首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of [3H]oxytocin to uterine subcellular preparations ('oxytocin receptor concentrations') was measured in uterine tissue of heifers and multiparous dairy cows at various stages of the oestrous cycle and during early pregnancy. A method for the assay of ovine uterine oxytocin receptors was optimized for use on bovine tissue. Oxytocin receptor concentrations were increased in cyclic animals around the period of luteolysis and oestrus, rising on Day 15 in endometrium and on Day 17 in myometrium while pregnant animals showed no comparable rise. Receptor concentrations then declined on Day 3 after oestrus in myometrium and on Day 5 in endometrium. Some cyclic animals did not show the expected rise in receptors in the late luteal phase; these animals had abnormally high progesterone concentrations for this stage of the cycle. In animals slaughtered on Day 18 after oestrus and/or insemination which had low oxytocin receptor levels, plasma progesterone concentrations were consistently high; while all animals showing the late luteal phase elevation in receptor values had low progesterone concentrations. Oxytocin receptor and progesterone concentrations were negatively correlated (P less than 0.05). These data support the hypothesis that oxytocin receptor level is a key factor in the process of luteolysis in cattle and that in pregnancy there is suppression of uterine oxytocin receptor at the expected time of luteolysis. We suggest that uterine oxytocin receptor levels are partly controlled by circulating steroid hormones and are suppressed during early pregnancy.  相似文献   

2.
Ovarian hormones are known to affect endocrine pancreas function. However, data concerning the effects of anovulatory menstrual cycles in regularly menstruating women on endocrine pancreas and blood metabolites are lacking. We examined plasma insulin, glucagon, glucose, lactate, urea and glycerol concentrations in reproductive-age, regularly menstruating females classified as ovulating or non-ovulating on the basis of basal body temperature measurements and plasma 17beta-estradiol and progesterone determinations. All measurements were performed twice--in the follicular and again in the luteal phases of the menstrual cycle. There were no differences in plasma lactate and glycerol concentrations between the two groups of subjects. Plasma insulin concentrations tended to be lower in non-ovulating than in ovulating women. In addition, plasma glucagon did not differ in the follicular (33.2 pmol/l) or luteal phase of the menstrual cycle in females with disturbed ovarian hormone secretion (34.1 pmol/l). In contrast, plasma glucagon concentrations in the luteal phase (32.8 pmol/l) were significantly higher than in the follicular phase (24.9 pmol/l) of the menstrual cycle in ovulating women. Plasma glucose concentrations in the follicular phase of the menstrual cycle in non-ovulating women (4.1 mmol/l) were slightly but significantly lower than in their ovulating counterparts (5.3 mmol/l). Furthermore, no correlations were noted between plasma glucose and insulin-to-glucagon molar ratio in non-ovulating subjects. Plasma urea concentrations in non-ovulating women were markedly lower than in ovulating women in both follicular and luteal phases of the menstrual cycle (4.1 and 3.9 mmol/l vs. 5.3 and 5.4 mmol/l in non-ovulating and ovulating women, respectively). In ovulating women, plasma urea levels in both cycle phases were significantly correlated with plasma glucagon concentrations, but no such correlation was found in non-ovulating women. In conclusion, anovulatory menstrual cycles in premenopausal females slightly altered pancreatic hormone plasma levels but markedly impaired their action on plasma glucose and urea concentrations.  相似文献   

