首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Production of the lantibiotic subtilin in Bacillus subtilis ATCC 6633 is regulated in a quorum sensing-like mechanism with subtilin acting as autoinducer and signal transduction via the subtilin-specific two-component regulation system SpaRK. Here, we report the construction and application of a subtilin reporter strain in which subtilin induced lacZ gene expression in a B. subtilis ATCC 6633 spaS gene deletion mutant is monitored and visualized by the beta-galactosidase in a chromogenic plate assay. A quantitative microtiter plate subtilin bioassay was developed and optimized. Maximal sensitivity of the system was achieved after 6 h of incubation of the reporter strain together with subtilin in a medium containing 300 mM NaCl. This sensitive and unsusceptible method was applied to identify subtilin producing B. subtilis wild type strains from both, culture collections and soil samples. The B. subtilis lantibiotic ericin S with four amino acid exchanges compared to subtilin induces the subtilin reporter strain, in contrast to the structurally closely related Lactococcus lactis lantibiotic nisin. These observations suggest a certain substrate specificity of the histidine kinase SpaK, which however, also would allow the identification of subtilin-isoform producing microorganisms.  相似文献   

2.
Lantibiotics, such as nisin and subtilin, are lanthionine-containing peptides that exhibit antimicrobial as well as pheromone-like autoinducing activity. Autoinduction is specific for each lantibiotic, and reporter systems for nisin and subtilin autoinduction are available. In this report, we used the previously reported subtilin autoinduction bioassay in combination with mass spectrometric analyses to identify the novel subtilin-like lantibiotic entianin from Bacillus subtilis subsp. spizizenii DSM 15029(T). Linearization of entianin using Raney nickel-catalyzed reductive cleavage enabled, for the first time, the use of tandem mass spectrometry for the fast and efficient determination of an entire lantibiotic primary structure, including posttranslational modifications. The amino acid sequence determined was verified by DNA sequencing of the etnS structural gene, which confirmed that entianin differs from subtilin at 3 amino acid positions. In contrast to B. subtilis ATCC 6633, which produces only small amounts of unsuccinylated subtilin, B. subtilis DSM 15029(T) secretes considerable amounts of unsuccinylated entianin. Entianin was very active against several Gram-positive pathogens, such as Staphylococcus aureus and Enterococcus faecalis. The growth-inhibiting activity of succinylated entianin (S-entianin) was much lower than that of unsuccinylated entianin: a 40-fold higher concentration was required for inhibition. For succinylated subtilin (S-subtilin), a concentration 100-fold higher than that of unsuccinylated entianin was required to inhibit the growth of a B. subtilis test strain. This finding was in accordance with a strongly reduced sensing of cellular envelope stress provided by S-entianin relative to that of entianin. Remarkably, S-entianin and S-subtilin showed considerable autoinduction activity, clearly demonstrating that autoinduction and antibiotic activity underlie different molecular mechanisms.  相似文献   

3.
The biosynthesis of the lantibiotics subtilin and nisin is regulated by autoinduction via two-component systems. Although subtilin is structurally closely related to nisin and contains the same lanthionine ring structure, both lantibiotics specifically autoinduce their biosynthesis. Subtilin and also the subtilin-like lantibiotics entianin and ericin autoinduce the two-component system SpaRK of Bacillus subtilis, whereas the biosynthesis of nisin is autoinduced via the two-component system NisRK of Lactococcus lactis. Autoinduction is highly specific for the respective lantibiotic and therefore of major importance for the functional expression of genetically engineered subtilin-like lantibiotics. To identify the structural features required for subtilin autoinduction, subtilin-nisin hybrids and specific point mutations of amino acid position 1 were generated. For subtilin autoinduction, the N-terminal tryptophan is the most important for full SpaK activation. The failure of subtilin to autoinduce the histidine kinase NisK mainly depends on the N-terminal tryptophan, as its single exchange to the aliphatic amino acid residues isoleucine, leucine, and valine provided NisK autoinduction. In addition, the production of subtilin variants which did not autoinduce their own biosynthesis could be rescued upon heterologous coexpression in B. subtilis DSM15029 by the autoinducing subtilin-like lantibiotic entianin.  相似文献   

