canonical pathway. We therefore demonstrate that Xfz7 is regulated by BMP antagonism and is required for neural crest induction by Wnt in the developing vertebrate embryo.  相似文献   

6.
In the frog embryo, a sub-population of trunk neural crest (NC) cells undergoes a dorsal route of migration to contribute to the mesenchyme in the core of the dorsal fin. Here we show that a second population of cells, originally located in the dorsomedial region of the somite, also contributes to the fin mesenchyme. We find that the frog orthologue of Wnt11 (Wnt11-R) is expressed in both the NC and somite cell populations that migrate into the fin matrix. Wnt11-R is expressed prior to migration and persists in the mesenchymal cells after they have distributed throughout the fin. Loss of function studies demonstrate that Wnt11-R activity is required for an epithelial to mesenchymal transformation (EMT) event that precedes migration of cells into the fin matrix. In Wnt11-R depleted embryos, the absence of fin core cells leads to defective dorsal fin development and to collapse of the fin structure. Experiments using small molecule inhibitors indicate that dorsal migration of fin core cells depends on calcium signaling through calcium/calmodulin-dependent kinase II (CaMKII). In Wnt11-R depleted embryos, normal migration of NC cells and dorsal somite cells into the fin and normal fin development can be rescued by stimulation of calcium release. These studies are consistent with a model in which Wnt11-R signaling, via a downstream calcium pathway, regulates fin cell migration and, more generally, indicates a role for non-canonical Wnt signaling in regulation of EMT.  相似文献   

7.
Cell–cell signaling regulated by retinoic acid (RA), Wnt/β-catenin, and fibroblast growth factor (FGF) is important during body axis extension, and interactions between these pathways have been suggested. At early somite stages, Wnt/β-catenin and FGF signaling domains exist both anterior and posterior to the developing trunk, whereas RA signaling occurs in between in the trunk under the control of the RA-synthesizing enzyme retinaldehyde dehydrogenase-2 (Raldh2). Previous studies demonstrated that vitamin A deficient quail embryos and Raldh2−/− mouse embryos lacking RA synthesis exhibit ectopic expression of Fgf8 and Wnt8a in the developing trunk. Here, we demonstrate that Raldh2−/− mouse embryos display an expansion of FGF signaling into the trunk monitored by Sprouty2 and Pea3 expression, and an expansion of Wnt/β-catenin signaling detected by expression of Axin2, Tbx6, Cdx2, and Cdx4. Following loss of RA signaling, the caudal expression domains of Fgf8, Wnt8a, and Wnt3a expand anteriorly into the trunk, but no change is observed in caudal expression of Fgf4 or Fgf17 plus caudal expression of Fgf18 and Cdx1 is reduced. These findings suggest that RA repression of Fgf8, Wnt8a, and Wnt3a in the developing trunk functions to down-regulate FGF signaling and Wnt/β-catenin signaling as the body axis extends.  相似文献   

8.
9.
Wnt11 is a secreted protein that signals through the non-canonical planar cell polarity pathway and is a potent modulator of cell behavior and movement. In human, mouse, and chicken, there is a single Wnt11 gene, but in zebrafish and Xenopus, there are two genes related to Wnt11. The originally characterized Xenopus Wnt11 gene is expressed during early embryonic development and has a critical role in regulation of gastrulation movements. We have identified a second Xenopus Wnt11-Related gene (Wnt11-R) that is expressed after gastrulation. Sequence comparison suggests that Xenopus Wnt11-R, not Wnt11, is the ortholog of mammalian and chicken Wnt11. Xenopus Wnt11-R is expressed in neural tissue, dorsal mesenchyme derived from the dermatome region of the somites, the brachial arches, and the muscle layer of the heart, similar to the expression patterns reported for mouse and chicken Wnt11. Xenopus Wnt11-R exhibits biological properties similar to those previously described for Xenopus Wnt11, in particular the ability to activate Jun-N-terminal kinase (JNK) and to induce myocardial marker expression in ventral marginal zone (VMZ) explants. Morpholino inhibition experiments demonstrate, however, that Wnt11-R is not required for cardiac differentiation, but functions in regulation of cardiac morphogenesis. Embryos with reduced Wnt11-R activity exhibit aberrant cell-cell contacts within the myocardial wall and defects in fusion of the nascent heart tube.  相似文献   

