首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin (0.1 μM) and 1 μM epinephrine each increased the uptake and phosphorylation of 2-deoxyglucose by the perfused rat heart by increasing the apparent Vmax without altering the Km. Isoproterenol (10 μM), 50 μM methoxamine and 10 mM CaCl2 also increased uptake. Lowering of the perfusate Ca2+ concentration from 1.27 to 0.1 mM Ca2+, addition of the Ca2+ channel blocker nifedipine (1 μM) or addition of 1.7 mM EGTA decreased the basal rate of uptake of 2-deoxyglucose and prevented the stimulation due to 1 μM epinephrine. Stimulation of 2-deoxyglucose uptake by 0.1 μM insulin was only partly inhibited by Ca2+ omission, nifedipine or 1 mM EGTA. Half-maximal stimulation of 2-deoxyglucose uptake by insulin occurred at 2 nM and 0.4 nM for medium containing 1.27 and 0.1 mM Ca2+, respectively. Maximal concentrations of insulin (0.1 μM) and epinephrine (1 μM) were additive for glucose uptake and lactate output but were not additive for uptake of 2-deoxyglucose. Half-maximal stimulation of 2-deoxyglucose uptake by epinephrine occurred at 0.2 μM but maximal concentrations of epinephrine (e.g., 1 μM) gave lower rates of 2-deoxyglucose uptake than that attained by maximal concentrations of insulin. The addition of insulin increased uptake of 2-deoxyglucose at all concentrations of epinephrine but epinephrine only increased uptake at sub-maximal concentrations of insulin. The role of Ca2+ in signal reversal was also studied. Removal of 1 μM epinephrine after a 10 min exposure period resulted in a rapid return of contractility to basal values but the rate of 2-deoxyglucose uptake increased further and remained elevated at 20 min unless the Ca2+ concentration was lowered to 0.1 mM or nifedipine (1 μM) was added. Similarly, removal of 0.1 μM insulin after a 10 min exposure period did not affect the rate of 2-deoxyglucose uptake, which did not return to basal values within 20 min unless the concentration of Ca2+ was decreased to 0.1 mM. Insulin-mediated increase in 2-deoxyglucose uptake at 0.1 mM Ca2+ reversed upon hormone removal. It is concluded that catecholamines mediate a Ca2+-dependent increase in 2-deoxyglucose transport from either α or β receptors. Insulin has both a Ca2+-dependent and a Ca2+-independent component. Reversal studies suggest an additional role for Ca2+ in maintaining the activated transport state when activated by either epinephrine or insulin.  相似文献   

2.
  • 1.1. In the plasma membrane of mussel gill cells an ouabain insensitive, Ca2+-activated ATPase activity is present. The ATPase has high Ca2+ affinity (Kma = 0.3 μM).
  • 2.2. The optimum assay conditions to evaluate the enzymatic activity of the Ca2+-stimulated ATPase at 19°C are: 120–300 mM KCl ionic strength, pH 7.0 and 2 mM ATP. As for mammalian enzymes, the Ca2+ ATPase activity is stimulated by DTT (0.5–1 mM) and it is inhibited by low concentrations of vanadate (10–50 μM) and -SH inhibitors such as PCMB and PCMBS (10 μM); the enzyme appears to be calmodulin insensitive.
  • 3.3. Electrophoretic analyses of plasma membrane proteins demonstrate that: (a) Ca2+ at n-μM concentrations is necessary to activate ATP hydrolysis with consequent formation of the enzyme-phosphate complex; (b) the steady state concentration of the phosphorylated intermediate is increased in the presence of La3+; (c) the mol. wt of Ca2+ ATPase is about 140 kDa.
  • 4.4. Low Ca2+ concentrations (n-μM) are sufficient to stimulate the ATP-dependent Ca2+ uptake by plasma membrane inside-out vesicles.
  • 5.5. The results indicate that the Ca2+ pump present in the gill plasma membranes could be responsible for Ca2+ extrusion and therefore involved in maintaining the cytosolic Ca2+ concentration within physiological levels.
  相似文献   

3.
The effect of inositol 1,4,5-trisphosphate (IP3) on Ca2+ release in the transformed murine mast cells, mastocytoma P-815 cells permeabilized with digitonin was studied. Ca2+ was sequestered by intracellular organelles in the presence of ATP until the medium free Ca2+ concentration was lowered to a new steady-state level. The subsequent addition of IP3 caused a rapid Ca2+ release, which was followed by a slow re-uptake of Ca2+. Fifty percent of the sequestered Ca2+ was released by 10 μM IP3. Maximal Ca2+ release occurred at 10 μM and half maximal activity was at 1.3 μM. These results indicate that IP3 may function as a messenger of intracellular Ca2+ mobilization in mastocytoma cells.  相似文献   

