首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrous oxide fluxes and soil nitrogen transformations were measured in experimentally-treated high elevation Douglas-fir forests in northwestern New Mexico, USA. On an annual basis, forests that were fertilized with 200 kg N/ha emitted an average of 0.66 kg/ha of N2O-N, with highest fluxes occurring in July and August when soils were both warm and wet. Control, irrigated, and woodchip treated plots were not different from each other, and annual average fluxes ranged from 0.03 to 0.23 kg/ha. Annual net nitrogen mineralization and nitrate production were estimated in soil and forest floor usingin situ incubations; fertilized soil mineralized 277 kg ha−1 y−1 in contrast to 18 kg ha−1 y−1 in control plots. Relative recovery of15NH4-N applied to soil in laboratory incubations was principally in the form of NO3-N in the fertilized soils, while recovery was mostly in microbial biomass-N in the other treatments. Fertilization apparently added nitrogen that exceeded the heterotrophic microbial demand, resulting in higher rates of nitrate production and higher nitrous oxide fluxes. Despite the elevated nitrous oxide emission resulting from fertilization, we estimate that global inputs of nitrogen into forests are not currently contributing significantly to the increasing concentrations of nitrous oxide in the atmosphere.  相似文献   

2.
From spring 2000 through fall 2001, we measured nitric oxide (NO) and nitrous oxide (N2O) fluxes in two temperate forest sites in Massachusetts, USA that have been treated since 1988 with different levels of nitrogen (N) to simulate elevated rates of atmospheric N deposition. Plots within a pine stand that were treated with either 50 or 150 kg N ha?1 yr?1 above background displayed consistently elevated NO fluxes (100–200 µg N m?2 h?1) compared to control plots, while only the higher N treatment plot within a mixed hardwood stand displayed similarly elevated NO fluxes. Annual NO emissions estimated from monthly sampling accounted for 3.0–3.7% of N inputs to the high‐N plots and 8.3% of inputs to the Pine low‐N plot. Nitrous oxide fluxes in the N‐treated plots were generally < 10% of NO fluxes. Net nitrification rates (NRs) and NO production rates measured in the laboratory displayed patterns that were consistent with field NO fluxes. Total N oxide gas flux was positively correlated with contemporaneous measurements of NR and concentration. Acetylene inhibited both nitrification and NO production, indicating that autotrophic nitrification was responsible for the elevated NO production. Soil pH was negatively correlated with N deposition rate. Low levels (3–11 µg N kg?1) of nitrite () were detected in mineral soils from both sites. Kinetic models describing NO production as a function of the protonated form of (nitrous acid [HNO2]) adequately described the mineral soil data. The results indicate that atmospheric deposition may generate losses of gaseous NO from forest soils by promoting nitrification, and that the response may vary significantly between forest types under similar climatic regimes. The lowering of pH resulting from nitrification and/or directly from deposition may also play a role by promoting reactions involving HNO2.  相似文献   

3.
4.
Biofuel made from conventional (e.g., maize (Zea mays L.)) and cellulosic crops (e.g., switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus × giganteus)) provides alternative energy to fossil fuels and has been considered to mitigate greenhouse gas emissions. To estimate the large‐scale carbon and nitrogen dynamics of these biofuel ecosystems, process‐based models are needed. Here, we developed an agroecosystem model (AgTEM) based on the Terrestrial Ecosystem Model for these ecosystems. The model was incorporated with biogeochemical and ecophysiological processes including crop phenology, biomass allocation, nitrification, and denitrification, as well as agronomic management of irrigation and fertilization. It was used to estimate crop yield, biomass, net carbon exchange, and nitrous oxide emissions at an ecosystem level. The model was first parameterized for maize, switchgrass, and Miscanthus ecosystems and then validated with field observation data. We found that AgTEM well reproduces the annual net primary production and nitrous oxide fluxes of most sites, with over 85% of total variation explained by the model. Local sensitivity analysis indicated that the model sensitivity varies among different ecosystems. Net primary production of maize is sensitive to temperature, precipitation, cloudiness, fertilizer, and irrigation and less sensitive to atmospheric CO2 concentrations. In contrast, the net primary production of switchgrass and Miscanthus is most sensitive to temperature among all factors. Nitrous oxide fluxes are sensitive to management in maize ecosystems, and sensitive to climate factors in cellulosic ecosystems. The developed model should help advance our understanding of carbon and nitrogen dynamics of these biofuel ecosystems at both site and regional levels.  相似文献   

