首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The levels and activity of protein kinase C and diacylglycerol were shown to be upregulated in diabetes/hyperglycemia; however, studies on the expression of upstream signaling molecules of phosphatidylinositol turnover were lacking. The present study was therefore undertaken to examine whether hyperglycemia/diabetes could also modulate the expression of Gqalpha and phospholipase C-beta (PLC-beta) proteins and associated phosphatidylinositol turnover signaling in aortic vascular smooth muscle cells (VSMCs) and A10 VSMCs exposed to high glucose. Aortic VSMCs from streptozotocin-diabetic rats exhibited an increased expression of Gqalpha and PLC-beta1 proteins (60% and 30%, respectively) compared with control cells as determined by Western blot analysis. The pretreatment of A10 VSMCs with high glucose (26 mM) for 3 days also augmented the levels of Gqalpha, G11alpha, PLC-beta1 and -beta2 proteins by about 50, 35, 30, and 30%, respectively, compared with control cells that were restored to control levels by endothelin-1 (ET-1), ET types A and B (ET(A) and ET(B)) receptors, and angiotensin II type 1 (AT1) receptor antagonists. In addition, ET-1-stimulated inositol triphosphate formation was also significantly higher in VSMCs exposed to high glucose, whereas the basal levels of inositol triphosphate were not different between the two groups. Furthermore, the treatment of A10 VSMCs with angiotensin II and ET-1 also significantly increased the levels of Gq/11alpha and PLC-beta proteins that were restored toward control levels by ET(A)/ET(B) and AT1 receptor antagonists. These results suggest that high glucose augments the expression of Gq/11alpha, PLC-beta, and mediated signaling in VSMCs, which may be attributed to AT1, ET(A), and ET(B) receptors.  相似文献   

2.
K Shaw  J H Exton 《Biochemistry》1992,31(27):6347-6354
Phosphoinositide phospholipase C (PLC) activity extracted from bovine liver plasma membranes with sodium cholate was stimulated by GTP gamma S-activated G alpha q/G alpha 11, whereas the enzyme from liver cytosol was not. The membrane-associated PLC was subjected to chromatography on heparin-Sepharose, Q Sepharose, and S300HR, enabling the isolation of the G-protein stimulated activity and its resolution from PLC-gamma and PLC-delta. Following gel filtration, two proteins of 150 and 140 kDa were found to correspond to the activatable enzyme. These proteins were identified immunologically as members of the PLC-beta family and were completely resolved by chromatography on TSK Phenyl 5PW. The 150-kDa enzyme was markedly responsive to GTP gamma S-activated alpha-subunits of G alpha q/G alpha 11 or to purified Gq/G11 in the presence of GTP gamma S. The response of this PLC was of much greater magnitude than that of the 140-kDa enzyme. The partially purified 150-kDa enzyme showed specificity for PtdIns(4,5)P2 and PtdIns4P as compared to PtdIns and had an absolute dependence upon Ca2+. These characteristics were similar to those of the brain PLC-beta 1. The immunological and biochemical properties of the 150-kDa membrane-associated enzyme are consistent with its being the PLC-beta isozyme that is involved in receptor-G-protein-mediated generation of inositol 1,4,5-triphosphate in liver.  相似文献   

3.
The intracellular regulator of G protein signalling (RGS) proteins were first identified as GTPase activating proteins (GAPs) for heterotrimeric G proteins, however, it was later found that they can also regulate G protein-effector interactions in other ways that are still not well understood. There is increasing evidence that some of the effects of RGS proteins occur due to their ability to interact with multiprotein signalling complexes. In this review, we will discuss recent evidence that supports the idea that RGS proteins can bind to proteins other than Galpha, such as G protein coupled receptors (GPCRs, e.g. muscarinic, dopaminergic, adrenergic, angiotensin, interleukin and opioid receptors) and effectors (e.g. adenylyl cyclase, GIRK channels, PDEgamma, PLC-beta and Ca(2+) channels). Furthermore, we will investigate novel RGS binding partners (e.g. GIPC, spinophilin, 14-3-3) that underlie the formation of signalling scaffolds or govern RGS protein availability and/or activity.  相似文献   