4.
5.
Subtilin is a ribosomally synthesized peptide antibiotic produced by Bacillus subtilis ATCC 6633. B. subtilis 168 was converted to a subtilin producer by competence transformation with chromosomal DNA from B. subtilis ATCC 6633. A chloramphenicol acetyltransferase gene was inserted next to the subtilin structural gene as a selectable marker. The genes that conferred subtilin production were derived from a 40-kb region of the B. subtilis ATCC 6633 chromosome that had flanking homologies to the B. subtilis 168 chromosome. The subtilin produced by the mutant was identical to natural subtilin in its biological activity, chromatographic behavior, amino acid composition, and N-terminal amino acid sequence.  相似文献   

6.
7.
Helfrich M  Entian KD  Stein T 《Biochemistry》2007,46(11):3224-3233
Biosynthesis of the lantibiotic subtilin in Bacillus subtilis is accomplished by a synthetase complex consisting of the dehydratase SpaB, cyclase SpaC, and transporter SpaT. Genetically engineered subtilin cyclases SpaC and related NisC and EriC proteins involved in biosynthesis of the lantibiotics nisin and ericin A/S, respectively, were analyzed to functionally substitute native SpaC in vivo. We could show for the first time posttranslational modification of a lantibiotic precursor peptide (subtilin) by a hybrid lantibiotic synthetase (SpaBT/EriC). Genetically engineered SpaC alanine replacement mutants revealed the essentiality of residues His231, Trp302, Cys303, Tyr304, Gly305, Cys349, and His350, as well as the conserved C-terminal motif Lys437-Ala438-Leu439-Leu440-Ile441 for subtilin biosynthesis. Assignment of these strictly conserved lantibiotic cyclase residues to the NisC structure [Li, B., Yu, J. B., Brunzelle, J. S., Moll, G. N., van der Donk, W. A., and Nair, S. K. (2006) Science, 311, 1464-1467] revealed the first experimental evidence for structure-function relationships in catalytic centers of lantibiotic cyclases. SpaC residues His231, Cys303, and Cys349 are involved in coordination of the central zinc ion. The pair His231/Tyr304 is discussed to act as general acid/base catalysts in lanthionine formation. Furthermore, pull-down experiments revealed that functional inactive SpaC mutants were still able to interact with the hexahistidine-tagged subtilin precursor peptide in vitro. Our results suggest that Trp302 and the C-terminal residues of SpaC are constituents of a hydrophobic cluster which is involved in stabilization of the catalytic center and binding of the subtilin precursor peptide.  相似文献   