3.
The effects of oxytocin on the biochemical pathways of glucose oxidation were investigated in the rat uterus. In the presence of oxytocin, glucose oxidation in uterine segments obtained from Sprague-Dawley rats at diestrus increased 1.5–2.0-fold above the basal rate. A half-maximal response was observed at about 3 nM oxytocin; the maximum response was equal to or greater than the response to 1.7 nM insulin. In stripped myometrial segments (denuded of the endometrial component), oxytocin stimulated glucose oxidation at estrus only; whereas in intact uterine segments, the stimulation of oxidation was observed at both estrus and diestrus. In contrast, stimulation of oxidation by carbachol in stripped myometrial segments was independent of the estrous state of the tissue. The ratio of [1-14C]glucose to [6-14C]glucose oxidation was measured to estimate the relative involvement of the pentose phosphate and the tricarboxylic acid pathways of metabolism. In myometrial tissue, stimulation of glucose oxidation by oxytocin appeared to proceed through the tricarboxylic acid cycle. In intact uterine segments, at diestrus, glucose oxidation involved largely the pentose phosphate pathway (suggesting increased glucose metabolism in endometrial tissue), whereas at estrus, in the intact tissue segments, oxytocin increased glucose oxidation largely via the tricarboxylic acid cycle, and appeared to do so predominantly in the myometrial tissue. Carbachol-stimulated glucose oxidation appeared to proceed mainly via the tricarboxylic cycle in the myometrial tissue, irrespective of the stage of the estrous cycle. In the uterus of the Brattleboro rat (either intact uterine segments or stripped myometrial strips), oxytocin stimulated glucose oxidation only at estrus, predominantly through the tricarboxylic acid cycle. These findings suggest that oxytocin, in addition to its known effect on the contractility of uterine and myoepithelial smooth muscle, may regulate glucose metabolism in both the myometrial and endometrial components of uterine tissue.  相似文献   

4.
In order to further identify physiological similarities between 17β-hydroxysteroid dehydrogenase (HSD) in human and monkey endometrium, and to evaluate the role of estradiol-17β (E2) oxidation to estrone (E1) during periimplantation events, 30 rhesus monkeys were studied at different intervals of the nonfertile menstrual cycle (days 8, 12, 15, 18 and 24). Also, five pregnant monkeys provided endometrial tissue on day 24 of the fertile menstrual cycle, near the expected time of implantation. HSD activity in endometrium was low at midfollicular phase (day 8), increased to maximal levels (8-fold) during the periovulatory span (days 12 and 15),and was intermediate in mid to late luteal phase (days 18 and 24) in non-fertile menstrual cycles. In the absence of ovulation, HSD was low throughout. These enzyme data fit with a pattern of daily peripheral serum levels of E2 and progesterone (P) and suggest that when the normal sequence of P follows elevated estrogens in late follicular phase, HSD activity is markedly enhanced in the early luteal phase. However, HSD activity in endometrium did not increase more in the fertile menstrual cycle, despite further elevations of serum P during rescue of the corpus luteum.  相似文献   

5.
To determine the physiological significance of tumor necrosis factor alpha (TNFalpha) in the regulation of luteolytic prostaglandin (PG) F(2alpha) release by the bovine endometrium, the effect of TNF-alpha on PGF(2alpha) output by the endometrial tissues in vitro was investigated and compared with the effect of oxytocin (OT). Furthermore, the presence of specific receptors for TNFalpha in the bovine endometrium during the estrous cycle was determined. Endometrial slices (20-30 mg) taken from six stages of the estrous cycle (estrus: Day 0; early I: Days 2-3; early II: Days 5-6; mid-: Days 8-12; late: Days 15-17; and follicular: Days 19-21), as determined by macroscopic examination of the ovaries and uterus, were exposed to TNFalpha (0.06-6 nM) and/or OT (100 nM). OT stimulated PGF(2alpha) output at the follicular stage and at estrus (P < 0.001), but not at the late luteal stage. On the other hand, the stimulatory effects of TNFalpha on PGF(2alpha) output were observed not only at the follicular stage but also at the late luteal stage (P < 0.001). When the endometrial tissues at late luteal stage were simultaneously exposed to TNFalpha (0.6 nM) and OT (100 nM), the stimulatory effect on PGF(2alpha) output was higher than the effect of TNFalpha or OT alone (P < 0.05). Specific binding of TNFalpha to the bovine endometrial membranes was observed throughout the estrous cycle. The concentration of TNF-alpha receptor at the early I luteal stage was less than the concentrations at other luteal stages (P < 0.01). The dissociation constant (K(d)) values of the endometrial membranes were constant during the estrous cycle. The overall results lead us to hypothesize that TNFalpha may be a trigger for the output of PGF(2alpha) by the endometrium at the initiation of luteolysis in cattle.  相似文献   

