首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
目前膜ATPase的活性测定主要是利用ATP再生系统,以及测定ATP水解所释放的Pi的方法。Fiske和Subbarrow于1925年创立的用钼酸铵显色测定Pi的方法至今仍被广泛应用于ATP酶的测定,但此法的缺点是在显色过程中会造成有机磷的水解,影响Pi的测定尤其是在测定角膜和细胞组织中的ATP  相似文献   

2.
目前,膜ATPase的活性测定主要是利用ATP再生系统,以及测定ATP水解所释放Pi的方法。比色测Pi的方法为Fiske所开创。Lacy改用抗坏血酸作还原剂,还原磷钼酸,提高了灵敏度。通常在中止酶反应,进行Pi比色测定之前,使用离心或过滤去除变性的酶蛋白。Klinc将酶水解产生的Pi透析到还原性试剂中,以进行Na~ -K~ -ATPase的自动分析。Arnold用表面活性剂溶解膜蛋白,省去过滤、离心或透析等步骤,进行膜ATPase的自动分析,具有简便、快速、灵敏度高、结果可靠等特点,本文基于Arnold的工作,全部使用国产仪器,用于红细胞膜Ca~(2 )Mg~(2 )-ATPase的分析。材料与方法 1、试剂 ATP(江门化工厂),Ouabain为Serva公司产品,其余均为国产分析纯试剂。  相似文献   

3.
目前,膜ATPase的活性测定主要是利用ATP再生系统,以及测定ATP水解所释放Pi的方法。比色测Pi的方法为Fiske所开创。Lacy改用抗坏血酸作还原剂,还原磷钼酸,提高了灵敏度。通常在中止酶反应,进行Pi比色测定之前,使用离心或过滤去除变性的酶蛋白。Kline将酶水解产生的Pi透析到还原性试剂中,以进行Na~+-K~+-ATPase的自动分析。Arnold用表面活性剂溶解膜蛋白,省去过滤、离心或透析等步骤,进行膜ATPase的自动分析,具有简便、快速、灵敏度高、结果可靠等特点,  相似文献   

4.
在真核细胞中,除了线粒体和叶绿体ATPase的功能是合成ATP外,其余部位ATPase是水解ATP以获取生物能量的代谢酶,在生物体细胞内广泛存在。探索ATPase在细胞中的分布状态是研究细胞生理状态的一种重要手段。ATPase在细胞中的多少可反映出细胞当时的生活状态,这一特征已被初步用于探索小麦和水稻雄性不育的细胞生物学研究中,希望通过比较可育花药和不育花药中ATPase的分布差异寻找雄性不育的机理,发现  相似文献   

5.
采用经蔗糖密度梯度法纯化的大豆 (GlycinemaxL .)下胚轴质膜微囊为材料 ,分析了胰蛋白酶处理对质膜H ATPase钒酸钠抑制效应的影响。实验结果显示 ,温和胰蛋白酶处理显著提高H ATPase的ATP水解活力。并且发现酶切处理降低了钒酸钠对ATPase的抑制效应 ,当钒酸钠浓度为 2mmol/L时 ,ATPase活力仅被抑制 5 3.49% ,而未经酶切的对照组则被抑制 6 4.13%。ATP水解动力学分析表明 ,胰蛋白酶酶切处理既不影响ATP水解的Km 值也不影响钒酸钠的抑制类型 ,酶切前后的Km 值都等于 0 .34mmol/L ,并且都属于反竞争抑制。以上结果显示胰蛋白酶酶切处理可能改变了磷酸酶结构域的结构而影响了钒酸钠的抑制效应 ,暗示C_末端调节着磷酸酶结构域的结构和功能  相似文献   

