首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sertoli cells play a pivotal role in regulation and maintenance of spermatogenesis. They are hormonally regulated predominantly by follicle-stimulating hormone (FSH) and testosterone (T). Although FSH and T have distinct mechanisms of action they act synergistically in promoting spermatogenesis. Stimulation of freshly isolated Sertoli cells with FSH evokes a prompt rise in cytosolic calcium which is quantitatively reproduced by cAMP. The cytosolic calcium response to FSH in Sertoli cells is predominantly attributable to serial signaling after the generation of endogenous cAMP. Calcium homeostasis of Sertoli cells may also be regulated by cAMP-independent metabolism. Vasoactive testicular paracrine hormones such as angiotensin II (AII) and vasopressin acting via inositol triphosphate generation induce cytosolic calcium rise predominantly derived from the thapsigargin-sensitive endoplasmic reticulum. Investigations involving androgens action on cytosolic calcium reveal a common mechanism of action between the peptide and steroid regulators of Sertoli cell function, indicating that cytosolic calcium ions may represent a unifying biochemical mechanism that could explain the synergism of FSH and T. Androgens rapidly and specifically increase cytosolic calcium, consistent with a plasma membrane site of action. This argues for the possible existence of a short term non-genomic signaling pathway in hormonal regulation of Sertoli cell function in addition to the classical longer term, slower genomic response.  相似文献   

2.
Transport of 3-O-methyl-D-[14C]glucose by Sertoli cells cultured in plastic dishes, is competitively inhibited by glucose (Ki 4 microM). The glucose analogue was therefore used to study glucose transport in these cells in which it is not metabolized. Addition of follicle-stimulating hormone (FSH) (10 micrograms/ml) or dibutyryl cyclic AMP (1 mM) to the cells, increases transport of methylglucose by Sertoli cells. The increased transport results from increased influx and involves decrease in Km without change in Vmax. These changes in the kinetics of transport are seen with both FSH and dibutyryl cyclic AMP. FSH does not stimulate transport of methylglucose in peritubular fibroblasts nor in germ cells. In view of the importance of lactate as a substrate for spermatids (Mita and Hall, 1982) it is proposed that stimulation of the transport of glucose by Sertoli cells in response to FSH is important in the increased production of lactate by these cells in response to FSH and hence is one mechanism by which the tropic hormone enables the Sertoli cell to promote spermatogenesis.  相似文献   

3.
4.
We have investigated the stimulation of phospholipase D activity by the gonadotropin-releasing hormone receptor agonist [D-Ala6, des-Gly10]GnRH N-ethylamide (GnRH-A) in preovulatory, cultured granulosa cells. GnRH-A stimulated up to 10-fold accumulation of phosphatidylethanol, produced by phospholipase D phosphatidyl transferase activity when ethanol acts as the phosphatidyl group acceptor. The effect of GnRH-A was concentration dependent (EC50 = 1 nM) and was inhibited by a specific GnRH receptor antagonist. Low GnRH-A concentrations (less than 10 nM) stimulated also accumulation of phosphatidic acid, but at higher concentrations this response was attenuated. Propranolol, which inhibits phosphatidic acid phosphohydrolase, increased both basal and GnRH-A-stimulated production of phosphatidic acid. A protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA, 100 nM), increased up to 30-fold phosphatidylethanol levels. The effects of supramaximal concentrations of GnRH-A (50 nM) and TPA (1 microM) on the accumulation of phosphatidylethanol were additive, suggesting that the two agents may not act via the same mechanism. This is supported by the fact that 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, a protein kinase C inhibitor, inhibited the effect of TPA 50%, but not that of GnRH-A. However, 24 h pretreatment with TPA abolished cellular response to subsequent treatment with either TPA or GnRH-A. The stimulatory action of GnRH on steroidogenesis could be mimicked by elevating endogenous phosphatidic acid levels in granulosa cells. Exogenous phospholipase D (from Streptomyces chromofuscus, 10 IU/ml) significantly increased (2.7-fold) progesterone production by the cells; under the same conditions, GnRH-A and FSH stimulated progesterone production 3- and 2.6-fold, respectively. Similarly, propranolol stimulated progesterone production 2.2-fold. These results suggest that, in granulosa cells, GnRH receptors are coupled to a phospholipase D whose activation may participate in transducing the GnRH signal for accelerated steroidogenesis. Phospholipase D activity can be independently regulated also by protein kinase C. The possible interrelationships between phospholipase D and other phospholipases which may be activated by GnRH in these ovarian cells are discussed.  相似文献   