5.
Summary Emissions of nitrous oxide and soil nitrogen pools and transformations were measured over an annual cycle in two forests and one pasture in tropical deciduous forest near Chamela, México. Nitrous oxide flux was moderately high (0.5–2.5 ng cm–2 h–1) during the wet season and low (<0.3 ng cm–2 h–1) during the dry season. Annual emissions of nitrogen as nitrous oxide were calculated to be 0.5–0.7 kg ha–1 y–1, with no substantial difference between the forests and pasture. Wetting of dry soil caused a large but short-lived pulse of N2O flux that accounted for <2% of annual flux. Variation in soil water through the season was the primary controlling factor for pool sizes of ammonium and nitrate, nitrogen transformations, and N2O flux.  相似文献   

6.
Nitrous oxide reduction can consistently be demonstrated with high activities in cells of Azospirillum brasilense Sp 7 which are grown anaerobically in the presence of low amounts of nitrite. Azospirillum can even grow anaerobically with nitrous oxide in the absence of any other respiratory electron acceptor. Nitrous oxide reduction by Azospirillum is inhibited by acetylene, amytal and weakly by carbon monoxide. Azospirillum converts nitrous oxide to molecular nitrogen without the formation of ammonia. The cells must, therefore, be supplied with ammonia from nitrogen fixation during anaerobic growth with nitrous oxide. When no other nitrogen compound besides nitrous oxide is available in the medium, the bacteria synthesize nitrogenase from protein reserves in about 2 h. Nitrogenase synthesis is blocked by chloramphenicol under these conditions. In contrast, the addition of nitrate or nitrite to the medium represses the synthesis of nitrogenase. Nitrous oxide reduction by Azospirillum and other microorganisms is possibly of ecological significance, because the reaction performed by the bacteria may remove nitrous oxide from soils.  相似文献   

7.
Schroeder  F.  Klages  F.  Blöcker  G.  Vajen-Finnern  H.  Knauth  H. -D. 《Hydrobiologia》1992,235(1):545-552
Sediments of the river Elbe estuary have been studied to assess their impact on the total nitrogen budget of the estuary. A new laboratory incubation apparatus was used to provide a means of regulating important parameters such as temperature and oxygen concentrations. With this apparatus sediment cores from a typical shallow water area with high organic carbon content were incubated under varying oxygen concentrations in the overlying water. Measurements of ammonium, nitrite, nitrate and nitrous oxide in the water phase were carried out and the fluxes between sediment and water phase calculated. During aerobic conditions in the water phase overall nitrate fluxes between + 4 and –3.5 mmol Nm–2d–1 across the sediment/water interface were observed. Under anaerobic conditions the fluxes increased up to –10 mmol Nm–2 d–1. Nitrous oxide was formed within the sediment under both aerobic and anaerobic conditions. Fluxes into the water phase were highest when the oxygen concentrations in the water phase were low (between 0.1 and 0.6 mg l–1).  相似文献   

8.
Nitrous oxide reduction and nitrogen production by Pseudomonas denitrificans, as well as culture growth rates all increased 2-3 fold when cultured in the presence of perfluorocarbon emulsions (10% v/v) as compared to control cultures grown in the absence of perfluorocarbons. Initial nitrous oxide concentrations for consecutive experiments were 0.7 and 1.2 mM respectively.  相似文献   