6.
在过去工作基础上,我们进一步研究类囊体膜上牢固结合的ATP_b 与Pi 的交换反应和PSP 的关系。主要结果是:①在线粒体中对ATP 酶复合体的疏水蛋白专一敏感的寡霉素,对叶绿体中ATP 的光下形成和水解均表现为抑制,其中对ATP 酶活力的抑制要比对ATP 形成的抑制强烈得多,对核苷酸交换和光下H~ 吸收也有明显的抑制作用(表1)。②去除内源游离核苷酸的叶绿体悬浮液,与Pi(~(31)Pi ~(32)Pi)照光(不外加ADP),发现在适当的寡霉素浓度(20微克/毫克蛋白)下显著促进此系统ATP 中~(32)Pi 参入的数量;并且在所测温度下均促进,温度升高(30℃),促进作用更为明显(表2,3)。③用荧光素酶测定ATP 的方法对上述系统的反应产物进行鉴别,并与~(32)Pi酯化法相比较,证明寡霉素促进的是ATP_b-Pi 交换(图1,2;表4,6)。④ATP_b-Pi 交换反应与类囊体膜的能量转换有密切的关系。这交换反应需光、需辅助因子,也受解联剂的影响(表5),是需能反应。这ATP_b-Pi 交换,较之PSP 受解联剂的影响要小得多,可能它与膜上高能态有更为直接的联系。  相似文献   

7.
生物固氮     
912334 肺炎克氏杆菌固氮酶水解ATP机制的动力学研究[会,英]/Thorneley,R.N.F.…∥8th Internatl.Cong. Nitrogen Fixation.-1991,5,Abs.-A-07 应用截流光谱,截流热量法,稳态H_2和Pi形成测定和质谱分析~(18)O-Pi中~(18)O的损失等研究了纯化的固氮酶组分蛋白在6℃、pH7.0和在23℃、pH7.4下需还原剂和不需还原剂ATP水解的机理.MgATP裂解产生的固氮酶结合的MgADP+Pi是可逆的,与释放一个质子偶联,吸热并在6℃下推动电子从Fe蛋白传递至  相似文献   

8.
焦磷酸在植物细胞能量代谢中的作用(综述)   总被引:1,自引:0,他引:1  
ADVANCESINRESEARCHONTHEROLESOFPYROPHOSPHATEINCELLULARENERGYMETABOLISMOFPLANTSWangYixing(DepartmentofBiology,JinanUniversity,Guangzhou510632)LiMingqi(DepartmentofAgriculturalBiology,SouthChinaAgriculturalUniversity,Guangzhou510642)焦磷酸(PPi)是一种高能化合物,其水解的G为-33.4kJmol,即PPi水解释放的自由能与ATP相似(ATP水解为ADP和Pi的G为-31.3kJmol)。但是对于焦磷酸代谢的传统观点是:细胞内焦磷酸水平很低,代谢中的焦磷酸,主要是在大分子如蛋白质、淀粉等生…  相似文献   

9.
PreperationofCF_1DeficientintheδSubunitbyHydrophobicColumnChro-matographyRENHut-Miao,WEIJia-Mian(ShanghaiInstituteofPlantPhysiology,TheChineseAcademyofSciences.Shanghai200032)叶绿体类囊体膜上H-ATPase在光合作用的能量转换过程中起着重要的作用。光合磷酸化就是H”-ATPase利用光合电子传递产生的跨膜电化学质子梯度,把ADP和Pi合成ATP的过程。但是人们对H”-ATPase催化合成ATP的机理、CF;和CF。的连接、各个亚基的功能以及该酶的调节等几个关键性的问题还没有了解得十分清楚。而制备获得缺…  相似文献   

10.
铁蛋白在结合MgATP时,MgATP基本上不水解,只有在与钼铁蛋白结合并传递电子给钼铁蛋白时,MgATP才酶促水解为MgADP和Pi(磷酸根),电子传递和ATP的水解是两个快速的偶联过程。[Fe_4S_4(SPh)_4]~(-2)  相似文献   

