首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cigarette smoking may modify the immune balance in the airway since it alters the course of diseases in which immune system has an important role. This study examined whether cigarette smoking could affect the distribution of cells secreting Th(1) or Th(2) cytokines in the human airway. We utilized cytokine ELISPOT assay to detect and quantitate the frequencies of cells spontaneously secreting cytokines in bronchoalveolar lavage fluid (BALF). BALF was collected from six non-smokers and four heavy cigarette smokers without clinical airway symptoms. Cytokine ELISPOT assay was performed to quantitate cells secreting interleukin (IL-)2, IL-4 and interferon (IFN-)gamma with or without phorbor 12-myristate 13-acetate (PMA) stimulation. There were no cells spontaneously secreting IL-2 detected in all samples from smokers whereas most of non-smokers had detectable IL-2-secreting cells. The number of IFN-gamma-secreting cells was also extremely decreased in smokers. Mitogen-stimulated Th(1) cytokine-secreting cells were again significantly decreased in smokers' airways. The frequency of IL-2-secreting cells and CD4/CD8 ratio in BALF had a weak positive correlation. IL-4-secreting cells were not detected in any samples from both groups. These results show that cigarette smoking depletes Th(1) cytokine-secreting cells in the human airway. It may explain the susceptibility of smokers to certain airway disease conditions such as viral or mycobacterial infections and allergic diseases.  相似文献   

2.
Injury to the airway epithelium has been proposed as a key susceptibility factor for exercise-induced bronchoconstriction (EIB). Our goals were to establish whether airway epithelial cell injury occurs during EIB in athletes and whether inhalation of warm humid air inhibits this injury. Twenty-one young male athletes (10 with a history of EIB) performed two 8-min exercise tests near maximal aerobic capacity in cold dry (4°C, 37% relative humidity) and warm humid (25°C, 94% relative humidity) air on separate days. Postexercise changes in urinary CC16 were used as a biomarker of airway epithelial cell perturbation and injury. Bronchoconstriction occurred in eight athletes in the cold dry environment and was completely blocked by inhalation of warm humid air [maximal fall in forced expiratory volume in 1 s = 18.1 ± 2.1% (SD) in cold dry air and 1.7 ± 0.8% in warm humid air, P < 0.01]. Exercise caused an increase in urinary excretion of CC16 in all subjects (P < 0.001), but this rise in CC16 was blunted following inhalation of warm humid air [median CC16 increase pre- to postchallenge = 1.91 and 0.35 ng/μmol in cold dry and warm humid air, respectively, in athletes with EIB (P = 0.017) and 1.68 and 0.48 ng/μmol in cold dry and warm humid air, respectively, in athletes without EIB (P = 0.002)]. The results indicate that exercise hyperpnea transiently disrupts the airway epithelium of all athletes (not only in those with EIB) and that inhalation of warm moist air limits airway epithelial cell perturbation and injury.  相似文献   

3.
Asthma is a chronic inflammatory disorder, previous studies have shown that IL-17A contributes to the development of asthma, and there is a positive correlation between the level of IL-17A and the severity of disease. Here, we constructed recombinant Mycobacterium smegmatis expressing fusion protein Ag85A-IL-17A (rMS-Ag85a-IL-17a) and evaluated whether it could attenuate allergic airway inflammation, and further investigated the underlying mechanism. In this work, the murine model of asthma was established with ovalbumin, and mice were intranasally vaccinated with rMS-Ag85a-IL-17a. Autoantibody of IL-17A in sera was detected, and the airway inflammatory cells infiltration, the local cytokines and chemokines production and the histopathological changes of lung tissue were investigated. We found that the administration of rMS-Ag85a-IL-17a induced the autoantibody of IL-17A in sera. The vaccination of rMS-Ag85a-IL-17a remarkably reduced the infiltration of inflammatory cells and the secretion of mucus in lung tissue and significantly decreased the numbers of the total cells, eosinophils and neutrophils in BALF. Th1 cells count in spleen, Th1 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and T-bet mRNA in lung tissue were significantly increased with rMS-Ag85a-IL-17a administration. Meanwhile, rMS-Ag85a-IL-17a vaccination markedly decreased Th2 cells count, Th2 cytokine and Th17 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and chemokines mRNA expression in lung tissue. These data confirmed that recombinant Mycobacterium smegmatis in vivo could induce autoantibody of IL-17A, which attenuated asthmatic airway inflammation.  相似文献   