4.
Plasma membrane targeting of G protein alpha (Galpha) subunits is essential for competent receptor-to-G protein signaling. Many Galpha are tethered to the plasma membrane by covalent lipid modifications at their N terminus. Additionally, it is hypothesized that Gq family members (Gqalpha,G11alpha,G14alpha, and G16alpha) in particular utilize a polybasic sequence of amino acids in their N terminus to promote membrane attachment and protein palmitoylation. However, this hypothesis has not been tested, and nothing is known about other mechanisms that control subcellular localization and signaling properties of G14alpha and G16alpha. Here we report critical biochemical factors that mediate membrane attachment and signaling function of G14alpha and G16alpha. We find that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences in their N termini and that the polycysteine sequence along with the adjacent polybasic region are both important for G16alpha-mediated signaling at the plasma membrane. Surprisingly, the isolated N termini of G14alpha and G16alpha expressed as peptides fused to enhanced green fluorescent protein each exhibit differential requirements for palmitoylation and membrane targeting; individual cysteine residues, but not the polybasic regions, determine lipid modification and subcellular localization. However, full-length G16alpha, more so than G14alpha, displays a functional dependence on single cysteines for membrane localization and activity, and its full signaling potential depends on the integrity of the polybasic sequence. Together, these findings indicate that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences, and that the adjacent polybasic domain is not required for Galpha palmitoylation but is important for localization and functional activity of heterotrimeric G proteins.  相似文献   

5.
High efficiency transient transfection of Cos-7 cells was previously used to establish the functional coupling between G alpha q/G alpha 11 and phospholipase C beta 1 (Wu, D., Lee, C-H., Rhee, S. G., and Simon, M. I. (1992) J. Biol. Chem. 267, 1811-1817). Here the same system was used to study the functional coupling between other guanine nucleotide-binding regulatory protein (G-protein) alpha subunits and phospholipases and to study which G alpha subunits mediate the activation of phospholipase C by the alpha 1-adrenergic receptor subtypes, alpha 1 A, alpha 1 B, and alpha 1 C. We found that G alpha 14 and G alpha 16 behaved like G alpha 11 or G alpha q, i.e. they could activate endogenous phospholipases in Cos-7 cells in the presence of AIFn. The synergistic increase in inositol phosphate release in Cos-7 cells after they were cotransfected with cDNAs encoding G alpha subunits and phospholipase C beta 1 indicates that both G alpha 16 and G alpha 14 can activate phospholipase C beta 1. The activation of phospholipase C beta 1 was restricted to members of the Gq subfamily of alpha subunits. They activated phospholipase C beta 1 but not phospholipase C gamma 1, gamma 2, or phospholipase C delta 3. The cotransfection of Cos-7 cells with cDNAs encoding three different alpha 1-adrenergic receptors and G alpha q or G alpha 11 leads to an increase in norepinephrine-dependent inositol phosphate release. This indicates that G alpha q or G alpha 11 can mediate the activation of phospholipase C by all three subtypes of alpha 1-adrenergic receptors. With the same assay system, G alpha 16 and G alpha 14 appear to be differentially involved in the activation of phospholipase C by the alpha 1-adrenergic receptors. The alpha 1 B subtype receptor gave a ligand-mediated synergistic response in the cells cotransfected with either G alpha 14 or G alpha 16. However, the alpha 1 C receptor responded in cells cotransfected with G alpha 14 but not G alpha 16, and the alpha 1 A receptor showed little synergistic response in cells transfected with either G alpha 14 or G alpha 16. The ability of the alpha 1 A and alpha 1 C receptors to activate phospholipase C through G alpha q and G alpha 11 was also demonstrated in a cell-free system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Regulators of G protein signaling (RGS) proteins bind to active G alpha subunits and accelerate the rate of GTP hydrolysis and/or block interaction with effector molecules, thereby decreasing signal duration and strength. RGS proteins are defined by the presence of a conserved 120-residue region termed the RGS domain. Recently, it was shown that the G protein-coupled receptor kinase 2 (GRK2) contains an RGS domain that binds to the active form of G alpha(q). Here, the ability of GRK2 to interact with other members of the G alpha(q) family, G alpha(11), G alpha(14), and G alpha(16), was tested. The signaling of all members of the G alpha(q) family, with the exception of G alpha(16), was inhibited by GRK2. Immunoprecipitation of full-length GRK2 or pull down of GST-GRK2-(45-178) resulted in the detection of G alpha(q), but not G alpha(16), in an activation-dependent manner. Moreover, activated G alpha(16) failed to promote plasma membrane (PM) recruitment of a GRK2-(45-178)-GFP fusion protein. Assays with chimeric G alpha(q)(-)(16) subunits indicated that the C-terminus of G alpha(q) mediates binding to GRK2. Despite showing no interaction with GRK2, G alpha(16) does interact with RGS2, in both inositol phosphate and PM recruitment assays. Thus, GRK2 is the first identified RGS protein that discriminates between members of the G alpha(q) family, while another RGS protein, RGS2, binds to both G alpha(q) and G alpha(16).  相似文献   