11.
动蛋白(kinesin)是一种具有ATPase活性的微管马达蛋白,它可以利用水解ATP产生的能量沿微管运动. 由于动蛋白参与了众多的生物学过程,近年来动蛋白的研究成为一个热点. 文章总结了动蛋白的结构、沿微管运动的机制、活性调节及动蛋白的分布与功能.  相似文献   

12.
苦皮藤素V是一种对昆虫具有毒杀活性的化合物,从植物苦皮藤(Celastrus angulatus Max)中分离出来。目前,已发现苦皮藤素V可与粘虫中肠液泡型ATP酶(V-ATPase)的H、B和a亚基结合,但是其具体作用机理还尚不清楚。本研究将大肠杆菌(Escherichia coli)中表达得到的东方粘虫中肠V-ATPase A亚基突变体TSCA和V-ATPase B亚基包涵体洗涤、溶解后进行复性,获得可溶性AB亚基复合物后采用亲和层析纯化。将纯化好的AB亚基复合物测定H+K+-ATPase活性,证明其有ATP水解活性。随后,测定苦皮藤素V对复合物ATPase的抑制活性,发现加入苦皮藤素后,复合物ATPase活性降低。因此,其可能是通过抑制了AB亚基复合物的ATPase活性,从而产生了杀虫效果,证明AB亚基复合物为苦皮藤素V的潜在靶点之一。这为了解苦皮藤素与V ATPase相互作用机制打下了基础,也为进一步开发新型杀虫药物奠定了基础。  相似文献   

13.
Sec途径(分泌途径,Secretion pathway)是蛋白质转运的主要途径。其中,SecA ATPase是蛋白质转运途径中的"动力泵",它通过ATP的水解循环驱使蛋白质前体穿过细菌内膜。SecA蛋白在细菌中是独有且不可缺少的。克隆和高效表达绿脓杆菌PasecAN75蛋白(绿脓杆菌SecA蛋白N端645个氨基酸残基组成的片段,大小约75 kD)并优化其ATPase酶活测定体系,在此基础上建立了更为灵敏的SecA蛋白ATPase活性抑制剂的筛选模型。运用该模型从化合物库的3220个样品中筛选得到可抑制绿脓杆菌SecA ATP酶的活性阳性化合物4个,从7196个微生物发酵液中得到66个阳性样品,筛选阳性率为0.67%(以抑制率大于30%为筛选阳性标准)。而后通过已建立的细胞水平筛选模型对其抗菌活性进行验证。研究结果表明3个化合物样品和6个发酵液样品在酶水平和细胞水平对绿脓杆菌SecA ATPase均有较好的抑制作用,值得进一步研究。  相似文献   

14.
本文应用LKB公司的ATP测液建立了Mg~(2 )-ATP酶的ATP结合及水解活性的测定方法;利用国产荧光素酶粗品在连串反应体系中建立测定Mg~(2 )-ATP酶结合活性的方法,并与水解活性相比较.对Mg~(2 )-ATP酶的去脂样品,Mg~(2 )-ATP酶与卵磷脂复合物以及微粒体样所做的测定表明,上述两种方法是可靠、简便的,尤其是利用国产荧光素酶粗品建立的ATP结合活性的测定方法,能避免水解对结合活性测定的干扰,刘其它的酶-底物的结合研究有参考价值.  相似文献   

15.
苦皮藤素V是一种对昆虫具有毒杀活性的化合物,从植物苦皮藤(Celastrus angulatus Max)中分离出来。目前,已发现苦皮藤素V可与粘虫中肠液泡型ATP酶(V-ATPase)的H、B和a亚基结合,但是其具体作用机理还尚不清楚。本研究将大肠杆菌(Escherichia coli)中表达得到的东方粘虫中肠V-ATPase A亚基突变体TSCA和V-ATPase B亚基包涵体洗涤、溶解后进行复性,获得可溶性AB亚基复合物后采用亲和层析纯化。将纯化好的AB亚基复合物测定H^+K^+-ATPase活性,证明其有ATP水解活性。随后,测定苦皮藤素V对复合物ATPase的抑制活性,发现加入苦皮藤素后,复合物ATPase活性降低。因此,其可能是通过抑制了AB亚基复合物的ATPase活性,从而产生了杀虫效果,证明AB亚基复合物为苦皮藤素V的潜在靶点之一。这为了解苦皮藤素与VATPase相互作用机制打下了基础,也为进一步开发新型杀虫药物奠定了基础。  相似文献   