4.
ABSTRACT: BACKGROUND: Recurrent airway obstruction (RAO, also known as equine heaves) is an inflammatory condition caused by exposure of susceptible horses to organic dusts in hay. The immunological processes responsible for the development and the persistence of airway inflammation are still largely unknown. Hypoxia-inducible factor (Hif) is mainly known as a major regulator of energy homeostasis and cellular adaptation to hypoxia. More recently however, Hif also emerged as an essential regulator of innate immune responses. Here, we aimed at investigating the potential involvement of Hif1-alpha in myeloid cells in horse with recurrent airway obstruction. RESULTS: In vitro, we observed that Hif is expressed in equine myeloid cells after hay dust stimulation and regulates genes such as tumor necrosis factor alpha (TNF-alpha), interleukin-8 (IL-8) and vascular endothelial growth factor A (VEGF-A). We further showed in vivo that airway challenge with hay dust upregulated Hif1-alpha mRNA expression in myeloid cells from the bronchoalveolar lavage fluid (BALF) of healthy and RAO-affected horses, with a more pronounced effect in cells from RAO-affected horses. Finally, Hif1-alpha mRNA expression in BALF cells from challenged horses correlated positively with lung dysfunction. CONCLUSION: Taken together, our results suggest an important role for Hif1-alpha in myeloid cells during hay dust-induced inflammation in horses with RAO. We therefore propose that future research aiming at functional inactivation of Hif1 in lung myeloid cells could open new therapeutic perspectives for RAO.  相似文献   

5.
ABSTRACT

The current study aimed to study the effects of Bulleyaconitine A (BLA) on asthma. Asthmatic mice model was established by ovalbumin (OVA) stimulation, and the model mice were treated by BLA. After BLA treatment, the changes in lung and airway resistances, total and differential leukocytes in the bronchoalveolar lavage fluid (BALF) were detected, and the changes in lung inflammation and airway remodeling were observed. Moreover, the secretion of IgE, Th1/Th2-type and IL-17A cytokines in BALF and serum of the asthmatic mice were determined. The resuts showed that BLA attenuated OVA-induced lung and airway resistances, inhibited the inflammatory cell recruitment in BALF and the inflammation and airway remodeling of the asthmatic mice. In addition, BLA suppressed the secretion of IgE, Th2-type cytokines, and IL-17A, but enhanced secretions of Th1-type cytokines in BALF and serum. The current study discovered that BLA inhibited the lung inflammation and airway remodeling via restoring the Th1/Th2 balance in asthmatic mice.  相似文献   

6.
Zhang X  Zheng H  Zhang H  Ma W  Wang F  Liu C  He S 《Cytokine》2011,56(3):717-725
Recently, involvement of IL-17 in development of COPD has been noticed. Unlike IL-8, the role of IL-17 in COPD remains controversial. In order to further understand mechanisms in cigarette smoke (CS) induced COPD, we investigated IL-17 and IL-8 levels in different stages of COPD patients, and time courses of IL-17 and IL-8 release in CS induced COPD rats. A total of 73 elderly patients with COPD and 31 healthy volunteers were recruited in the study. IL-17 and IL-8 levels in the sputum and plasma were measured, and number of differential cells was counted. A newly developed CS induced rat COPD model was employed to study time courses of IL-17 and IL-8 release and nucleated cell accumulation. The results showed that IL-8 levels in the sputum of severe COPD patients were elevated by 16.5-fold, but IL-17 levels were reduced by 4.8-fold. While IL-8 correlated with neutrophils, IL-17 correlated with monocytes and lymphocytes. Similarly, level of IL-8 was increased, but IL-17 was decreased in the bronchoalveolar lavage fluid (BALF) of CS rats. Time course study showed that increased IL-8 production in the BALF initiated at 6 weeks, but decreased IL-17 production started at 10 weeks following CS exposure. In conclusion, increased IL-8 level in COPD patients appears mainly secreted from neutrophils and macrophages, whereas decreased IL-17 level seems resulted from reduced number of monocytes or damaged epithelial cells. Increased IL-8 (a proinflammatory cytokine) secretion and decreased IL-17 (a protective cytokine of airways) release can both contribute to development of COPD.  相似文献   