6.
We sampled the reproductive tracts of 27 cynomolgus macaques during the menstrual cycle and correlated the cytologic changes in the oviductal epithelium with changes in the serum levels of estradiol (E2) and progesterone (P) and with the histology of the ovaries and the endometria. We identified an orderly sequence of changes in the oviductal epithelium from the early follicular to the late luteal phase, and we classified this sequence into eight stages, named as follows: preciliogenic, ciliogenic, ciliogenic-ciliated, ciliated-ciliogenic, ciliated-secretory, early regression, late regression and full regression. The preciliogenic and ciliogenic phases were coincident with menses and the early follicular phase. The ciliogenic-ciliated, ciliated-ciliogenic and ciliated-secretory phases during which the oviductal epithelium became progressively more differentiated were coincident, respectively, with the midfollicular, late follicular and periovulatory phases of the cycle. The early, late and full regression stages during which the epithelium became progressively more atrophied, deciliated and nonsecretory were coincident, respectively, with the early, mid and late luteal phases of the cycle. The cyclic changes in the endometrium of cynomolgus macaques were similar to those reported for the rhesus macaque.  相似文献   

7.
To characterize plasma estradiol, LH and FSH patterns of secretion during the bitch estrous cycle, blood samples were obtained daily from 15 days before until 135 days after the LH surge in 10 pregnant and 10 nonpregnant beagle bitches. After an initial increase between days 15 and 10 and an expected proestrous peak, estradiol concentrations increased again from days 9-12 (corresponding to cytological metestrus) from basal values observed around day 9 after the LH surge, and remained significantly elevated throughout the luteal phase both in pregnant and nonpregnant animals. Concomitantly with the end of the luteal phase, plasma concentrations of estradiol returned to basal values in both groups. During the mid- to late-luteal phase, mean basal LH secretion was significantly elevated throughout in the pregnant relative to the nonpregnant animals. However, in nonpregnant animals, pulsatility was increased and peaks of higher amplitude were observed. The plasma FSH profiles, determined by a specific homologous RIA, differed significantly between pregnant and nonpregnant bitches during the last two-thirds of the luteal phase with a mean FSH level more elevated during pregnancy. The FSH level then decreased around parturition and low concentrations during lactation period were observed. The FSH concentrations remained steady in nonpregnant luteal phases from early luteal phase through mid-anestrus. The differences in pregnant and nonpregnant LH and FSH concentrations suggest pregnancy differences in regulation of the corpus luteum. Finally, the elevated estradiol concentrations observed during the luteal phase of both pregnant and nonpregnant animals suggest that an ovarian production of estrogens may be involved in overall corpus luteum regulation in dogs as in other species.  相似文献   

8.
To determine the physiological significance of tumor necrosis factor-alpha (TNFalpha) in the regulation of endometrial prostaglandin (PG) release in cattle, we investigated the effects of TNFalpha on the secretion of PGE2 and PGF2alpha by bovine endometrium during the estrous cycle. Bovine uteri were classified into six stages (estrus: Day 0, early luteal 1: Days 2 to 3, early luteal 11: Days 5 to 6, mid-luteal: Days 8 to 12, late luteal: Days 15 to 17 and follicular: Days 19 to 21). After 1 h of pre-incubation, endometrial tissues (20 to 30 mg) were exposed to 0 or 0.6 nM TNFalpha for 4 h. The PGE2 concentrations in the medium were higher in the luteal stages than in the follicular stage and in estrus. In contrast, PGF2alpha concentrations were higher in the follicular stage and in estrus than in the luteal stages. The ratio of the basal concentrations of PGE2 and PGF2alpha (PGE2/PGF2alpha ratio) was higher in the luteal stages than in the follicular stage and in estrus. Although TNFalpha stimulated both PGE2 and PGF2alpha secretion during the entire period of the estrous cycle, the level of stimulation of TNFalpha on PGE2 output by the bovine endometrium does not show the same cyclical changes as that shown on PGF2alpha output. The stimulation of TNFalpha resulted in a decrease in the PGE2/PGF2alpha ratio only in the late luteal stage. Furthermore, TNFalpha stimulated PGE2 secretion in stromal, but not epithelial cells. The overall results suggest that TNFalpha is a potent regulator of endometrial PGE2 secretion as well as PGF2alpha secretion during the entire period of estrous cycle, and that TNFalpha plays different roles in the regulation of secretory function of bovine endometrium at different phases of the estrous cycle.  相似文献   