7.
Heterotrimeric G proteins mediate cell growth and differentiation by coupling cell surface receptors to intracellular effector enzymes. The G-protein alpha subunit, Galpha(16), and its murine homologue Galpha(15), are expressed specifically in hematopoietic cells and their expression is highly regulated during differentiation of normal and leukemic cells. In this study, we examined the phosphorylation of Galpha(15)/Galpha(16) and its role in receptor and effector coupling. We observed a PMA-stimulated intact cell phosphorylation of Galpha(15) in COS7 cells transfected with Galpha(15) and protein kinase Calpha (PKCalpha), and phosphorylation of endogenous Galpha(16) in HL60 cells. We also showed that peptides derived from the two G-proteins were phosphorylated in vitro using purified brain PKC. Furthermore, we identified the putative phosphorylation site and showed that mutation or deletion of this PKC phosphorylation site inhibited phospholipase C (PLC) activation. The behavior of double mutants with the constitutively active G-protein mutation (QL-mutant) and mutation in the putative phosphorylation site suggests that the phosphorylation site of Galpha(15/16) is essential for receptor-coupled activation of PLC, but not for direct interaction of the G-protein with PLC-beta.  相似文献   

8.
The relative specificities of members of the G alpha q family of GTP-binding proteins were tested for their ability to activate different phosphoinositide-specific phospholipase C (PI-PLC) beta isozymes. Cos-7 cells were transfected with cDNA corresponding to G alpha q, G alpha 11, G alpha 14, and G alpha 16. Most of the recombinant protein was bound to the cell membrane and these membranes were washed to elute endogenous PI-PLC activity. The membrane preparation was reconstituted with purified preparations of the PI-PLC beta isozymes and guanosine 5'-O-thiotriphosphate (GTP gamma S)-stimulated enzyme activity was measured. All four proteins of the G alpha q family were found to stimulate PI-PLC beta 1, with G alpha q and G alpha 11 being most efficient. On the other hand, G alpha 16 was found to most effectively activate PI-PLC beta 2, while G alpha q, G alpha 11, and G alpha 14 showed less stimulation. Specific anti- G alpha 16 antibody blocked the stimulation of both PI-PLC beta 1 and PI-PLC beta 2 in the enriched membrane fraction. We conclude that there is specificity in the interaction of different members of the Gq family with different PI-PLC beta effectors. This specificity may be important in generating tissue- or receptor-specific responses in vivo.  相似文献   

