首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Staphylococcus aureus plasmid pC221, a 4.6-kilobase multicopy chloramphenicol resistance plasmid that forms plasmid-protein relaxation complexes, was mobilized for transfer by the conjugative plasmid pGO1. Two open reading frames on the pC221 genome, now designated mobA and mobB, as well as a cis-acting locus, the putative oriT, were shown to be in involved in pC221 mobilization. The mobA (but not mobB) and oriT loci were required for pC221 relaxation, and relaxation was necessary but not sufficient for pC221 mobilization by pGO1. oriT was cloned onto a pE194 derivative and complemented in trans for both relaxation and mobilization. Mobilization of relaxable plasmids in S. aureus appears to be analogous to mobilization by donation observed in gram-negative bacteria.  相似文献   

2.
Plasmid encoded replication initiation (Rep) proteins recruit host helicases to plasmid replication origins. Previously, we showed that RepD recruits directionally the PcrA helicase to the pC221 oriD, remains associated with it, and increases its processivity during plasmid unwinding. Here we show that RepD forms a complex extending upstream and downstream of the core oriD. Binding of RepD causes remodelling of a region upstream from the core oriD forming a ‘landing pad’ for the PcrA. PcrA is recruited by this extended RepD–DNA complex via an interaction with RepD at this upstream site. PcrA appears to have weak affinity for this region even in the absence of RepD. Upon binding of ADPNP (non-hydrolysable analogue of ATP), by PcrA, a conformational rearrangement of the RepD–PcrA–ATP initiation complex confines it strictly within the boundaries of the core oriD. We conclude that RepD-mediated recruitment of PcrA at oriD is a three step process. First, an extended RepD–oriD complex includes a region upstream from the core oriD; second, the PcrA is recruited to this upstream region and thirdly upon ATP-binding PcrA relocates within the core oriD.  相似文献   

3.
Some genetic and biochemical properties of the tetracycline resistance element of the Staphylococcus aureus plasmid pT181 have been studied. Resequencing of a portion of the tetracycline resistance gene (tet) showed the presence of a single open reading frame of 1,299 nucleotides capable of encoding a polypeptide of 433 amino acids. Analysis of BAL 31 nuclease-generated deletion mutants of the tet gene showed the presence of two complementation groups within this region. Northern blot hybridizations demonstrated that the tet gene encodes a single mRNA, and its initiation site has been mapped by S1 nuclease protection experiments. We also identified an approximately 52,000-dalton tetracycline-inducible polypeptide in Bacillus subtilis minicells carrying pT181. Induction of the tet gene by tetracycline resulted in a 4-fold increase in the levels of TET mRNA and at least a 15-fold increase in the amount of TET protein in B. subtilis minicells.  相似文献   

4.
Mutations in four genes: sconA (formerly suA25meth, mapA25), sconB (formerly mapBl), sconC and sconD, the last two identified in this work, relieve a group of sulphur amino acid biosynthetic enzymes from methionine-mediated sulphur metabolite repression. Exogenous methionine has no effect on sulphate assimilation in the mutant strains, whereas in the wild type it causes almost complete elimination of sulphate incorporation. In both mutant and wild-type strains methionine is efficiently taken up and metabolized to S-adenosylmethionine, homocysteine and other compounds. scon mutants also show elevated levels of folate-metabolizing enzymes which results from the large pool of homocysteine found in these strains. The folate enzymes apear to be inducible by homocysteine and repressible by methionine (or Sadenosylmethionine).  相似文献   

5.
6.
7.
pT181 is a naturally occurring Staphylococcus aureus plasmid, encoding inducible resistance to tetracycline. The plasmid has a copy number of about 20 per cell, and belongs to the incompatibility group inc3. The complete nucleotide sequence of pT181 has been determined and consists of 4437 bp. The nucleotide sequence contains 69.8% A-T and 30.2% G-C pairs. pT181 was found to contain four open reading frames capable of coding for polypeptides containing more than 50 amino acids. All the putative polypeptides are coded by one strand. The molecular weights of the four putative polypeptides are (in daltons): A, 37,500; B, 35,000; C, 23,000, and D, 18,000. Polypeptide A corresponds to the repC protein, earlier shown to be specifically required for pT181 replication. Polypeptide B (and possibly polypeptide D) are involved in tetracycline resistance. No role has yet been established for polypeptide C; deletion of the coding sequence for the C polypeptide has no detectable effect on any property of the pT181 plasmid. A region consisting of about 1200 bp contains information for the replication and copy number control of this plasmid. The sequencing results are discussed in relation to the replication properties and tetracycline resistance associated with the pT181 plasmid.  相似文献   