10.
Axin is a central component of the canonical Wnt signaling pathway that interacts with the adenomatous polyposis coli protein APC and the kinase GSK3beta to downregulate the effector beta-catenin. In the nematode Caenorhabditis elegans, canonical Wnt signaling is negatively regulated by the highly divergent Axin ortholog PRY-1. Mutation of pry-1 leads to constitutive activation of BAR-1/beta-catenin-dependent Wnt signaling and results in a range of developmental defects. The pry-1 null phenotype is however not fully penetrant, indicating that additional factors may partially compensate for PRY-1 function. Here, we report the cloning and functional analysis of a second Axin-like protein, which we named AXL-1. We show that despite considerable sequence divergence with PRY-1 and other Axin family members, AXL-1 is a functional Axin ortholog. AXL-1 functions redundantly with PRY-1 in negatively regulating BAR-1/beta-catenin signaling in the developing vulva and the Q neuroblast lineage. In addition, AXL-1 functions independently of PRY-1 in negatively regulating canonical Wnt signaling during excretory cell development. In contrast to vertebrate Axin and the related protein Conductin, AXL-1 and PRY-1 are not functionally equivalent. We conclude that Axin function in C. elegans is divided over two different Axin orthologs that have specific functions in negatively regulating canonical Wnt signaling.  相似文献   

11.
Zygotic Wnt signaling has been shown to be involved in dorsoventral mesodermal patterning in Xenopus embryos, but how it regulates different myogenic gene expression in the lateral mesodermal domains is not clear. Here, we use transient exposure of embryos or explants to lithium, which mimics Wnt/beta-catenin signaling, as a tool to regulate the activation of this pathway at different times and places during early development. We show that activation of Wnt/beta-catenin signaling at the early gastrula stage rapidly induces ectopic expression of XMyf5 in both the dorsal and ventral mesoderm. In situ hybridization analysis reveals that the induction of ectopic XMyf5 expression in the dorsal mesoderm occurs within 45 min and is not blocked by the protein synthesis inhibitor cycloheximide. By contrast, the induction of XMyoD is observed after 2 h of lithium treatment and the normal expression pattern of XMyoD is blocked by cycloheximide. Analysis by RT-PCR of ectodermal explants isolated soon after midblastula transition indicates that lithium also specifically induces XMyf5 expression, which takes place 30 min following lithium treatment and is not blocked by cycloheximide, arguing strongly for an immediate-early response. In the early gastrula, inhibition of Wnt/beta-catenin signaling blocks the expression of XMyf5 and XMyoD, but not of Xbra. We further show that zygotic Wnt/beta-catenin signaling interacts specifically with bFGF and eFGF to promote XMyf5 expression in ectodermal cells. These results suggest that Wnt/beta-catenin pathway is required for regulating myogenic gene expression in the presumptive mesoderm. In particular, it may directly activate the expression of the XMyf5 gene in the muscle precursor cells.  相似文献   

12.
The epithelial layers of the ciliary body (CB) and iris are non-neural structures that differentiate from the anterior region of the eyecup, the ciliary margin (CM). We show here that activation of the canonical Wnt signaling pathway is sufficient and necessary for the normal development of anterior eye structures. Pharmacological activation of beta-catenin signaling with lithium (Li(+)) treatment in retinal explants in vitro induced the ectopic expression of the CM markers Otx1 and Msx1. Cre-mediated stabilization of beta-catenin expression in the peripheral retina in vivo induced a cell autonomous upregulation of CM markers at the expense of neural retina (NR) markers and inhibited neurogenesis. Consistent with a cell autonomous conversion to peripheral eye fates, the proliferation index in the region of the retina that expressed stabilized beta-catenin was identical to the wild-type CM and there was an expansion of CB-like structures at later stages. Conversely, Cre-mediated inactivation of beta-catenin reduced CM marker expression as well as the size of the CM and CB/iris. Aberrant CB development in both mouse models was also associated with a reduction in the number of retinal stem cells in vitro. In summary, activation of canonical Wnt signaling is sufficient to promote the development of peripheral eyecup fates at the expense of the NR and is also required for the normal development of anterior eyecup structures.  相似文献   

13.
14.
Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration   总被引:1,自引:0,他引:1  
We have investigated the requirement for the FGF and Wnt/beta-catenin pathways for Xenopus tadpole tail regeneration. Pathways were modified either by treatment with small molecules or by induction of transgene expression with heat shocks. Regeneration is inhibited by treatment with the FGF inhibitor SU5402, or by activation of a dominant negative FGF receptor, or by activation of expression of the Wnt inhibitor Dkk1. Agents promoting Wnt activity: the small molecule BIO, or a constitutively active form of beta-catenin, led to an increased growth rate. Combination of a Wnt activator with FGF inhibitor suppressed regeneration, while combination of a Wnt inhibitor with a FGF activator allowed regeneration. This suggests that the Wnt activity lies upstream of the FGF activity.Expression of both Wnt and FGF components was inhibited by activation of noggin, suggesting that BMP signalling lies upstream of both Wnt and FGF.The results show that the molecular mechanism of Xenopus tadpole tail regeneration is surprisingly similar to that of the Xenopus limb bud and the zebrafish caudal fin, despite the difference of anatomy.  相似文献   