9.
In order to elucidate the relationship between prolactin (PRL) levels and corpus luteum function in humans, assessment of temporal relationship between levels of PRL, LH, FSH, estradiol and progesterone was made in eleven normal cycling women and six short luteal women. All hormones were determined by specific radioimmunoassay. The mean PRL level in the luteal phase was higher than that in the follicular phase in normal women. On the other hand, no difference mean was seen between the PRL levels of follicular and luteal phases in short luteal women. In addition, follicular and luteal phase secretion of PRL in the short luteal phase (SLP) was lower than that in the normal control. LH and FSH in the follicular and luteal phases, estradiol secretion in the late follicular and early to mid-luteal phases in SLP were also lower than those in the control. These observations were consistent with the hypothesis that SLP is a sequel to aberrant folliculogenesis. In addition, it is inferred that low PRL levels in the SLP might be due to inadequate augmentation by estrogen, rather than giving PRL any positive controlling role in the maintenance of corpus luteum function.  相似文献   

10.
The mechanism for the development of insulin resistance in normal pregnancy is complex and is associated with serum levels of sex hormones. However, the influence of these hormones on the early steps of insulin action has not been extensively studied, although the potentially beneficial effect of estradiol on glucose homeostasis has been reported. In this paper, we attempted to determine the effect of 17-beta-estradiol on the insulin receptor of ovariectomized rats treated with different doses of hormones. Our results showed a tissue-dependent response to estradiol. We found that low doses of estradiol increased the amount of insulin receptors in liver and muscle on days 6 and 11 of treatment but not in adipose tissue, and after 16 days only the muscle responsed in this way. On the other hand, high doses of estradiol significantly decreased the amount of insulin receptors, at least in muscle and adipose tissue. We believe that the low concentrations of 17-beta-estradiol (similar to early pregnancy) could be responsible for the increase in insulin sensitivity by increasing the amount of insulin receptors in peripheral tissues. When the hormone levels were high (similar to late pregnancy) the amount of insulin receptors decreased in peripheral tissues, and insulin sensitivity is diminished just as in late pregnancy. The specific molecular mechanism for this action is as yet unknown.  相似文献   

11.
Oxytocin (OT) is involved in the regulation of luteolysis in pigs. However, it is still not clear if OT is responsible for initiation of luteal regression in this species. The objectives of the study were: (1) to compare OT receptors (OTr) concentrations in endometrium and myometrium of cyclic and early pregnant pigs, (2) to examine the effect of OT on plasma PGF(2)alpha secretion during the progressive luteal regression, (3) to ascertain the effect of OT on inositol phosphates (IPs) accumulation in endometrial and myometrial cells of cyclic and early pregnant pigs. Concentrations of OTr on the endometrium and myometrium of cyclic (n = 33) (days 2-4; 11-13; 14-16; 18-20; day 21) and early pregnant (n = 4) (days 14-16) gilts were determined and they ranged from 7 +/- 3 (days 11-13) to 377 +/- 113 fmol/mg protein (day 21) in the endometrium and from 33 +/- 11 (days 2-4) to 167 +/- 28 fmol/mg protein (days 18-20) in the myometrium. In both tissues, concentrations of OTr were low during the luteal phase and increased (P < 0.01) during the follicular phase. In contrast to myometrial OTr, endometrial OTr during pregnancy were undetectable. In next experiment, mature gilts (n = 12) were injected with OT (20IU; i.v.) for three consecutive days starting on days 14 and 15 of the oestrous cycle and plasma PGF(2)alpha metabolite-13,14-dihydro-16-keto PGF(2)alpha (PGFM) concentration was determined. On days 15-16 and 16-17, OT increased plasma PGFM level. This effect was not observed on days 14-15 of the estrous cycle. A negative correlation was noticed between plasma concentrations of PGFM and progesterone (r = -0.3; P < 0.05). In last experiment, OT (100 nM) augmented (P < 0.01) an accumulation of inositol phosphates (IPs) in isolated myometrial cells on days 14-16 (n = 4) and 18-20 (n = 3) of the estrous cycle and on days 14-16 (n = 4) of pregnancy. Oxytocin-stimulated accumulation of IPs was not observed in endometrial cells. In summary: (1) concentrations of OTr on both the endometrium and myometrium were the highest during perioestrus-period in pigs, (2) myometrium of early pregnant sows possessed functional OTr, (3) oxytocin increased plasma PGFM concentration after initiation of luteolysis; and (4) OT-stimulated accumulation of IPs in myometrial, but not in endometrial cells. In conclusion, OT appears to not be involved in the initiation of luteal regression in sows and functional OTr are still present in the myometrium during early pregnancy (days 14-16).  相似文献   