9.
Activation of phospholipase C-beta (PLC-beta) by G protein-coupled receptors typically results in rapid but transient second messenger generation. Although PLC-beta deactivation may contribute to the transient nature of this response, the mechanisms governing PLC-beta deactivation are poorly characterized. We investigated the involvement of protein kinase C (PKC) in the termination of PLC-beta activation induced by endogenous P2Y(2) purinergic receptors and transfected M(3) muscarinic acetylcholine receptors (mAChR) in Chinese hamster ovary cells. Activation of P2Y(2) receptors causes Galpha(q/11) to associate with PLC-beta3, whereas M(3) mAChR activation causes Galpha(q/11) to associate with both PLC-beta1 and PLC-beta3 in these cells. Phosphorylation of PLC-beta3, but not PLC-beta1, is induced by activating either P2Y(2) receptors or M(3) mAChR. We demonstrate that PKC rather than protein kinase A mediates the G protein-coupled receptor-induced phosphorylation of PLC-beta3. The PKC-mediated phosphorylation of PLC-beta3 diminishes the interaction of Galpha(q/11) with PLC-beta3, thereby contributing to the termination PLC-beta3 activity. These findings indicate that the distinct temporal profiles of PLC activation by P2Y(2) receptors and mAChR may arise from the differential activation of PLC-beta1 and PLC-beta3 by the receptors, coupled with a selective PKC-mediated negative feedback mechanism that targets PLC-beta3 but not PLC-beta1.  相似文献   

10.
The four collagen receptor integrins, alpha1beta1, alpha2beta1, alpha10beta1 and alpha11beta1, form a structurally and functionally distinct subgroup when compared to other members of the integrin family. In this review, we discuss the structures of these receptors and their differences in collagen binding and signalling function.  相似文献   

11.
Heterotrimeric G proteins play a pivotal role in GPCR signalling; they link receptors to intracellular effectors and their inactivation by RGS proteins is a key factor in resetting the pathway following stimulation. The precise GPCR:G protein:RGS combination determines the nature and duration of the response. Investigating the activity of particular combinations is difficult in cells which contain multiples of each component. We have therefore utilised a previously characterised yeast system to express mammalian proteins in isolation. Human G alpha(q) and G alpha(11) spontaneously activated the yeast pheromone-response pathway by a mechanism which required the formation of G alpha-GTP. This provided an assay for the specific activity of human RGS proteins. RGS1, RGS2, RGS3 and RGS4 inhibited the spontaneous activity of both G alpha(q) and G alpha(11) but, in contrast, RGS5 and RGS16 were much less effective against G alpha(11) than G alpha(q). Interestingly, RGS2 and RGS3 were able to inhibit signalling from the constitutively active G alpha(q)QL/G alpha(11)QL mutants, confirming the GAP-independent activity of these RGS proteins. To determine if the RGS-G alpha specificity was maintained under conditions of GPCR stimulation, minor modifications to the C-terminus of G alpha(q)/G alpha(11) enabled coupling to an endogenous receptor. RGS2 and RGS3 were effective inhibitors of both G alpha subunits even at high levels of receptor stimulation, emphasising their GAP-independent activity. At low levels of stimulation RGS5 and RGS16 retained their differential G alpha activity, further highlighting that RGS proteins can discriminate between two very closely related G alpha subunits.  相似文献   