9.
Measurements were made of nitrous oxide (N2O) emissions from N‐fertilised ungrazed grassland and arable land at sites widely distributed across Great Britain during 1999–2001. The closed static chamber method was used throughout. Emissions varied widely throughout the year at each site, and between sites. Daily fluxes up to 1200 g N2O–N ha ? 1 d ? 1 were recorded. The highest annual flux was 27.6 kg N2O–N ha ? 1 at a grassland site in Wales, whereas the lowest, 1.7 kg N2O–N ha ? 1, occurred on a soil overlying chalk in southern England. The key factors affecting N2O emissions from agricultural soil were soil WFPS, temperature and soil NO3–N content. On grassland, rainfall (particularly around the time of N application), with its consequent effect on water‐filled pore space (WFPS), was the main driving factor during the growing season. Annual emission factors (EFs), uncorrected for background emission, varied from 0.4 to 6.5% of the nitrogen (N) applied, covering a similar range for grassland to that found previously for sites restricted to Scotland. Continued monitoring at a grassland reference site near Edinburgh showed that annual EFs vary greatly from year to year, even with similar management, and that several years' data are required to produce a robust mean EF. The overall distribution of EFs in this and previous studies was log‐normal. The EFs for small‐grain cereals (and oilseed rape) peaked at a much lower value than those for grassland, whereas the values for leafy vegetables and potato crops fitted well into the grassland distribution. These differences in EF between various types of crop should be taken into account when compiling regional or national N2O emission inventories.  相似文献   

10.
The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region of Puerto Rico. Fluxes of N2O and NO were measured monthly for over 1 year in old (more than 60 years old) pastures, early- and mid-successional forests previously in pasture, and late-successional forests not known to have been in pasture within the tabonuco (Dacryodes excelsa) forest zone. Additional, though less frequent, measures were also made in an experimentally fertilized tabonuco forest. N2O fluxes exceeded NO fluxes at all sites, reflecting the consistently wet environment. The fertilized forest had the highest N oxide emissions (22.0 kg N · ha−1· y−1). Among the unfertilized sites, the expected pattern of increasing emissions with stand age did not occur in all cases. The mid-successional forest most dominated by leguminous trees had the highest emissions (9.0 kg N · ha−1· y−1), whereas the mid-successional forest lacking legumes had the lowest emissions (0.09 kg N · ha−1· y−1). N oxide fluxes from late-successional forests were higher than fluxes from pastures. Annual N oxide fluxes correlated positively to leaf litter N, net nitrification, potential nitrification, soil nitrate, and net N mineralization and negatively to leaf litter C:N ratio. Soil ammonium was not related to N oxide emissions. Forests with lower fluxes of N oxides had higher rates of C mineralization than sites with higher N oxide emissions. We conclude that (a) N oxide fluxes were substantial where the availability of inorganic N exceeded the requirements of competing biota; (b) species composition resulting from historical land use or varying successional dynamics played an important role in determining N availability; and (c) the established ecosystem models that predict N oxide loss from positive relationships with soil ammonium may need to be modified. Received 22 February 2000; accepted 6 September 2000.  相似文献   

11.
Soil nitrogen transformations and nitrous oxide fluxes were measured in a range of sagebrush steppe ecosystems in south-central Wyoming. Net nitrate production, measured in laboratory incubations, was highest in the ecosystem type dominated by Artemisia tridentata ssp. vaseyana, especially early in the growing season. Fluxes of nitrous oxide, measured in closed chambers and analyzed by gas chromatography, also tended to be higher in the same type, but only for short periods in the spring. Thereafter, all nitrous oxide fluxes were low and did not differ consistently among types. Estimated average annual fluxes for three Artemisia ecosystem types (dominated by Artemisia tridentata ssp. vaseyana, Artemisia tridentata ssp. wyomingensis, and Artemisia nova) were 0.32, 0.23 and 0.13 kg N2O-N ha–1 y–1 repsectively. Average annual flux, weighted by the areal extent of these and other vegetation types in the region, was approximately 0.21 kg N2O-N ha–1y–1. Assuming this landscape is representative of sagebrush steppe, we calculate a flux of 9.5 × 109 g y–1 of N2O-N from U.S. sagebrush steppe, and a flux of 1.1 × 1011 g y–1 of N20-N from analogous desert and semi-desert shrublands of the world.  相似文献   