8.
9.
Subtilin is a ribosomally synthesized peptide antibiotic produced by Bacillus subtilis ATCC 6633. Recently, we reported regarding genes spaB, spaT, and spaC (C. Klein, C. Kaletta, N. Schnell, and K.-D. Entian, Appl. Environ. Microbiol. 58:132-142, 1992) which are involved in the biosynthesis of subtilin, and genes spaR and spaK (C. Klein, C. Kaletta, and K.-D. Entian, Appl. Environ. Microbiol. 59:296-303, 1993), which regulate subtilin biosynthesis via a histidine kinase/response regulator system. Further sequence analysis revealed the presence of three additional open reading frames, spaI, spaF, and spaG, downstream of the structural gene spaS. The spaI gene encodes a hydrophilic 19.3-kDa lipoprotein containing a consensus signal sequence, indicating that this protein might be membrane anchored. A similar gene, nisI, has been identified in the nisin producer. SpaF shows strong homology to members of the family of ABC transporters. spaG encodes a hydrophobic protein which might form the active transporter together with SpaF. Gene disruption mutants in all three genes were still able to produce subtilin; however, these mutants were more sensitive to subtilin than the wild-type strain. These results show that these genes are involved in the immunity mechanism of the producer strain. A similar involvement of an ABC transporter in the self-protection mechanism has been described for the McbE and McbF transporter, which confers immunity against microcin B17 in Escherichia coli. Mutants containing mutations in the genes spaR and spaK, which are responsible for regulation of subtilin biosynthesis, also became more sensitive to subtilin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Subtilin and nisin are gene-encoded antibiotic peptides that are ribosomally synthesized by Bacillus subtilis and Lactococcus lactis, respectively. Gene-encoded antibiotics are unique in that their structures can be manipulated by mutagenesis of their structural genes. Although subtilin and nisin share considerable structural homology, subtilin has a greater tendency than nisin to undergo spontaneous inactivation. This inactivation is a accompanied by chemical modification of the dehydroalanine at position 5 (DHA5) with a kinetic first-order t1/2 of 0.8 days. It was hypothesized that the R group carboxyl of Glu4 in subtilin participates in the chemical modification of the adjacent DHA5. Noting that nisin has Ile at position 4, site-directed mutagenesis was used to change Glu4 of subtilin to Ile, in order to eliminate this carboxyl-group participation. The DHA5 of this mutant subtilin (E4I-subtilin) underwent modification with a t1/2 of 48 days, which is 57-fold slower than natural subtilin, and the rate of loss of biological activity dropped by a like amount. These results suggest that an intact DHA5 is critical for subtilin activity against bacterial spore outgrowth. A double mutant of subtilin, in which the DHA5 residue of E4I-subtilin was mutated to Ala was devoid of detectable inhibition against spore outgrowth. The specific activity of E4I-subtilin was 3-4-fold higher than natural subtilin, suggesting that an increase in the hydrophobicity of the N-terminal end of the molecule enhances activity. These are the first mutants of subtilin that have been reported, and E4I-subtilin is the first example of any lantibiotic whose properties have been improved by mutagenesis. In order to carry out the mutagenesis, a host-vector pair was constructed that permits a deletion replacement in which the natural subtilin gene is replaced by the mutant gene at the normal location in the chromosome. This maintains normal gene dosage and regulatory responses, as well as eliminates ambiguities caused by expression of the normal and mutant genes in the same cell.  相似文献   

11.
Subtilin is a lanthionine-containing peptide antibiotic (lantibiotic) which is produced by Bacillus subtilis ATCC 6633. Upstream from the structural gene of subtilin, spaS, three genes (spaB, spaT, and spaC) which are involved in the biosynthesis of subtilin have been identified (C. Klein, C. Kaletta, N. Schnell, and K.-D. Entian, Appl. Environ. Microbiol. 58:132-142, 1992). By using a hybridization probe specific for these genes, the DNA region downstream from spaS was isolated. Further subcloning revealed a 5.2-kb KpnI-HindIII fragment on which two open reading frames, spaR and spaK, were identified approximately 3 kb downstream from spaS. The spaR gene encodes an open reading frame of 220 amino acids with a predicted molecular mass of 25.6 kDa. SpaR shows 35% similarity to positive regulatory factors OmpR and PhoB. The spaK gene encodes an open reading frame of 387 amino acids with a predicted molecular mass of 44.6 kDa and was highly similar to histidine kinases previously described (PhoM, PhoR, and NtrB). Hydrophobicity blots suggested two membrane-spanning regions. Thus, spaR and spaK belong to a recently identified family of environmentally responsive regulators. These results indicated a regulatory function of spaR and spaK in subtilin biosynthesis. Indeed, batch culture experiments confirmed the regulation of subtilin biosynthesis starting in the mid-logarithmic growth phase and reaching its maximum in the early stationary growth phase. Gene deletions within spaR and spaK yielded subtilin-negative mutants, which confirms that subtilin biosynthesis is under the control of a two-component regulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The information responsible for biosynthesis of the lantibiotic subtilin is organized in an operon-like structure that starts with the spaB gene. The spaB gene encodes an open reading frame consisting of 1,030 amino acid residues, and it was calculated that a protein having a theoretical molecular mass of 120.5 kDa could be produced from this gene. This is consistent with the apparent molecular weight for SpaB of 115,000 which was estimated after sodium dodecyl sulfate-gel electrophoresis and identification with SpaB-specific antibodies. The SpaB protein is very similar to proteins EpiB and NisB, which were identified previously as being involved in epidermin and nisin biosynthesis. Upstream from SpaB a characteristic sigma A promoter sequence was identified. An immunoblot analysis revealed that SpaB expression was strongly regulated. No SpaB protein was detected in the early logarithmic growth phase, and maximum SpaB expression was observed in the early stationary growth phase. The expression of SpaB was strongly correlated with subtilin biosynthesis. Deletion mutations in either of two recently identified regulatory genes, spaR and spaK, which act as a "two-component" regulatory system necessary for growth phase-dependent induction of subtilin biosynthesis (C. Klein, C. Kaletta, and K. D. Entian, Appl. Environ. Microbiol. 59:296-303, 1993), also resulted in failure of SpaB expression. To investigate the intracellular localization of SpaB, vesicles of Bacillus subtilis were prepared. The SpaB protein cosedimented with the vesicle fraction and was released only after vigorous resuspension of the vesicles. Our results suggest that SpaB is membrane associated and that subtilin biosynthesis occurs at the cytoplasmic membrane of B. subtilis.  相似文献   