7.
Experimental data suggest the presence of sensory receptors specific to the nasopharynx that may reflexly influence respiratory activity. To investigate the effects of inspired air temperature on upper airway dilator muscle activity during nose breathing, we compared phasic genioglossus electromyograms (EMGgg) in eight normal awake adults breathing cold dry or warm humidified air through the nose. EMGgg was measured with peroral bipolar electrodes during successive trials of cold air (less than or equal to 15 degrees C) and warm air (greater than or equal to 34 degrees C) nasal breathing and quantified for each condition as percent activity at baseline (room temperature). In four of the subjects, the protocol was repeated after topical nasal anesthesia. For all eight subjects, mean EMGgg was greater during cold air breathing than during baseline (P less than 0.005) or warm air breathing (P less than 0.01); mean EMGgg during warm air breathing was not significantly changed from baseline. Nasal anesthesia significantly decreased the mean EMGgg response to cold air breathing. Nasal airway inspiratory resistance, measured by posterior rhinomanometry in six subjects under similar conditions, was no different for cold or warm air nose breathing [cold 1.4 +/- 0.7 vs. warm 1.4 +/- 1.1 (SD) cmH2O.l-1.s at 0.4 l/s flow]. These data suggest the presence of superficially located nasal cold receptors that may reflexly influence upper airway dilating muscle activity independently of pressure changes in awake normal humans.  相似文献   

8.
This study tested the hypothesis that exercise elicits monocytic cytokine expression and that prolonged cold exposure modulates such responses. Nine men (age, 24.6 +/- 3.8 y; VO(2 peak), 56.8 +/- 5.6 ml. kg(-1). min(-1)) completed 7 days of exhausting exercise (aerobic, anaerobic, resistive) and underwent three cold, wet exposures (CW). CW trials comprised 相似文献   

9.
10.
Bronchoalveolar lavage (BAL) of canine peripheral airways was performed at various times after hyperventilation, and BAL fluid (BALF) cell and mediator data were used to evaluate two hypotheses: 1) hyperventilation-induced mucosal injury stimulates mediator production, and 2) mucosal damage is correlated with the magnitude of hyperventilation-induced bronchoconstriction. We found that epithelial cells increased in BALF immediately after a 2- and a 5-min dry air challenge (DAC). Prostaglandins D(2) and F(2alpha) and thromboxane B(2) were unchanged immediately after a 2-min DAC but were significantly increased after a 5-min DAC. Leukotriene C(4), D(4), and E(4) did not increase until 5 min after DAC. Hyperventilation with warm moist air did not alter BALF cells or mediators and caused less airway obstruction that occurred earlier than DAC. BALF epithelial cells were correlated with mediator release, and mediator release and epithelial cells were correlated with hyperventilation-induced bronchoconstriction. These observations are consistent with the hypothesis that hyperventilation-induced mucosal damage initiates peripheral airway constriction via the release of biochemical mediators.  相似文献   

11.
Natural killer (NK) cells are important components of innate immune defense. NK cells kill virus-infected cells and secrete cytokines that are involved in activation of other immune cells. Macrophage-derived cytokines interferon-alpha (IFN-alpha) and interleukin-15 (IL-15) are in turn important activators of NK cells, but the receptors and intracellular pathways that are involved in NK cell functions are still incompletely known. Here we have used expression proteomics to find new IFN-alpha and IL-15 regulated proteins in human NK-92 cells, which have the characteristics of activated NK cells. Cells were stimulated with cytokines for 20 h, lysed, and soluble proteins were separated by two-dimensional electrophoresis, and differentially expressed protein spots were identified with mass spectrometry and database searches. A total of 57 protein spots were found to be reproducibly differentially expressed between control and cytokine stimulated gel pairs, 26 spots being more than 2-fold upregulated and 3 spots being at least 2-fold downregulated. The rest 28 spots showed minor, less than 2-fold changes in their expression levels after quantification. From the differentially expressed protein spots we identified 47 different proteins, most of which are new IFN-alpha and IL-15 target proteins. Interestingly, we show that e.g., adenylate kinase 2 is highly upregulated by IFN-alpha and IL-15 stimulation in NK-92 cells. The expression of selected genes with high expression level differences after cytokine stimulation were further studied at mRNA level. Northern blot analysis showed that the genes studied were induced by IFN-alpha, IL-15, and IL-2 already at 3 h time point, suggesting that they are primary target genes of these cytokines.  相似文献   