12.
Row‐crop agriculture is a major source of nitrous oxide (N2O) globally, and results from recent field experiments suggest that significant decreases in N2O emissions may be possible by decreasing nitrogen (N) fertilizer inputs without affecting economic return from grain yield. We tested this hypothesis on five commercially farmed fields in Michigan, USA planted with corn in 2007 and 2008. Six rates of N fertilizer (0–225 kg N ha?1) were broadcast and incorporated before planting, as per local practice. Across all sites and years, increases in N2O flux were best described by a nonlinear, exponentially increasing response to increasing N rate. N2O emission factors per unit of N applied ranged from 0.6% to 1.5% and increased with increasing N application across all sites and years, especially at N rates above those required for maximum crop yield. At the two N fertilizer rates above those recommended for maximum economic return (135 kg N ha?1), average N2O fluxes were 43% (18 g N2O–N ha?1 day?1) and 115% (26 g N2O–N ha?1 day?1) higher than were fluxes at the recommended rate, respectively. The maximum return to nitrogen rate of 154 kg N ha?1 yielded an average 8.3 Mg grain ha?1. Our study shows the potential to lower agricultural N2O fluxes within a range of N fertilization that does not affect economic return from grain yield.  相似文献   

13.
The first full greenhouse gas (GHG) flux budget of an intensively managed grassland in Switzerland (Chamau) is presented. The three major trace gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured with the eddy covariance (EC) technique. For CO2 concentrations, an open‐path infrared gas analyzer was used, while N2O and CH4 concentrations were measured with a recently developed continuous‐wave quantum cascade laser absorption spectrometer (QCLAS). We investigated the magnitude of these trace gas emissions after grassland restoration, including ploughing, harrowing, sowing, and fertilization with inorganic and organic fertilizers in 2012. Large peaks of N2O fluxes (20–50 nmol m?2 s?1 compared with a <5 nmol m?2 s?1 background) were observed during thawing of the soil after the winter period and after mineral fertilizer application followed by re‐sowing in the beginning of the summer season. Nitrous oxide (N2O) fluxes were controlled by nitrogen input, plant productivity, soil water content and temperature. Management activities led to increased variations of N2O fluxes up to 14 days after the management event as compared with background fluxes measured during periods without management (<5 nmol m?2 s?1). Fluxes of CO2 remained small until full plant development in early summer 2012. In contrast, methane emissions showed only minor variations over time. The annual GHG flux budget was dominated by N2O (48% contribution) and CO2 emissions (44%). CH4 flux contribution to the annual budget was only minor (8%). We conclude that recently developed multi‐species QCLAS in an EC system open new opportunities to determine the temporal variation of N2O and CH4 fluxes, which further allow to quantify annual emissions. With respect to grassland restoration, our study emphasizes the key role of N2O and CO2 losses after ploughing, changing a permanent grassland from a carbon sink to a significant carbon source.  相似文献   

14.
Over the past three decades, Narragansett Bay has undergone various ecological changes, including significant decreases in water column chlorophyll a concentrations, benthic oxygen uptake, and benthic nutrient regeneration rates. To add to this portrait of change, we measured the net flux of N2 across the sediment–water interface over an annual cycle using the N2/Ar technique at seven sites in the bay for comparison with measurements made decades ago. Net denitrification rates ranged from about 10–90 μmol N2–N m?2 h?1 over the year. Denitrification rates were not significantly different among sites and had no clear correlation with temperature. Net nitrogen fixation (?5 to ?650 μmol N2–N m?2 h?1) was measured at three sites and only observed in summer (June–August). Neither denitrification nor nitrogen fixation exhibited a consistent relationship with sediment oxygen demand or with fluxes of nitrite, nitrate, ammonium, total dissolved inorganic nitrogen, or dissolved inorganic phosphate across all stations. In contrast to the mid-bay historical site where denitrification rates have declined, denitrification rates in the Providence River Estuary have not changed significantly over the past 30 years.  相似文献   