12.
Wu EH  Tam BH  Wong YH 《The FEBS journal》2006,273(11):2388-2398
Accumulating evidence indicates that G protein signaling plays an active role in the regulation of cell survival. Our previous study demonstrated the regulatory effects of G(i/o) proteins in nerve growth factor-induced activation of pro-survival Akt kinase. In the present study we explored the role of various members of the G(s), G(q/11) and G(12/13) subfamilies in the regulation of Akt in cultured mammalian cells. In human embryonic kidney 293 cells transiently expressing constitutively active mutants of G alpha11, G alpha14, G alpha16, G alpha12, or G alpha13 (G alpha11QL, G alpha14QL, G alpha16QL, G alpha12QL and G alpha13QL, respectively), basal phosphorylation of Akt was attenuated, as revealed by western blotting analysis using a phosphospecific anti-Akt immunoglobulin. In contrast, basal Akt phosphorylation was unaffected by the overexpression of a constitutively active G alpha(s) mutant (G alpha(s)QL). Additional experiments showed that G alpha11QL, G alpha14QL, G alpha16QL, G alpha12QL and G alpha13QL, but not G alpha(s)QL, attenuated phosphorylation of the Akt-regulated translation regulator tuberin. Moreover, they were able to inhibit the epidermal growth factor-induced Akt activation and tuberin phosphorylation. The inhibitory mechanism of Gq family members was independent of phospholipase Cbeta activation and calcium signaling because G alpha11QL, G alpha14QL and G alpha16QL remained capable of inhibiting epidermal growth factor-induced Akt activation in cells pretreated with U73122 and the intracellular calcium chelator, BAPTA/AM. Finally, overexpression of the dominant negative mutant of RhoA blocked G alpha12QL- and G alpha13QL-mediated inhibition, suggesting that activated G alpha12 and G alpha13 inhibit Akt signaling via RhoA. Collectively, this study demonstrated the inhibitory effect of activated G alpha11, G alpha14, G alpha16, G alpha12 and G alpha13 on pro-survival Akt signaling.  相似文献   

13.
The CNS is enriched in phosphoinositide-specific phospholipase C (PLC) and in the G proteins linked to its activation. Although the regional distributions of these signaling components within the brain have been determined, neither their cell type-specific localizations (i.e., neuronal versus glial) nor the functional significance of their high expression has been definitively established. In this study, we have examined the expression of phosphoinositide signaling proteins in human NT2-N cells, a well characterized model system for CNS neurons. Retinoic acid-mediated differentiation of NT2 precursor cells to the neuronal phenotype resulted in five- to 15-fold increases in the expression of PLC-beta1, PLC-beta4, and Galpha(q/11) (the prime G protein activator of these isozymes). In contrast, the expression of PLC-beta3 and PLC-gamma1 was markedly reduced following neuronal differentiation. Similar alterations in cell morphology and in the expression of PLC-beta1, PLC-beta3, and Galpha(q/11) expression were observed when NT2 cells were differentiated with berberine, a compound structurally unrelated to retinoic acid. NT2-N neurons exhibited a significantly higher rate of phosphoinositide hydrolysis than NT2 precursor cells in response to direct activation of either G proteins or PLC. These results indicate that neuronal differentiation of NT2 cells is associated with dramatic changes in the expression of proteins of the phosphoinositide signaling system and that, accordingly, differentiated NT2-N neurons possess an increased ability to hydrolyze inositol lipids.  相似文献   

14.
Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. Each subunit of the G protein complex is encoded by a member of one of three corresponding gene families. Currently, 16 different members of the alpha subunit family, 5 different members of the beta subunit family, and 11 different members of the gamma subunit family have been described in mammals. Here we have identified and characterized Bacterial Artificial Chromosomes (BACs) containing the human homologs of each of the alpha, beta, and gamma subunit genes as well as a G alpha11 pseudogene and a previously undiscovered G gamma5-like gene. The gene structure and chromosome location of each gene was determined, as were the orientations of paired genes. These results provide greater insight into the evolution and functional diversity of the mammalian G protein subunit genes.  相似文献   