5.
K Yoshikawa  T Aizawa 《FEBS letters》1988,237(1-2):183-186
Searching for somatic cells expressing the preproenkephalin (A) gene in the testis, we have isolated Sertoli cells from the testes of 20-day-old rats. Cultured Sertoli cells contained a single species (about 1.5 kb) of preproenkephalin mRNA, and follicle-stimulating hormone (FSH) transiently increased the mRNA abundance to a maximum (about 30 molecules per cell) at 12 h. Various compounds that activate the cyclic AMP system in Sertoli cells similarly increased the abundance of preproenkephalin mRNA. Moreover, FSH increased intracellular Met-enkephalin immunoreactive peptides in Sertoli cells. Thus, the preproenkephalin gene expression in Sertoli cells is positively regulated by FSH through the cyclic AMP system.  相似文献   

6.
Mammalian cells require a constant supply of oxygen in order to maintain adequate energy production, which is essential for maintaining normal function and for ensuring cell survival. Sustained hypoxia can result in cell death. Sophisticated mechanisms have therefore evolved which allow cells to respond and adapt to hypoxia. Specialized oxygen-sensing cells have the ability to detect changes in oxygen tension and transduce this signal into organ system functions that enhance the delivery of oxygen to tissue in a wide variety of different organisms. An increase in intracellular calcium levels is a primary response of many cell types to hypoxia/ischemia. The response to hypoxia is complex and involves the regulation of multiple signaling pathways and coordinated expression of perhaps hundreds of genes. This review discusses the role of calcium in hypoxia-induced regulation of signal transduction pathways and gene expression. An understanding of the molecular events initiated by changes in intracellular calcium will lead to the development of therapeutic approaches toward the treatment of hypoxic/ischemic diseases and tumors.  相似文献   

7.
Pre-incubation of rat Sertoli cells with concentrations of follicle-stimulating hormone (FSH) too low to stimulate plasminogen activator (PA) secretion, provoked an inhibition of its subsequent stimulation by an effective dose of the hormone. A kinetic study of this desensitization was performed using equine FSH (which exhibits prolonged stimulation of PA secretion) and porcine FSH (which like all other FSH tested, provokes a transient response). Low non-stimulating concentrations of both hormones were shown to inhibit the subsequent PA response to each of them. Desensitization of rat Sertoli cells by low (non-stimulating) concentrations of FSH did not modify the typical time course (transient or prolonged) of PA secretion under subsequent stimulation by porcine or equine FSH, respectively. Only the intensity of the response to each hormone was dramatically reduced. Besides, the induction of desensitization by these non-stimulating concentrations of FSH was shown to be very rapid (10-15 min). The precise mechanism of this desensitization is not yet clear but its abolishment by the cyclic nucleotide phosphodiesterase (PDE) inhibitor MIX is consistent with the hypothesis that activation of PDE occurs at lower FSH concentration than adenylate cyclase activation.  相似文献   

8.
9.
In rat pituitary somatotrophs, the stimulation of growth hormone secretion by growth hormone-releasing hormone (GHRH) is a Ca(2+)-dependent event involving Ca2+ influx. The presence of calcium-induced calcium release (CICR) Ca2+ stores has been suggested in these cells. The aim of our study was to demonstrate the presence of CICR stores in rat somatotrophs and to determine their function in GHRH Ca2+ signalling. To this end we measured cytosolic free Ca2+ concentration ([Ca2+]i), using indo-1 in purified rat somatotrophs in primary culture, while altering intracellular Ca2+ stores. Ionomycin (10 ttM) or 4-bromo-A23187 (10 ItM), used to mobilise organelle-bound Ca2+, raised [Ca2+]i in the absence of extracellular Ca2+. Caffeine (5 to 50 mM), used to mobilise Ca2+ from CICR stores, transiently raised [Ca2+]i in 65% of cells tested. The response to 40 mM caffeine was abolished when Ca2+ stores were depleted, with 1 microM thapsigargin or with 10 microM ryanodine. All cells that responded to 40 mM caffeine responded to 10 nM GHRH. The [Ca2+]i response to 10 nM GHRH was reversible and repeatable. However, the second response was 38% smaller than the first. Ryanodine treatment abolished the reduction in the second [Ca2+]i response, while thapsigargin increased the reduction by 67%. We conclude that rat somatotrophs possess CICR Ca2+ stores and that they account for 30-35% of the GHRH-induced increase in [Ca2+]i, and that their partial depletion is involved in somatotroph desensitization.  相似文献   