16.
孔雀绿定磷法测定植物NADP磷酸酶活性   总被引:5,自引:0,他引:5  
AMethodofPhosphateDeterminationUsingMalachiteGreenFitfortheMeasurementofNADPPhosphataseActivityYANGWan-Nian,HEZhi-Chang(CollegeofLifeSciences,WuhanUniversity,Wuhan430072)NADP磷酸酶催化NADP水解生成NAD和磷酸:NADP+H2O→NAD+Pi。该酶与NAD激酶一起参与NAD和NADP水平的调节。其活性通过乙醇脱氢酶循环反应生成的NAD确定[1]。该方法虽然比较灵敏,但操作比较繁琐,反应条件不易控制。孔雀绿定磷法是一种灵敏度很高的测定无机磷的方法[2,3]已用于ATP酶[2,3,4]活性及钙调素含量[3]的…  相似文献   

17.
暗中培养的绿豆幼苗子叶在萌发后3—4天时,外观出现衰老征状,6天后子叶凋落。随子叶日龄的增加,子叶的呼吸强度一直下降,呼吸商始终小于1。当外加L-苹果酸、α-酮戊二酸、琥珀酸和NADH为底物测定离体线粒体氧化活性时,衰老子叶的线粒体对上述四种底物的氧化活性有不同程度的增加;抗氰呼吸也有所升高。子叶衰老时,线粒体的ADP/O和呼吸控制(RC值均降低);线粒体ATPase水解ATP的活性升高。衰老绿豆子叶线粒体氧化磷酸化偶联效率的降低和ATPase水解活性的增强是与线粒体结构改变相联系的一种功能变化,它导致能量亏缺,并进一步加速了衰老的恶化进程。  相似文献   

18.
暗中培养的绿豆幼苗子叶在萌发后3—4天时,外观出现衰老征状,6天后子叶凋落。随子叶日龄的增加,子叶的呼吸强度一直下降,呼吸商始终小于1。当外加L—苹果酸、a—酮戊二酸、琥珀酸和NADH为底物测定离体线粒体氧化活性时,衰老子叶的线粒体对上述四种底物的氧化活性有不同程度的增加;抗氰呼吸也有所升高。子叶衰老时,线粒体的ADP/O和呼吸控制(RC值均降低);线粒体ATPase水解ATP的活性升高。衰老绿豆子叶线粒体氧化磷酸化偶联效率的降低和ATPase水解活性的增强是与线粒体结构改变相联系的一种功能变化,它导致能量亏缺,并进一步加速了衰老的恶化进程。  相似文献   

19.
ATP合酶既可在跨膜质子势的推动下催化合成ATP,也可以利用水解ATP释放的化学能而充当质子泵,把质子从线粒体基质中输送到内膜外侧,其能量转化效率却高得惊人,几乎达到100%。在旋转分子马达ATP合酶结构为基础上,结合随机主方程方法,提出了描述旋转分子马达ATPase合酶四态随机跃迁不等距旋转催化运动的理论模型;得到其角速度、扩散系数与ATP浓度之间的变化关系,并且得出了符合旋转分子马达生物机理的结果,定性半定量地解释了其动力学行为。  相似文献   

20.
Hight等在VO~(2+)-ATP等溶液体系中发现,当络合物被H_2O_2氧化时,极大地促进了被络合活化的ATP的水解。在这个电子传递与ATP水解相偶联的过程中,电子传递的途径是否流经ATP的磷酐键导致ATP水解这个问题仍不清楚。为阐明这个问题,我们设计  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号