8.
The Staphylococcus aureus chromosomal gene plaC, identified by mutations such as plaC1 that lead to the amplification of plasmid pT181, has been cloned and sequenced. The plaC gene encodes a protein with high similarity (79% identity) with the vegetative sigma factor of Bacillus subtilis, sigA, suggesting that it acts as an RNA polymerase sigma factor in S.aureus. The plaC1 mutation was found to be a C to T transition leading to a proline to serine substitution at amino acid residue 209 of the protein. In other sigma factors this region of the protein is involved in specific recognition of the -10 promoter sequence. The change in sigma factor activity due to this mutation is characterized by its strict specificity for a limited number of promoters and the rather high amplitude of the effect.  相似文献   

9.
Temperature-sensitive replication (Tsr) mutants have been isolated from the Staphylococcus aureus plasmid pC194. For three of the four mutant plasmids tested (pSAO801, pSAO802, and pSAO804) the segregation kinetics suggested a complete block of plasmid replication at 43 degrees C. The replication defects of three mutant plasmids: pSAO802, pSAO803, and pSAO804 could be complemented by recombinant plasmids carrying a segment from either the wild type or the other mutant, pSAO801. There was no complementation when the segment carried by the recombinant plasmid was derived from one of the three complementable mutants. These data were taken as evidence for the involvement of a diffusible, plasmid-encoded product, RepH, in pC194 replication. The complementation of the fourth Tsr mutant, pSAO801, could not be tested due to an abnormal susceptibility of this mutant to the incompatibility expressed by recombinants carrying segments derived from pC194 or its mutants. A single mutation was found to be responsible for both pSAO801 instability and its altered incompatibility properties but the nature of the defect has not yet been elucidated.  相似文献   

10.
Copy-number mutants of Staphylococcus aureus macrolide-lincosamide-streptogramin B (MLS) resistance plasmid pT48 were isolated by their resistance to the non-inducing macrolide, tylosin. One mutant plasmid, pcopD3, showed a three- to five-fold cis-dominant increase in copy number, and nucleotide sequence analysis revealed that the mutant had a single base change within the replication region. All other pT48 mutants examined had the unusual phenotype of increased plasmid multimerization and elevated copy number. These mutants were effective in trans and DNA sequencing showed that plasmids with this phenotype were deleted in one of two ways. The deletions caused similar alterations to the C-terminus of the wild-type pT48 Rep protein. The two types of mutant Rep proteins terminate with the same pentapeptide sequence: Ala-Asn-Glu-Ile-Asp. The multimerization phenotype of these mutants can be explained by defective termination of rolling-circle type replication.  相似文献   

11.
Plasmid pT181 replication is affected in hosts carrying the chromosomal pcrA3 mutation, resulting in significantly lower plasmid copy numbers. Mutations suppressing this effect have been isolated and characterized. The suppressor mutations were found to map in the plasmid repC gene and manifested pcrA allele specificity, suggesting the existence of a direct RepC-PcrA interaction.  相似文献   

12.
Replication of rolling-circle replicating (RCR) plasmids in gram-positive bacteria requires the unwinding of initiator protein-nicked plasmid DNA by the PcrA helicase. In this report, we demonstrate that heterologous PcrA helicases from Bacillus anthracis and Bacillus cereus are capable of unwinding Staphylococcus aureus plasmid pT181 from the initiator-generated nick and promoting in vitro replication of the plasmid. These helicases also physically interact with the RepC initiator protein of pT181. The ability of PcrA helicases to unwind noncognate RCR plasmids may contribute to the broad-host-range replication and dissemination of RCR plasmids in gram-positive bacteria.  相似文献   

13.
The complete nucleotide sequence of Staphylococcus aureus plasmid pUB10 was determined. The sequence consists of 4545 b.p. and contains 64% A-T and 36% G-C pairs. pUB110 was found to contain four open reading frames, capable of coding for polypeptides having more than 80 amino acids. All the putative polypeptides are coded for by one DNA strand. The molecular weights of four putative polypeptides are (in kilodaltons): A-49.5; B-38.8; C-28.8 and D-9.5. Polypeptide C is involved in kanamycin resistance. Polypeptide B is, possibly, involved in pUB110 replication. No role has yet been established for polypeptides A and D, since deletions in their coding sequences have no detectable effect on any properties of pUB110 plasmid.  相似文献   

14.
In Staphylococcus aureus cells carrying the pcrA3 chromosomal mutation, plasmid pT181 and its derivatives were maintained at a reduced copy number. A significant proportion of their DNA migrated during agarose gel electrophoresis as nicked DNA. The results obtained in the characterization of this plasmid DNA species show that it represents replication initiation complexes. Such complexes could not be detected in a wild-type host. The replication initiation complexes present in pcrA3 cells could resume replication after a lag. It was concluded from these results that the pcrA3 host mutation affected a step in plasmid pT181 replication immediately following the formation of the replication initiation complex, and that in pcrA3 this step became rate-limiting for plasmid pT181 replication.  相似文献   