10.
Follicle-stimulating hormone (FSH) and vitamin A (retinol) are two of the main regulators of the male reproductive system. Recently, it has been described that extracellular purines can affect some important reproductive-related functions in Sertoli cells and germinative cells, by activating specific purinergic receptors. In this work, we report that both FSH and retinol are able to induce changes in the levels of extracellular purines of cultured rat Sertoli cells. FSH induced an increase in adenosine, mainly caused by enhanced ecto-ATPase activity, while retinol increased xanthine and hypoxanthine levels, and decreased uric acid concentration by an unknown mechanism. These data indicate that purinergic signaling may be involved in the control and/or regulation of some of the reproductive-related actions of these hormones. (Mol Cell Biochem 278: 185–194, 2005)  相似文献   

11.
The role of phosphatases in signal transduction   总被引:10,自引:0,他引:10  
The importance of phosphatases in regulating the phosphorylation of proteins involved in cell signaling has been demonstrated by four recent discoveries. First, a new family of receptor-like transmembrane phosphotyrosine phosphatases, highly conserved throughout evolution, was shown to be distributed in a wide variety of tissues. Extensive heterogeneity in the extracellular regions of these molecules points to the existence of a wide diversity of ligands. These ligands are thought to mediate transduction of signals to the cell interior by means of the phosphatase activity occurring within the cytoplasmic domains of the receptor-like transmembrane phosphotyrosine phosphatases. Second, cell-permeable tumor promoters, such as okadaic acid, were shown to be potent phosphatase inhibitors that have multiple effects on signaling pathways. Third, the subunits of the type 2A phosphatase were found to associate with transforming antigens encoded by DNA tumor viruses, indicating a role for phosphatases in mediating abnormal proliferative events. Fourth, several cell-cycle mutants were found to encode phosphatases. This review focuses on the significance of the transmembrane phosphotyrosine phosphatases and on the possible ways in which intracellular phosphatases function in signaling pathways.  相似文献   

12.
13.
We have previously shown that equine follicle-stimulating hormone (FSH) stimulates plasminogen activator secretion in Sertoli cells at much lower concentrations than would be expected from its relative binding activity. We have introduced the term 'superactivity' to designate this particular behavior. In the present study, we show that equine FSH triggers a long-lasting (20 h) plasminogen activator secretion, whereas rat, porcine and ovine FSH as well as equine LH and equine choriogonadotropin (CG) provoke a short-term response (2.5 h). Moreover, equine FSH was also shown to be superactive in the stimulation of estradiol secretion and cyclic AMP production. This indicates that the step responsible for the long-term stimulation by equine FSH is not located beyond cAMP accumulation. Equine and porcine FSH were found to be equally stable during incubation with the cells demonstrating that equine FSH superactivity was not due to higher stability. Besides, phosphodiesterase inhibition led to a similar increase in the responses to both hormones. This rules out the possibility that equine FSH superactivity is due to less stimulation of phosphodiesterase activity. All these data strongly suggest that equine FSH exhibits superactivity in rat Sertoli cells by stimulating adenylate cyclase activity for a much longer period of time than do all other gonadotropins. The molecular mechanism of this outstanding behavior remains to be elucidated.  相似文献   

14.
We have examined the role of autophosphorylation in insulin signal transmission by oligonucleotide directed mutagenesis of seven potential tyrosine autophosphorylation sites in the human insulin receptor. Chinese hamster ovary cells transfected with these receptors were analyzed for insulin stimulated 2-deoxyglucose uptake, thymidine incorporation, endogenous substrate phosphorylation, and in vitro kinase activity. We found that phosphorylation on tyrosine residues 953, 1316, and 1322 were not necessary for receptor-mediated signal transduction. Mutation of tyrosine 960 reduced but did not abolish the signaling capabilities of the receptor. Finally, the simultaneous mutation of tyrosine residues 1146, 1150, and 1151 (the numbering system is that of Ullrich et al. (Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y. C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) resulted in a biologically inactive receptor, suggesting that the insulin receptor can be inactivated by removal of key autophosphorylation sites.  相似文献   

15.
Ras-proteins are guanine nucleotide binding proteins, which, in the GTP bound state emit a strong mitogenic signal. In the GDP bound state, the protein appears inactive. We have found that stimulation by insulin of cells expressing elevated levels of insulin receptors results in a rapid conversion of Ras-GDP into Ras-GTP. This process is part of the signalling pathway leading to immediate-early gene expression and a mitogenic response. There seems to be no involvement of Ras-GTP formation in the process of insulin stimulated glucose transport. Though the precise mechanism by which Ras is converted to the GTP bound state remains to be established, a tight correlation exists between receptor autophosphorylation and Ras-GTP formation.  相似文献   