15.
This paper presents a new algorithm, Nitrous Oxide Emission (NOE) for simulating the emission of the greenhouse gas N2O from agricultural soils. N2O fluxes are calculated as the result of production through denitrification and nitrification and reduction through the last step of denitrification. Actual denitrification and nitrification rates are calculated from biological parameters and soil water‐filled pore space, temperature and mineral nitrogen contents. New suggestions in NOE consisted in introducing (1) biological site‐specific parameters of soil N2O reduction and (2) reduction of the N2O produced through nitrification to N2 through denitrification. This paper includes a database of 64 N2O fluxes measured on the field scale with corresponding environmental parameters collected from five agricultural situations in France. This database was used to test the validity of this algorithm. Site per site comparison of simulated N2O fluxes against observed data leads to mixed results. For 80% of the tested points, measured and simulated fluxes are in accordance whereas the others resulted in an important discrepancy. The origin of this discrepancy is discussed. On the other hand, mean annual fluxes measured on each site were strongly correlated to mean simulated annual fluxes. The biological site‐specific parameter of soil N2O reduction introduced into NOE appeared particularly useful to discriminate the general level of N2O emissions from site to site. Furthermore, the relevance of NOE was confirmed by comparing measured and simulated N2O fluxes using some data from the US TRAGNET database. We suggest the use of NOE on a regional scale in order to predict mean annual N2O emissions.  相似文献   

16.
The importance of snow and related cryospheric processes as an ecological factor has been recognized since at least the beginning of the twentieth century. Even today, however, many observations remain anecdotal. The research to date on cold-lands ecosystems results in scientists being unable to evaluate to what extent changes in the cryosphere will be characterized by abrupt changes in local and global biogeochemical cycles, and how these changes in seasonality may affect the rates and timing of key ecological processes. Studies of gas exchanges through snow have revealed that snow plays an important role in modulating wintertime soil biogeochemical processes, and that these can be the driving processes for gas exchange at the snow surface. Previous research has primarily focused on carbon dioxide, and resulted from episodic experiments at a number of snow-covered sites. Here we report new insights from several field sites on Niwot Ridge in the Colorado Rocky Mountains, including a dedicated snow gas flux research facility established at the 3340 m Soddie site. A novel in situ experimental system was developed at this site to continuously sample trace gases from above and within the snowpack for the duration of seasonal snow cover. The suite of chemical species investigated includes carbon dioxide, nitrous oxide, nitrogen oxides, ozone, and volatile inorganic and organic gases. Wintertime measurements have been supplemented by soil chamber experiments and eddy covariance measurements to allow assessment of the contribution of wintertime fluxes to annual biogeochemical budgets. This research has resulted in a plethora of new insight into the physics of gas transport through the snowpack, and the magnitude and the chemical and biogeochemical processes that control fluxes at the soil-snowpack and the snow-atmosphere interface. This article provides an overview of the history and evolution of this research, and highlights the findings from the ten articles that constitute this special issue.  相似文献   

17.
The fluxes of NO and NO2 between wheat canopy monoliths and the atmosphere were investigated with the dynamic chamber technique. For this purpose monoliths were dug out at different plant growth stages from a field site, transported to the institute, and placed in an environmental growth chamber. The wheat canopy monoliths were exposed over a period of four days to the average ratios of atmospheric NO2 and NO measured at the field site, i.e. NO2 concentration of about 18 mL L-1 plus NO concentration lower than 0.5 nL L-1. Under these conditions NO emission into the atmosphere and NO2 deposition into canopy monoliths was observed. Both fluxes showed diurnal variation with maximum rates during the light and minimum rates during darkness. NO2 fluxes correlated with soil temperature as well as with light intensity. NO fluxes correlated with soil temperature but not with light intensity. From the investigation performed the diurnal variation of the NO and NO2 compensation points, the maximum rates of NO and NO2 emission, and the total resistances of NO and NO2 fluxes were calculated. Under the assumption that the measured data are representative for the whole vegetation period, annual fluxes of NO and NO2 were estimated. Annual NO emission into the atmosphere amounted to 87 mg N m-2 y-1 (0.87 kg ha-1 y-1), annual NO2 deposition into canopy monoliths amounted to 1273 mg N m-2 y-1 (12.73 kg ha-1 y-1). Apparently, the uptake of atmospheric nitrogen by the wheat field from NO2 deposition is about 15 times higher than the loss of nitrogen from NO emission. It can therefore be assumed that even in rural areas wheat fields are a considerable sink for atmospheric nitrogen. The annual sink strength estimated in the present study is ca. 12 kg N ha-1 y-1. The possible origin of the NO emitted and the fate of atmospheric NO2 taken up by the wheat canopy monoliths are discussed.Preliminary results of this paper were presented at the Joint Workshop COST 611/Working Party 3 and EUROTRAC in Delft, The Netherlands (Ludwig et al., 1991).  相似文献   