13.
Bacillus subtilis antibiotics: structures, syntheses and specific functions   总被引:30,自引:0,他引:30  
The endospore-forming rhizobacterium Bacillus subtilis- the model system for Gram-positive organisms, is able to produce more than two dozen antibiotics with an amazing variety of structures. The produced anti-microbial active compounds include predominantly peptides that are either ribosomally synthesized and post-translationally modified (lantibiotics and lantibiotic-like peptides) or non-ribosomally generated, as well as a couple of non-peptidic compounds such as polyketides, an aminosugar, and a phospholipid. Here I summarize the structures of all known B. subtilis antibiotics, their biochemistry and genetic analysis of their biosyntheses. An updated summary of well-studied antibiotic regulation pathways is given. Furthermore, current findings are resumed that show roles for distinct B. subtilis antibiotics beyond the "pure" anti-microbial action: Non-ribosomally produced lipopeptides are involved in biofilm and swarming development, lantibiotics function as pheromones in quorum-sensing, and a "killing factor" effectuates programmed cell death in sister cells. A discussion of how these antibiotics may contribute to the survival of B. subtilis in its natural environment is given.  相似文献   

14.
Staphylococcus aureus has clustered tRNA genes.   总被引:9,自引:5,他引:4       下载免费PDF全文
The polymerase chain reaction (PCR) was used to detect large tRNA gene clusters in Bacillus subtilis, Bacillus badius, Bacillus megaterium, Lactobacillus brevis, Lactobacillus casei, and Staphylococcus aureus. The primers were based on conserved sequences of known gram-positive bacterial tRNA(Arg) and tRNA(Phe) genes. This PCR procedure detected an unusually large tRNA gene cluster in S. aureus. PCR-generated probes were used to identify a 4.5-kb EcoRI fragment that contained 27 tRNA genes immediately 3' to an rRNA operon. Some of these 27 tRNA genes are very similar, but only 1 is exactly repeated in the cluster. The 5' end of this cluster has a gene order similar to that found in the 9- and 21-tRNA gene clusters of B. subtilis. The 3' end of this S. aureus cluster exhibits more similarity to the 16-tRNA gene cluster of B. subtilis. The 24th, 25th, and 26th tRNA genes of this S. aureus tRNA gene cluster code for three similar, unusual Gly-tRNAs that may be used in the synthesis of the peptidoglycan in the cell wall but not in protein synthesis. Southern analysis of restriction digests of S. aureus DNA indicate that there are five to six rRNA operons in this bacterium's genome and that most or all may have large tRNA gene clusters at the 3' end.  相似文献   