12.
Chemokine synthesis by airway smooth muscle cells (ASMC) may be an important process underlying inflammatory cell recruitment in airway inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Fractalkine (FKN) is a recently described CX(3)C chemokine that has dual functions, serving as both a cell adhesion molecule and a chemoattractant for monocytes and T cells, expressing its unique receptor, CX(3)CR1. We investigated FKN expression by human ASMC in response to the proinflammatory cytokines IL-1beta, TNF-alpha, and IFN-gamma, the T helper 2-type cytokines IL-4, IL-10, and IL-13, and the fibrogenic cytokine transforming growth factor (TGF)-beta. Neither of these cytokines alone had any significant effect on ASMC FKN production. Combined stimulation with IFN-gamma and TNF-alpha induced FKN mRNA and protein expression in a time- and concentration-dependent manner. TGF-beta had a significant inhibitory effect on cytokine-induced FKN mRNA and protein expression. Dexamethasone (10(-8)-10(-6) M) significantly upregulated cytokine-induced FKN mRNA and protein expression. Finally, we used selective inhibitors of the mitogen-activated protein kinases c-Jun NH(2)-terminal kinase (JNK) (SP-610025), p38 (SB-203580), and extracellular signal-regulated kinase (PD-98095) to investigate their role in FKN production. SP-610025 (25 microM) and SB-203580 (20 microM), but not PD-98095, significantly attenuated cytokine-induced FKN protein synthesis. IFN-gamma- and TNF-alpha-induced JNK phosphorylation remained unaltered in the presence of TGF-beta but was inhibited by dexamethasone, indicating that JNK is not involved in TGF-beta- or dexamethasone-mediated regulation of FKN production. In summary, FKN production by human ASMC in vitro is regulated by inflammatory and anti-inflammatory factors.  相似文献   

13.
An animal (BALB/c mice) model of catalpol associated with bronchial asthma in vivo was established, and the effects of catalpol and its relationship with cytokines were investigated. A total of 30 adult BALB/c mice were randomly divided into a positive control group, a model group, and a catalpol group, with 10 mice in each group. The lung function of mice, the cell count, and the cytokine concentrations in bronchoalveolar lavage fluid (BALF) were detected. The levels of cytokines [interleukin 4 (IL-4), interleukin 5 (IL5), and interferon gamma (IFN-γ)] in BALF were measured with enzyme-linked immunosorbent assay methods. The total number of cells in the BALF of the group treated with catalpol was significantly lower than the model group. After treatment with catalpol, the eosinophils and neutrophils of the mice were remarkably reduced compared with the model group. The malondialdehyde content in the lung tissue homogenate of the mice was also decreased in the catalpol group. The cytokines IL-5 and IL-4 exhibited a similar tendency: the concentrations of IL-4 and IL-5 for the catalpol group were dramatically decreased compared with the model group. However, the IFN-γ concentration for the catalpol group was higher than the model group. The results indicated that IL-5 may involve in the pathologic process of asthma-like IL-4, and an inflammatory reaction may still exist in the airway during the remission stage of asthma. The imbalances of the cytokine network might be an important molecular basis in the asthma pathogenesis. It is suggested that catalpol may be a potential drug for the clinical treatment of asthma.  相似文献   

14.
15.
OBJECTIVE: IL-10 is a potent anti-inflammatory cytokine, and IL-10-producing regulatory T cells are effective inhibitors of murine asthmatic responses. This study determined whether IL-10-dependent mechanisms mediated the local inhalational tolerance seen with chronic inhalational exposure to antigen. METHODS: Wildtype and IL-10(-/-) mice were sensitized with ovalbumin (OVA) and then challenged with daily OVA inhalations for 10 days or 6 weeks. RESULTS: The 10-day animals developed allergic airway disease, characterized by BAL eosinophilia, histologic airway inflammation and mucus secretion, methacholine hyperresponsiveness, and OVA-specific IgE production. These changes were more pronounced in IL-10(-/-) mice. The 6-week IL-10(-/-) and wildtype animals both developed inhalational tolerance, with resolution of airway inflammation but persistence of OVA-specific IgE production. CONCLUSION: IL-10 may have anti-inflammatory effects in the acute stage of murine allergic airways disease, but the cytokine does not mediate the development of local inhalational tolerance with chronic antigen exposure.  相似文献   

16.
Strenuous exercise induces increased levels in a number of pro-inflammatory and anti-inflammatory cytokines, naturally occurring cytokine inhibitors and chemokines. Thus, increased plasma levels of TNF-alpha, IL-1, IL-6, IL-1 receptor antagonist, TNF receptors, IL-10, IL-8 and macrophage inflammatory protein-1 are found after strenuous exercise. The concentration of IL-6 increases up to 100-fold after a marathon race. The increase in IL-6 is tightly related to the duration of the exercise and there appears to be a logarithmic relationship. Furthermore, the increase in IL-6 is related to the intensity of exercise. Given the facts that IL-6, more than any other cytokine, is produced in large amounts in response to exercise, that IL-6 is produced locally in the skeletal muscle in response to exercise and that IL-6 is known to have growth factor abilities, it is likely that IL-6 plays a beneficial role and may be involved in mediating exercise-related metabolic changes.  相似文献   

17.

Background

Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation.

Methods

THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses.

Results

Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased pro-fibrogenic cytokine mRNAs.