12.
Tumour-promoting phorbol esters have insulin-like effects on glucose transport and lipogenesis in adipocytes and myocytes. It is believed that insulin activates the glucose-transport system through translocation of glucose transporters from subcellular membranes to the plasma membrane. The aim of the present study was to investigate if phorbol esters act through the same mechanism as insulin on glucose-transport activity of rat adipocytes. We compared the effects of the tumour-promoting phorbol ester tetradecanoylphorbol acetate (TPA) and of insulin on 3-O-methylglucose transport and on the distribution of D-glucose-inhibitable cytochalasin-B binding sites in isolated rat adipocytes. Insulin (100 mu units/ml) stimulated 3-O-methylglucose uptake 9-fold, whereas TPA (1 nM) stimulated the uptake only 3-fold (mean values of five experiments, given as percentage of equilibrium reached after 4 s: basal 7 +/- 1.3%, insulin 60 +/- 3.1%, TPA 22 +/- 2.3%). In contrast, both agents stimulated glucose-transporter translocation to the same extent [cytochalasin B-binding sites (pmol/mg of protein; n = 7): plasma membranes, basal 6.2 +/- 1.0, insulin 13.4 +/- 2.0, TPA 12.7 +/- 2.7; low-density membranes, basal 12.8 +/- 2.1, insulin 6.3 +/- 0.9, TPA 8.9 +/- 0.7; high-density membranes, 6.9 +/- 1.1; insulin 12.5 +/- 1.0, TPA 8.1 +/- 0.9]. We conclude from these data: (1) TPA stimulates glucose transport in fat-cells by stimulation of glucose-carrier translocation; (2) insulin and TPA stimulate the carrier translocation to the same extent, whereas the stimulation of glucose uptake is 3-fold higher with insulin, suggesting that the stimulatory effect of insulin on glucose-transport activity involves other mechanisms in addition to carrier translocation.  相似文献   

13.
This work investigates the estrogenic role of the dominant follicle with regard to regulation of plasma FSH and LH concentration. Eight Holstein-Friesian cows were used for aspiration of the dominant follicle using ultrasound guidance during the early, mid and late stages of the luteal phase. Blood samples were collected at 15-min intervals from 4 h before until 7 h after aspiration. Plasma progesterone concentration increased from 0.7 to 7.2 ng mL-1 from early to mid luteal phase and then fell slightly to 5.9 ng mL-1 in the late luteal phase, but remained unaffected by follicle puncture. The follicular aspirate contained a thousandfold higher estradiol, than plasma concentration but its estradiol:progesterone ratio remained at around 2 at each stage of the luteal phase. Aspiration caused plasma estradiol concentration to fall from 1.4 to 0.7, 1.8 to 1.0 and 1.7 to 0.8 pg mL-1 in the early, mid and late stages of the luteal phase, respectively (P < 0.05). At the same time, mean plasma FSH concentration was increased from 1.1 to 1.8, 1.7 to 2.9 and 0.8 to 1.9 ng mL-1 (P < 0.05), respectively. The results suggest that estradiol secreted from dominant follicles selectively regulates gonadotropin secretion, since aspiration of the dominant follicle at any stage of the cycle affected circulating FSH but did not appear to influence the mean LH concentration.  相似文献   