15.
This report demonstrates the usefulness of PCR for the genes spaS and sboA as a means of identifying Bacillus strains with a potential to produce subtilin and subtilosin A. One collection strain and five Bacillus spp. isolated from aquatic environments in the Amazon basin were screened by PCR using primers for sboA and spaS designed specifically for this study. The sequences of the PCR products showed elevated homology with previously described spaS and sboA genes. Antimicrobial peptides were isolated from culture supernatants and analyzed by mass spectrometry. For all samples, the mass spectra revealed clusters with peaks at m/z 3300–3500 Da, corresponding to subtilosin A, subtilin and isoforms of these peptides. These results suggest that the antimicrobial activity of these strains may be associated with the production of subtilosin A and/or subtilin. The PCR used here was efficient in identifying novel Bacillus strains with the essential genes for producing subtilosin A and subtilin.  相似文献   

16.
17.
18.
The maturation of the peptide antibiotic (lantibiotic) subtilin in Bacillus subtilis ATCC 6633 includes posttranslational modifications of the propeptide and proteolytic cleavage of the leader peptide. To identify subtilin processing activities, we used antimicrobial inactive subtilin precursors consisting of the leader peptide which was still attached to the fully matured propeptide. Two extracellular B. subtilis proteases were able to activate subtilin precursors, the commercially available serine protease prototype subtilisin (AprE) and WprA. The latter was isolated from B. subtilis WB600, a strain deficient in six extracellular proteases. Surprisingly, the aprE wprA double mutant of the ATCC 6633 strain was still able to produce active subtilin, however, with a reduced production rate. No subtilin processing was found within the culture supernatant of the WB800 strain, which is deficient in eight extracellular proteases. Vpr was identified as the third protease capable to process subtilin.  相似文献   

19.
Bacillus subtilis ATCC 6633 produces the cationic pore-forming lantibiotic subtilin, which preferentially acts on gram-positive microorganisms; self protection of the producer cells is mediated by the four genes spaIFEG. To elucidate the mechanism of subtilin autoimmunity, we transferred different combinations of subtilin immunity genes under the control of an inducible promoter into the genome of subtilin-sensitive host strain B. subtilis MO1099. Recipient cells acquired subtilin tolerance through expression of either spaI or spaFEG, which shows that subtilin immunity is based on two independently acting systems. Cells coordinately expressing all four immunity genes acquired the strongest subtilin protection level. Quantitative in vivo peptide release assays demonstrated that SpaFEG diminished the quantity of cell-associated subtilin, suggesting that SpaFEG transports subtilin molecules from the membrane into the extracellular space. Homology and secondary structure analyses define SpaFEG as a prototype of lantibiotic immunity transporters that fall into the ABC-2 subfamily of multidrug resistance proteins. Membrane localization of the lipoprotein SpaI and specific interaction of SpaI with the cognate lantibiotic subtilin suggest a function of SpaI as a subtilin-intercepting protein. This interpretation was supported by hexahistidine-mediated 0-A cross-linking between hexahistidine-tagged SpaI and subtilin.  相似文献   

20.
Nonribosomal peptides are processed on multifunctional enzymes called nonribosomal peptide synthetases (NRPSs), whose modular multidomain arrangement allowed the rational design of new peptide products. However, the lack of natural competence and efficient transformation methods for most of nonribosomal peptide producer strains prevented the in vivo manipulation of these biosynthetic gene clusters. In this study, we present methods for the construction of a genetically engineered Bacillus subtilis surrogate host for the integration and heterologous expression of foreign NRPS genes. In the B. subtilis surrogate host, we deleted the resident 26-kilobase srfA gene cluster encoding the surfactin synthetases and subsequently used the same chromosomal location for integration of the entire 49-kilobase bacitracin biosynthetic gene cluster from Bacillus licheniformis by a stepwise homologous recombination method. Synthesis of the branched cyclic peptide antibiotic bacitracin in the engineered B. subtilis strain was achieved at high level, indicating a functional production and proper posttranslational modification of the bacitracin synthetases BacABC, as well as the expression of the associated bacitracin self-resistance genes. This engineered and genetically amenable B. subtilis strain will facilitate the rational design of new bacitracin derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号