15.
16.
The classical three-signal model of amphibian mesoderm induction and more recent modifications together propose that an activin-like signaling activity is uniformly distributed across the vegetal half of the Xenopus blastula and that this activity contributes to mesoderm induction. In support of this, we have previously shown that the activin-response element (DE) of the goosecoid promoter is uniformly activated across the vegetal half of midgastrula-stage embryos. Here, we further examine the nature of this activity by measuring DE activation by endogenous signals over time. We find that the spatiotemporal pattern of DE activation is much more dynamic than was previously appreciated and also conclude that DE(6X)Luc activity reflects endogenous nodal signaling in the embryo. Using both the DE(6X)Luc construct and endogenous Xbra and Xgsc expression as read-outs for nodal activity, and the cleavage-mutant version of Xnr2 (CmXnr2) to regionally suppress endogenous nodal activity, we demonstrate that nodal signals act cell-autonomously in Xenopus gastrulae. Nodal-expressing cells are unable to rescue either reporter gene activation or target gene expression in distant nodal-deficient cells, suggesting that nodals function at short range in this context. Finally, we show that DE activation by endogenous signals occurs in the absence of dorsal beta-catenin-mediated signaling, but that the timing of dorsal initiation is altered. We conclude that nodal signals in Xenopus gastrulae function cell autonomously at short ranges and that the spatiotemporal pattern of this signaling along the dorsoventral axis is regulated by maternal Wnt-like signaling.  相似文献   

17.
Wnt signaling pathways are essential in various developmental processes including differentiation, proliferation, cell migration, and cell polarity. Wnt proteins execute their multiple functions by activating distinct intracellular signaling cascades, although the mechanisms underlying this activation are not fully understood. We identified a novel Daple-like protein in Xenopus and named it xDal (Xenopus Daple-like). As with Daple, xDal contains several leucine zipper-like regions (LZLs) and a putative PDZ domain-binding motif, and can interact directly with the dishevelled protein. In contrast to mDaple, injection of xDal mRNA into the dorso-vegetal blastomere does not induce ventralization and acted synergistically with xdsh in secondary axis induction. XDal also induced expression of siamois and xnr-3, suggesting that XDal functions as a positive regulator of the Wnt/beta-catenin pathway. Injection of xDal mRNA into the dorso-animal blastomere, however, induced gastrulation-defective phenotypes in a dose-dependent manner. In addition, xDal inhibited activin-induced elongation of animal caps and enhanced c-jun phosphorylation. Based on these findings, xDal is also thought to function in the Wnt/JNK pathway. Moreover, functional domain analysis with several deletion mutants indicated that xDal requires both a putative PDZ domain-binding motif and at least one LZL for its activity. These findings with xDal will provide new information on the Wnt signaling pathways.  相似文献   

18.
Heparan sulfate proteoglycans (HSPGs) are synthesised and modified in the Golgi before they are presented at the cell surface. Modifications include the addition of sulfate groups at specific positions on sugar residues along the heparan sulfate (HS) chain which results in a structural heterogeneity that underpins the ability of HSPGs to bind with high affinity to many different proteins, including growth factors and their receptors. Sulf1 codes for a 6-0-endosulfatase that is present and active extracellularly, providing a further mechanism to generate structural diversity through the post-synthetic remodelling of HS. Here we use Xenopus embryos to demonstrate in vivo that Xtsulf1 plays an important role in modulating cell signaling during development. We show that while XtSulf1 can enhance the axis-inducing activity of Wnt11, XtSulf1 acts during embryogenesis to restrict BMP and FGF signaling.  相似文献   

19.
Summary Dissociated prospective ectoderm cells from Xenopus laevis embryos divide autonomously up to the 17th division cycle of the embryo. To examine the requirements for the further proliferation of these cells, the continuation of cell division in compact ectodermal explants beyond the 17th division cycle has been studied. Such explants develop into aggregates of epidermal cells, as can be shown immunohistochemically with an anti-serum against Xenopus epidermal cytokeratin. Cell division in these explants is comparable to the in vivo proliferation rate at least during the first 24 h of cultivation, that is, well beyond the 17th division cycle. Thus, epidermal cells are provided with all the factors necessary for continued proliferation, but these can be effective only when the cells form tight aggregates. The long-term changes in cell number are complex. Mitotic figures are present until the explants disintegrate after 3–4 days. However, the total cell number per explant does not increase during later development. The production of cells by mitotic divisions is likely to be countered by the loss of cells due to cell death, which is indicated by the presence of pyknotic nuclei.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号