14.
Ovarian tissues were obtained from cyclic goats during the early, mid and late breeding season. Immunoreactive oxytocin was measured by RIA in tissue extracts after chromatography on octadecylsilica cartridges. Luteal oxytocin concentrations were significantly greater during the early breeding season than during the mid or late breeding season. Oxytocin is luteolytic in goats. High concentrations of luteal oxytocin may be related to the high incidence of short estrus at the onset of the breeding season.  相似文献   

15.
Slices of porcine endometrium and corpus luteum tissue obtained from mature sows throughout the luteal phase of the oestrous cycle were incubated in culture medium which was analysed at regular intervals over a period of 8 hours for prostaglandin F and progesterone. Prostaglandin F secretion was greatest by endometrium obtained during the mid III to late I luteal stage of the cycle and the increased levels secreted by this tissue were paralleled by high levels of secretion from corpus luteum tissue. The addition of indomethacin (10 μg/ml) to the culture medium completely abolished prostaglandin F secretion by both endometrium and luteal tissue indicating that the high levels of the prostaglandin were due to synthesis. Progesterone secretion by the corpus luteum was maximal from early luteal tissue and had declined to considerably lower levels by late stage tissue when prostaglandin secretion was greatest. The possible physiological significance of luteal prostaglandin F secretion is discussed.  相似文献   

16.
Bovine ovaries were obtained from the abattoir and corpora lutea were classified as: (1) early luteal phase (approximately Days 1-4); (2) mid-luteal phase (Days 5-10); (3) late luteal phase (Days 11-17); (4) regressing (Days 18-20) and (5) pregnant (Days 90-230). In addition, preovulatory follicles and whole ovaries without luteal tissue were collected. Concentrations of oxytocin, vasopressin, bovine neurophysin I and progesterone were measured in each corpus luteum by radioimmunoassay. Progesterone and neurophysin I levels increased from Stage 1 to Stage 2, plateaued during Stage 3 and declined by Stage 4. Oxytocin and vasopressin concentrations increased from Stage 1 to Stage 2 but declined during Stage 3 and were low (oxytocin) or undetectable (vasopressin) in follicles, whole ovaries and pregnancy corpora lutea. Therefore the concentrations of both peptide hormones were maximal during the first half of the cycle and declined before those of progesterone. The high concentration of oxytocin within the corpus luteum coupled with the presence of bovine neurophysin I suggests that oxytocin is synthesized locally.  相似文献   

17.
In the present study, changes in the immunohistochemical localization of endometrial estrogen receptor (ER) and progesterone receptor (PR) during various stages of the ovarian cyclicity in common marmoset, have been reported. Ovarian cyclicity was monitored by estimating plasma estradiol and progesterone. During the early follicular phase, weak ER immunolocalization was observed in the endometrial stroma. During the late follicular phase under the influence of rising estradiol levels, stromal ER localization was intense. During the luteal phase, ER localization was absent in the stroma indicating that high concentrations of progesterone suppressed ER. PR localization was not observed in the stroma during the early follicular phase, while weak staining was seen in the stroma during the late follicular phase. PR localization was maximum during the mid luteal phase. However in marmoset, endometrial ER and PR localization was restricted only to the stroma. This unique feature may be due to the characteristic reproductive profile of this nonmenstruating species and needs to be studied further. Thus it can be hypothesized that in the marmoset endometrium, steroid hormone mediated effects possibly occur directly in the stroma and are then transmitted to the epithelium by autocrine/paracrine action of growth factors and cytokines.  相似文献   

18.
The present study establishes and validates an in vitro binding and exchange assay for tissue receptors for oestradiol (E) and progesterone (P) in pig uterus. Both hormones bound to specific cytoplasmic (Rc) and nuclear (Rn) receptor proteins with high affinity. The relative concentrations of the receptors were measured in dissected samples from endometrium and myometrium obtained at late prooestrus, oestrus, and luteal phases of the oestrous cycle. The Scatchard analysis of the oestradiol and R 5020-receptor complex displayed linearity and indicated a single class of high affinity, low capacity binding sites. Significant variations were seen in the binding of E and P to their cytosolic and nuclear receptors, following the changes in the circulating levels of the hormones in blood plasma during the oestrous cycle. Both tissue components, i.e. endometrium and myometrium followed a similar pattern when related to the stage of the oestrous cycle considered. The ERc increased from prooestrus, reaching a maximum at standing oestrus, thereafter decreasing. The concentration of ERn increased from prooestrus towards the early luteal phase, with a significant reduction by day 8 of the cycle. The amounts of PRc were maximal at standing oestrus, remaining high during the early luteal phase, while the PRn showed a linear increase from oestrus onwards throughout the luteal phase.  相似文献   