15.
Phospholipase C-beta (PLC-beta) hydrolyses phosphatidylinositol 4,5-bisphosphate and generates inositol 1,4,5-trisphosphate in response to activation of various G protein-coupled receptors (GPCRs). Using glial cells from knock-out mice lacking either PLC-beta1 [PLC-beta1 (-/-)] or PLC-beta3 [PLC-beta3 (-/-)], we examined which isotype of PLC-beta participated in the cellular signaling events triggered by thrombin. Generation of inositol phosphates (IPs) was enhanced by thrombin in PLC-beta1 (-/-) cells, but was negligible in PLC-beta3 (-/-) cells. Expression of PLC-beta3 in PLC-beta3 (-/-) cells resulted in an increase in pertussis toxin (PTx)-sensitive IPs in response to thrombin as well as to PAR1-specific peptide, while expression of PLC-beta1 in PLC-beta1 (-/-) cells did not have any effect on IP generation. The thrombin-induced [Ca2+]i increase was delayed and attenuated in PLC-beta3 (-/-) cells, but normal in PLC-beta1 (-/-) cells. Pertussis toxin evoked a delayed [Ca2+]i increase in PLC-beta3 (-/-) cells as well as in PLC-beta1 (-/-) cells. These results suggest that activation of PLC-beta3 by pertussis toxin-sensitive G proteins is responsible for the transient [Ca2+]i increase in response to thrombin, whereas the delayed [Ca2+]i increase may be due to activation of some other PLC, such as PLC-beta4, acting via PTx-insensitive G proteins.  相似文献   

16.
We have shown that progesterone (10 pM-10 nM) and progesterone covalently bound to bovine serum albumin (P-CMO BSA; 100 pM-1 microM) rapidly increased (within 5 s) the cytosolic free Ca(2+) concentration and inositol 1,4,5 trisphosphate (InsP(3)) formation in confluent female and male rat osteoblasts via a pertussis toxin-insensitive G-protein. The activation of G-proteins coupled to effectors such as phospholipase C (PLC) is an early event in the signal transduction pathway leading to InsP(3) formation. We used antibodies against the various PLC isoforms to show that only PLC-beta1 and PLC-beta 3 were involved in the Ca(2+) mobilization and InsP(3) formation induced by both progestins in female and male osteoblasts, whereas PLC-beta 2, PLC-gamma 1, and PLC-gamma 2 were not. We also used antibodies against the subunits of heterotrimeric G-proteins to show that the activation of PLC-beta 1 and PLC-beta 3 by both progestins involved the G alpha q/11 subunit, which was insensitive to pertussis toxin, whereas G alpha i, G alpha s, and G beta gamma subunits were not. The membrane effects were independent of the concentration of nuclear progesterone receptor, because the concentration of nuclear progesterone receptors was lower in male than in female osteoblasts. These data suggest that progesterone and P-CMO BSA, which does not enter the cell, directly activate G-protein leading to the very rapid formation of second messengers without involving the nuclear receptor.  相似文献   

17.
Ggamma11 is an unusual guanine nucleotide-binding regulatory protein (G protein) subunit. To study the effect of different Gbeta-binding partners on gamma11 function, four recombinant betagamma dimers, beta1gamma2, beta4gamma2, beta1gamma11, and beta4gamma11, were characterized in a receptor reconstitution assay with the G(q)-linked M1 muscarinic and the G(i1)-linked A1 adenosine receptors. The beta4gamma11 dimer was up to 30-fold less efficient than beta4gamma2 at promoting agonist-dependent binding of [35S]GTPgammaS to either alpha(q) or alpha(i1). Using a competition assay to measure relative affinities of purified betagamma dimers for alpha, the beta4gamma11 dimer had a 15-fold lower affinity for G(i1) alpha than beta4gamma2. Chromatographic characterization of the beta4gamma11 dimer revealed that the betagamma is stable in a heterotrimeric complex with G(i1) alpha; however, upon activation of alpha with MgCl2 and GTPgammaS under nondenaturing conditions, the beta4 and gamma11 subunits dissociate. Activation of purified G(i1) alpha:beta4gamma11 with Mg+2/GTPgammaS following reconstitution into lipid vesicles and incubation with phospholipase C (PLC)-beta resulted in stimulation of PLC-beta activity; however, when this activation preceded reconstitution into vesicles, PLC-beta activity was markedly diminished. In a membrane coupling assay designed to measure the ability of G protein to promote a high-affinity agonist-binding conformation of the A1 adenosine receptor, beta4gamma11 was as effective as beta4gamma2 when coexpressed with G(i1) alpha and receptor. However, G(i1) alpha:beta4gamma11-induced high-affinity binding was up to 20-fold more sensitive to GTPgammaS than G(i1) alpha:beta4gamma2-induced high-affinity binding. These results suggest that the stability of the beta4gamma11 dimer can modulate G protein activity at the receptor and effector.  相似文献   