Conclusions

These data indicate that Th2 cytokines suppress MWCNT-induced inflammasome activation via STAT6-dependent down-regulation of pro-caspase-1 and suggest that suppression of inflammasome activation and IL-1β by an allergic lung microenvironment is a mechanism through which MWCNTs exacerbate allergen-induced airway fibrosis.  相似文献   

18.
Meconium aspiration syndrome is a cause of significant morbidity and mortality in the perinatal period and has been implicated in the pathogenesis of airway dysfunction. In this study, we developed a murine model to evaluate the effects of meconium aspiration on airway physiology and lung cellular responses. Under light anesthesia, BALB/c mice received a single intratracheal instillation of meconium or physiological saline. Respiratory mechanics were measured in unrestrained animals and expressed as percent increase in enhanced pause to increasing concentrations of methacholine (MCh). Furthermore, we assessed the changes in cells and cytokines into the bronchoalveolar lavage fluid (BALF). We found meconium aspiration produced increased airway responsiveness to MCh at 7 days. These functional changes were associated with lymphocytic/eosinophilic inflammation, goblet cell metaplasia, and increased concentrations of IL-5 and IL-13 in the BALF. Our findings suggest meconium aspiration leads to alterations of airway function, lung eosinophilia, goblet cell metaplasia, and cytokine imbalance, thus providing the first evidence of meconium-induced airway dysfunction in a mouse model.  相似文献   

19.
A murine model of influenza A virus exacerbation of allergen induced airway inflammation, pulmonary histopathological changes, bronchoalveolar lavage fluid (BALF) analysis, cytokine influx and the time course of these events have been studied. The present study was undertaken to determine the relative contributions of Thl/Th2 cytokines to the histopathological changes in the lungs observed at 9, 12, 24 and 48 hr following antigen challenge in mice previously immunized with influenza A virus. BALF analysis of acute phase group revealed statistically significant increase in neutrophils at 9 hr, macrophages at 12 hr, lymphocytes and eosinophils at 24 hr, as compared to OVA-sensitized control mice. These changes were associated with an alteration in the levels of IL-4, IL-5 and IFN-gamma. A peak of IL-4 at 24 hr significantly enhanced bronchiolar and perivascular histopathology, whereas increased IL-5 level peaking at 24 hr was correlated with the enhanced infiltration of eosinophils in both BALF and lung tissue. There was simultaneous depletion of IL-10 an anti-inflammatory cytokine leading to persistence of pulmonary inflammation in case of acute phase group. Histopathology at 24 and 48 hr showed severe denudation of bronchiolar lining epithelium surrounded by dense chronic inflammatory infiltrate. Chronic interstitial infiltrate with focal loss of architecture, marked oedema, extravasation of RBCs from congested blood vessels and laying down of reticulin fibres was observed in acute phase. Thus, infection with influenza A virus on pre-existing asthmatic immunopathology elicits a cascade of Th2 cytokines with influx of inflammatory cells in BALF, mucosal and interstitial inflammation leading to asthma exacerbations.  相似文献   

20.
Airway and systemic inflammation are features of chronic obstructive pulmonary disease (COPD), and there is growing interest in clarifying the inflammatory processes. Strenuous exercise induces an intensified systemic inflammatory response in patients with COPD, but no study has investigated the airway inflammatory and anti-inflammatory responses to exercise. Twenty steroid-na?ve, ex-smokers with diagnosed COPD (forced expired volume in 1 s = 66 ± 12%) underwent baseline collection of venous blood and induced sputum followed by an incremental exercise test to symptom limitation 48 h later. Additional venous blood samples were collected following exercise at 0, 2, and 24 h, while induced sputum was collected 2 and 24 h after exercise. Sputum and blood samples were analyzed for differential cell count, CD4(+) and CD8(+) T lymphocytes (serum only), interleukin (IL)-6, IL-8, IL-10, chemokine (C-C motif) ligand 5 (CCL5), and high sensitivity C-reactive protein (serum only). There was an increase in the number of sputum eosinophils (cells/gram, P = 0.012) and a reduction in sputum IL-6 (P = 0.01) 24 h postexercise. Sputum IL-8 and CCL5 were also persistently decreased after exercise (P = 0.0098 and P = 0.0012, respectively), but sputum IL-10 did not change. There was a decrease in serum eosinophils 2 h after exercise (P = 0.0014) and a reduction in serum CCL5 immediately following and 2 h postexercise (P < 0.0001). Both serum eosinophils and CCL5 returned to baseline levels within 24 h. An acute bout of exercise resulted in a significant increase in the number of sputum eosinophils, which may be mediated by serum CCL5. However, there was also a reduction in sputum proinflammatory cytokines, suggesting some anti-inflammatory effect of exercise in the lungs of steroid-na?ve patients with COPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号