18.
Urine patches are considered to be important sites for nitrous oxide (N2O) production through nitrification and denitrification due to their high concentration of nitrogen (N). The aim of the present study was to determine the microbial source and size of production of N2O in different zones of a urine patch on grassland on peat soil. Artificial urine was applied in elongated patches of 4.5 m. Four lateral zones were distinguished and sampled for four weeks using an intact soil core incubation method. Incubation of soil cores took place without any additions to the headspace to determine total N2O production, with acetylene addition to determine total denitrification (N2O+N2), and with methyl fluoride to determine the N2O produced through denitrification.Nitrous oxide production was largest in the centre and decreased towards the edge of the patch. Maximum N2O production was about 50 mg N m–2 d–1 and maximum denitrification activity was 70 mg N m–2 d–1. Nitrification was the main N2O producing process. Nitrous oxide production through denitrification was only of significance when denitrification activity was high. Total N loss through nitrification and denitrification over 31 days was 4.1 g N per patch which was 2.2% of the total applied urine-N.  相似文献   

19.
Understanding spatial variability of emissions of nitrous oxide (N2O) is essential to understanding of N2O emissions from soils to the atmosphere and in the design of statistically valid measurement programs to determine plot, farm and regional emission rates. Two afternoon, ‘snap-shot’ experiments were conducted; one in the summer and one in the autumn of 2004, to examine the statistics and soil variables affecting the spatial variability of N2O emissions at paddock scale. Small, static chambers (mini-chambers) were placed at 100 locations over an 8,100 m2 area of irrigated dairy pasture in northern Victoria, Australia. Chamber headspace was sampled for N2O and soil samples taken below each mini-chamber were analysed for soil nitrate (NO3 -), ammonium (NH4 +) and other chemical and physical properties known to affect N2O emissions. The experiments took place immediately after the sequence of grazing, urea application and irrigation. Nitrous oxide emissions and soil variables were analysed using classical statistics to investigate the effect of soil variables on N2O emissions. Geostatistics were used to investigate spatial patterns of N2O emissions and soil variables over the measurement area. Nitrous oxide emissions were extremely variable; 45–765 ng N2O–N m?2 s?1 and 20–953 ng N2O–N m?2 s?1 for the two experiments with corresponding averages of 165 and 138 ng N2O–N m?2 s?1. Nitrous oxide emissions showed spatial dependence up to 73 and 51 m for the two experiments. Nitrous oxide emissions showed significant correlation with soil nutrients in decreasing order of NO3 -, NH4 + and available-P concentrations. There was no significant correlation of N2O emissions with measured soil physical properties.  相似文献   

20.
Wetlands have an inordinate influence on the global greenhouse gas budget, but how global changes may alter wetland contribution to future greenhouse gas fluxes is poorly understood. We determined the greenhouse gas balance of a tidal marsh exposed to nine years of experimental carbon dioxide (CO2) and nitrogen (N) manipulation. We estimated net carbon (C) gain rates by measuring changes in plant and soil C pools over nine years. In wetland soils that accrete primarily through organic matter inputs, long-term measurements of soil elevation, along with soil C density, provide a robust estimate of net soil C gain. We used net soil C gain along with methane and nitrous oxide fluxes to determine the radiative forcing of the marsh under elevated CO2 and N addition. Nearly all plots exhibited a net gain of C over the study period (up to 203 g C m?2 year?1), and C gain rates were greater with N and CO2 addition. Treatment effects on C gain and methane emissions dominated trends in radiative forcing while nitrous oxide fluxes in all treatments were negligible. Though these soils experience salinities that typically suppress methane emissions, our results suggest that elevated CO2 can stimulate methane emissions, overcoming positive effects of elevated CO2 on C gain, converting brackish marshes that are typically net greenhouse gas sinks into sources. Adding resources, either CO2 or N, will likely increase “blue carbon” accumulation rates in tidal marshes, but importantly, each resource can have distinct influences on the direction of total greenhouse forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号