18.
Members of the phospholipase C-beta (PLC-beta) family of proteins are activated either by G alpha or G beta gamma subunits of heterotrimeric G proteins. To define specific regions of PLC-beta 3 that are involved in binding and activation by G beta gamma, a series of fragments of PLC-beta 3 as glutathione-S-transferase (GST) fusion proteins were produced. A fragment encompassing the N-terminal pleckstrin homology (PH) domain and downstream sequence (GST-N) bound to G protein beta 1 gamma 2 in an in vitro binding assay, and binding was inhibited by G protein alpha subunit, G alpha i1. This PLC-beta 3 fragment also inhibited G beta gamma-stimulated PLC-beta activity in a reconstitution system, while having no significant effect on G alpha q-stimulated PLC-beta 3 activity. The N-terminal G beta gamma binding region was delineated further to the first 180 amino acids, and the sequence Asn150-Ser180, just distal to the PH domain, was found to be required for the interaction. Mutation of basic residues 154Arg, 155Lys, 159Lys, and 161Lys to Glu within this region reduced G beta gamma binding affinity and specifically reduced the EC50 for G beta gamma-dependent activation of the mutant enzyme 3-fold. Basal activity and G alpha q-dependent activation of the enzyme were unaffected by the mutations. While these basic residues may not directly mediate the interaction with G beta gamma, the data provide evidence for an N-terminal G beta gamma binding region of PLC-beta 3 that is involved in activation of the enzyme.  相似文献   

19.
The newly recognized regulators of G protein signaling (RGS) attenuate heterotrimeric G protein signaling pathways. We have cloned an IL-2-induced gene from human T cells, cytokine-responsive gene 1, which encodes a member of the RGS family, RGS16. The RGS16 protein binds Gialpha and Gqalpha proteins present in T cells, and inhibits Gi- and Gq-mediated signaling pathways. By comparison, the mitogen-induced RGS2 inhibits Gq but not Gi signaling. Moreover, the two RGS genes exhibit marked differences in expression patterns. The IL-2-induced expression of the RGS16 gene in T cells is suppressed by elevated cAMP, whereas the RGS2 gene shows a reciprocal pattern of regulation by these stimuli. Because the mitogen and cytokine receptors that trigger expression of RGS2 and RGS16 in T cells do not activate heterotrimeric G proteins, these RGS proteins and the G proteins that they regulate may play a heretofore unrecognized role in T cell functional responses to Ag and cytokine activation.  相似文献   

20.
GTP-bound subunits of the Gq family of G alpha subunits directly activate phospholipase C-beta (PLC-beta) isozymes to produce the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. PLC-betas are GTPase activating proteins (GAPs) that also promote the formation of GDP-bound, inactive G beta subunits. Both phospholipase activation by G alpha-GTP subunits and GAP activity require a C-terminal region unique to PLC-beta isozymes. The crystal structure of the C-terminal region from an avian PLC-beta, determined at 2.4 A resolution, reveals a novel fold composed almost entirely of three long helices forming a coiled-coil that dimerizes along its long axis in an antiparallel orientation. The dimer interface is extensive ( approximately 3,200 A(2)), and, based on gel exclusion chromatography, full length PLC-betas are dimeric, indicating that PLC-betas likely function as dimers. Sequence conservation, mutational data and molecular modeling show that an electrostatically positive surface of the dimer contains the major determinants for binding G beta q. Effector dimerization, as highlighted by PLC-betas, provides a viable mechanism for regulating signaling cascades linked to heterotrimeric G proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号