16.
The signal transduction of the peptide, eclosion hormone, in the silkworm Bombyx mori appears to be mediated via the second messenger cyclic GMP throughout their life cycle. Injection of 8-bromo-cGMP induced the ecdysis behavior in pharate adults with similar latency to eclosion hormone-induced ecdysis; the moulting occurred 50-70 min after the injection. The potency of 8Br-cGMP was 10(2) fold higher than that of cGMP and the efficacy was increased by the co-injection of the phosphodiesterase inhibitor IBMX. On the other hand, in the silkworm pupal ecdysis the eclosion hormone and also 8Br-cGMP induced the moulting behavior in a dose-dependent manner. The adult development of the ability to respond to 8Br-cGMP took place concomitantly with the response to the eclosion hormone. Both the developmental time courses were shifted by a shift of light and dark cycles. Accordingly, the sensitivities to the peptide and cyclic nucleotide developed correspondently under the light and dark circadian rhythm. Thus throughout the silkworm life cycle, eclosion hormone is effective to trigger the ecdysis behavior and cGMP plays a crucial role as the second messenger in the eclosion hormone-mediated signal transduction.  相似文献   

17.
We have studied Ca2+ voltage-gated channels of immature rat Sertoli cells by measuring intracellular Ca2+ concentration and its variation following administration of various agents in fura-2-loaded, confluent monolayers in culture. Our findings indicate that the basal Ca2+ intracellular level is about 100 nM, a value that falls within the range found in most eukaryotic cells. The intracellular Ca2+ level is rapidly increased by fetal bovine serum through release of intracellularly stored Ca2+ and opening of membrane cation channels. Substantial Ca2+ influx in rat Sertoli cells seems to be mediated by voltage-gated cation channels, which are sensitive to nifedipine, nicardipine, and omega-conotoxin. To investigate whether FSH, which controls several morphological and biochemical events of prepubertal Sertoli cells, modified Ca2+ influx in this cell type, we analyzed the cell response to acute FSH administration. The results show that, although not influencing the basal concentration of Ca2+, FSH decreases intracellular calcium influx induced by membrane depolarization. Similar data were also obtained by adding dibutyryl cAMP to the external medium and by increasing endogenous cAMP.  相似文献   

18.
Ionised calcium (Ca2+) is a key second messenger, regulating almost every cellular process from cell death to muscle contraction. Cytosolic levels of this ion can be increased via gating of channel proteins located in the plasma membrane, endoplasmic reticulum and other membrane-delimited organelles. Ca2+ can be removed from cells by extrusion across the plasma membrane, uptake into organelles and buffering by anionic components. Ca2+ channels and extrusion mechanisms work in concert to generate diverse spatiotemporal patterns of this second messenger, the distinct profiles of which determine different cellular outcomes. Increases in cytoplasmic Ca2+ concentration are one of the most rapid cellular responses upon exposure to certain oxysterol congeners or to oxidised low-density lipoprotein, occurring within seconds of addition and preceding increases in levels of reactive oxygen species, or changes in gene expression. Furthermore, exposure of cells to oxysterols for periods of hours to days modulates Ca2+ signal transduction, with these longer-term alterations in cellular Ca2+ homeostasis potentially underlying pathological events within atherosclerotic lesions, such as hyporeactivity to vasoconstrictors observed in vascular smooth muscle, or ER stress-induced cell death in macrophages. Despite their candidate roles in physiology and disease, little is known about the molecular mechanisms that couple changes in oxysterol concentrations to alterations in Ca2+ signalling. This review examines the ways in which oxysterols could influence Ca2+ signal transduction and the potential roles of this in health and disease.  相似文献   

19.
Cross-linking surface Ig on human B cells, or the TCR complex on T cells leads to the rapid appearance of newly tyrosine phosphorylated proteins. This is associated with inositol phospholipid turnover and a rise in intracellular calcium. Incubation of human B or T lymphocytes with the tyrosine kinase inhibitors, herbimycin and genistein, inhibits new tyrosine phosphorylation after receptor-linked activation. This is associated with complete abrogation of the increase in intracellular calcium in these lymphocytes and inhibition of inositol phospholipid turnover. Herbimycin- and genistein-treated lymphocytes are nevertheless still capable of responding to aluminum fluoride with a rise in intracellular calcium. These data support the contention that a B cell-associated protein tyrosine kinase regulates signal transduction via phospholipase C. CD45, the membrane associated protein tyrosine phosphatase, and PMA that activates protein kinase C, both inhibit the calcium response in B lymphocytes induced by receptor cross-linking. PMA and cross-linking CD45 both induced the appearance of tyrosine phosphorylated proteins in human B cells, although the pattern is quite distinct from that seen when surface lg is cross-linked. However, the induction of new tyrosine phosphorylation by anti-mu does not appear to be affected by these reagents. Although this may reflect an insensitivity of the tyrosine phosphorylation assay, it could indicate that regulation of the calcium response and regulation of the tyrosine kinase can be independent processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号