15.
The nucleotide sequence of pC194, a small plasmid from Staphylococcus aureus which is capable of replication in Bacillus subtilis, has been determined. The genetic determinant of chloramphenicol (CAM) resistance, which includes the chloramphenicol acetyl transferase (CAT) structural gene, the putative promoter and controlling element of this determinant, have been mapped functionally by subcloning a 1,035-nucleotide fragment which specifies the resistance phenotype using plasmid pBR322 as vector. Expression of CAM resistance is autogenously regulated since the 1,035-nucleotide fragment containing the CAT gene sequence and its promoter cloned into pBR322 expresses resistance inducibly in the Escherichia coli host. A presumed controlling element of CAT expression consists of a 37-nucleotide inverted complementary repeat sequence that is located between the -10 and ribosome-loading sequences of the CAT structural gene. Whereas the composite plasmid containing the minimal CAT determinant cloned in pBR322 could not replicate in B. subtilis, ability to replicate in B. subtilis was seen if the fragment cloned included an extension consisting of an additional 300 nucleotides beyond the 5' end of the single pC194 MspI site associated with replication. This 5' extension contained a 120-nucleotide inverted complementary repeat sequence similar to that found in pE194 TaqI fragment B which contains replication sequences of that plasmid. pC194 was found to contain four opening reading frames theoretically capable of coding for proteins with maximum molecular masses, as follows: A, 27,800 daltons; B, 26,200 daltons; C, 15,000 daltons; and D, 9,600 daltons. Interruption or deletion of either frame A or D does not entail loss of ability to replicate or to express CAM resistance, whereas frame B contains the CAT structural gene and frame C contains sequences associated with plasmid replication.  相似文献   

16.
A Rasooly  P Z Wang    R P Novick 《The EMBO journal》1994,13(21):5245-5251
The Staphylococcus aureus rolling circle plasmid pT181 regulates its replication by controlling the synthesis of its initiator protein RepC. RepC is inactivated during pT181 replication by the addition of an oligodeoxynucleotide, giving rise to a new form, RepC*. We analyzed RepC and RepC* in four classes of mutants: plasmid copy number mutants, two classes of RepC mutants affecting different portions of the protein and oriC (origin) mutants. We have found that in the cell with wild-type RepC there are similar relative amounts of RepC and RepC*, regardless of copy number, and that the conversion of RepC to RepC* is replication dependent. Genetic and biochemical evidence is presented that RepC functions as a dimer and that during replication the RepC homodimer is converted to the RepC/RepC* heterodimer.  相似文献   

17.
pT181 and related plasmids of gram-positive bacteria replicate by a rolling-circle mechanism. The replication initiator protein of pT181, RepC, has origin-specific nicking-closing activities. Replication of the plasmid pT181 leading strand initiates by covalent extension of the RepC-generated nick, and the origin of replication contains signals for both initiation and termination of DNA replication. We have investigated the sequence requirements for the initiation and termination steps by using plasmids containing two pT181 origins. In vitro replication experiments showed that 18- and 24-bp synthetic oligonucleotides containing the RepC nick site were active in the termination of replication. However, initiation of replication required a larger region which also includes the RepC binding site. Plasmids containing the 18- and 24-bp region were also found to be nicked by the RepC protein. Our results demonstrate that sequence requirements for initiation and termination of pT181 replication overlap, but while the RepC binding site is required for initiation, it is dispensable for termination.  相似文献   

18.
The structural gene for beta-lactamase in the Staphylococcus aureus plasmid pI258 was cloned into a Staphylococcus aureus-Bacillus subtilis-Escherichia coli shuttle vector, pWN101, and the nucleotide sequence of the gene was determined. pWN101 was structurally stable and the beta-lactamase gene was expressed efficiently from its native promoter and ribosome-binding site in all three hosts.  相似文献   

19.
The complete nucleotide sequence of a naturally occurring Staphylococcus aureus plasmid, pT48 (from S. aureus strain T48), has been determined. The 2475 bp plasmid confers inducible resistance to macrolide-lincosamide-streptogramin B (MLS) type antibiotics. It is similar to the constitutive MLS resistance plasmid, pNE131, from Staphylococcus epidermidis and shows homology with S. aureus plasmids pSN2 and pE194. It contains a palA structure homologous to that on S. aureus plasmid pT181. The open reading frame, ORF B, within the pSN2 homologous region has a frameshifted C-terminus, relative to pNE131, resulting in a smaller, 158 amino acid putative polypeptide. The pE194 homologous region has the ermC resistance determinant and retains the leader region, deleted in pNE131, required for inducible expression of an adenine methylase. Another naturally occurring S. aureus strain, J74, shows constitutive resistance to erythromycin and contains a small plasmid, pJ74, which is similar to pNE131 but with a different deletion in the leader sequence. The results are consistent with the translational attenuation model for ermC expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号