19.
The effect of insulin-like growth factors (IGFs) and insulin on the release of progesterone and oxytocin from bovine corpus luteum was investigated at early (days 5-7), mid- (days 8-12) and late (days 15-18) luteal phases of the oestrous cycle in an in vitro microdialysis system. The expression of specific receptors was evaluated in bovine corpora lutea of the respective luteal stages. A 30 min infusion of IGF-1, IGF-2 (1.3, 13 and 130 nmol l-1) or insulin (13, 130 and 1300 nmol l-1) caused a stimulation of the release of progesterone (P < 0.05). IGF-1 was most effective in releasing progesterone. Oxytocin release from corpora lutea was stimulated by insulin at all doses tested (13-1300 nmol l-1), whereas the IGFs were only effective at the highest dose (130 nmol l-1) applied. The high doses of IGFs (130 nmol l-1) and insulin (1300 nmol l-1) stimulated the release of progesterone and oxytocin throughout the luteal phase (P < 0.05). For all three peptides, greatest stimulation was seen during the late luteal phase (days 15-18 of the oestrous cycle) with the peak of progesterone release directly related to peptide infusion (P < 0.05). In addition, IGF-1 stimulated total release of progesterone (units in 4 h) after the beginning of the stimulation during this phase (P < 0.05). IGF-1 caused a gradual increase of progesterone even beyond the time of peptide perfusion, whereas IGF-2 and insulin stimulated progesterone release only during the peptide perfusion. Distinct receptors for IGF-1 and IGF-2 were present in corpora lutea membrane preparations at all stages investigated. Specific binding for insulin was also seen in all stages of the cycle without any cycle-dependent changes in the amount of binding. The displacement of labelled insulin by unlabelled IGF-1 and IGF-2 did not show the rank of order that has been described as typical for insulin receptors (i.e. insulin > IGF-1 > IGF-2), but comparable binding affinities were observed for the three unlabelled ligands. Specific binding of IGF-2 was markedly higher than that of IGF-1 or insulin throughout the cycle (1.9- and 4.9-fold higher compared with IGF-1 and insulin, respectively). Receptor specificity did not change during luteal development. Binding affinity and capacity of IGF-1 receptor was constant throughout the oestrous cycle. Specific IGF-2 binding increased and showed a positive co-operativity towards the end of the cycle. Specific binding of insulin was not significantly different in the three luteal stages examined.  相似文献   

20.
A radioimmunoassay for 5-androstene-3 beta, 17 beta-diol (ADIOL) in human endometrium and plasma is described. The recognised criteria of reliability have been fulfilled. Plasma and endometrial tissue concentrations of ADIOL were determined in samples obtained from normal premenopausal and perimenopausal women (average ages 37 and 48 years respectively) at different phases of the menstrual cycle. In perimenopausal women plasma concentrations of ADIOL did not vary throughout the cycle (proliferative phase: 411 +/- 95 (SEM) pg/ml; secretory phase: 462 +/- 28.5 (SEM) pg/ml). For the premenopausal group the pattern was similar (proliferative phase: 568.4 +/- 56.9 (SEM) pg/ml; secretory phase: 663.1 +/- 64.7 (SEM) pg/ml) although a significant difference (P less than 0.05) was noted between late proliferative and late secretory phase levels in these women. A different pattern was observed for endometrial tissue concentrations of ADIOL. In both groups of women a significant (3-4-fold) increase occurred during the secretory phase. There was no apparent relationship between plasma and tissue concentrations of ADIOL either during the proliferative or the secretory phase. There was, however, an age associated decrease for both tissue and plasma ADIOL. Theories are proposed to account for the increase in ADIOL concentration during the luteal phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号