4.
The purpose of this study was to explore the effect of tamoxifen on cytosolic free Ca2+ concentrations ([Ca2+]i) and cell viability in OC2 human oral cancer cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Tamoxifen at concentrations above 2 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The tamoxifen-induced Ca2+ influx was sensitive to blockade of L-type Ca2+ channel blockers but insensitive to the estrogen receptor antagonist ICI 182,780 and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), tamoxifen-induced [Ca2+]i rises were substantially inhibited; and conversely, tamoxifen pretreatment inhibited a part of thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 μM U73122 did not change tamoxifen-induced [Ca2+]i rises. At concentrations between 10 and 50 μM tamoxifen killed cells in a concentration-dependent manner. The cytotoxic effect of 23 μM tamoxifen was not reversed by prechelating cytosolic Ca2+ with BAPTA. Collectively, in OC2 cells, tamoxifen induced [Ca2+]i rises, in a nongenomic manner, by causing Ca2+ release from the endoplasmic reticulum, and Ca2+ influx from L-type Ca2+ channels. Furthermore, tamoxifen-caused cytotoxicity was not via a preceding [Ca2+]i rise.  相似文献   

5.
Reaggregation of mechanically dissociated mouse cerebellar cells (M cells) was compared with cells that received an additional trypsinization either before (T cells) or after (MT cells) the dissociation step. Reaggregation behaviour was followed by measuring the number and size distribution of particles with a Coulter counter. Aggregation rates which were calculated as percentage of decrease of particles could be measured reproducibly. Since the percentage of very large particles (> 100 cells) formed during aggregation varied considerably from one experiment to the next, size distribution curves of particles were used more to distinguish qualitative differences in a less quantitative way.Whereas aggregation rates and size distribution of particles with M cells were almost identical when aggregation occurred in medium of high (1.1 mM) or low (0.1 mM) Ca2+ concentrations, T and MT cells aggregated better at high Ca2+ concentration. Their aggregation rates were reduced by approx. 50% at low Ca2+ concentrations and larger aggregates were hardly formed under these conditions. The aggregation rates of T and MT cells showed a clear dependence on Ca2+ concentration, being half maximal at approx. 0.1 mM Ca2+.The ability of M cells to aggregate at low or high Ca2+ concentrations was influenced by subsequent trypsinization to produce MT cells. When the trypsin concentration was changed from 0.001 to 0.1% during this procedure the aggregation rates at high Ca2+ concentration were reduced to approx. 80% of the maximal value, whereas those at low Ca2+ concentrations were reduced to 35%. Variation of the Ca2+ concentration between 1.1 and 0.1 mM during the trypsinization step (0.015% trypsin) revealed no difference on the aggregation rates.We propose that M cells aggregate mainly or exclusively by a Ca2+-independent binding mechanism, whereas T or MT cells aggregate using a Ca2+-dependent one which may be functionally silent in M cells.  相似文献   

6.
Cyclic AMP levels have been measured in cultures derived from 12-day-old chick embryonic muscle. A rise in concentration was found after the onset of myoblast fusion. Cells cultured at a medium Ca2+ concentration of 0.1 μM did not fuse and exhibited only a small rise in cyclic AMP concentration during culture. Addition of 1.4 mM Ca2+ to these cells after 50 h in culture caused rapid, synchronous fusion with a concomitant rise in cyclic AMP levels. Indomethacin, an inhibitor of prostaglandin synthesis, did not inhibit fusion, but inhibited the rise in cyclic AMP concentration. Indomethacin-treated cultures exhibited lower creatine kinase levels, though no change in the ratio of the three isoenzymes was observed. Addition of prostaglandins E1 and E2 to indomethacin-treated cultures overcame this inhibition. We propose that prostaglandin synthesis is a consequence of the stimulation of myoblast fusion and that via cyclic AMP it stimulates protein synthesis.  相似文献   

7.
The absorbance changes of intrasynaptosomally entrapped arsenazo III have been converted into values of free Ca2+ concentration by correcting for the nonlinear response of arsenazo III at different concentrations of the dye as well as for changes in internal pH. An average resting value for free Ca2+ concentration around 0.4 μM is obtained. Depolarization with veratridine or gramicidin increases this value to around 3 μM. Measurements of cytosolic free Ca2+ with the quin2 method gives much lower values in similar conditions. The release of prelabelled [14C]noradrenaline from the nerve-endings is maximally activated when the internal free Ca2+ concentration rises as measured with arsenazo III to about 4 μM when titrated with increasing concentrations of ionophore A23187.  相似文献   

8.
The role of Ca2+ in conoid extrusion was investigated in isolated Toxoplasma gondii tachyzoites by treatment with Ca2+-ionophores, Ca2+-chelating agents and an inhibitor of the Ca2+-ATPase at the endoplasmic reticulum. The results were evaluated by light phase-contrast microscopy and electron microscopy. lonomycin (0.5-1 μM) caused an immediate and sustained extrusion of the conoid in up to 80% of the tachyzoites, depending on the concentrations of ionophore and Ca2+ in the medium. However, over 50% of the tachyzoites extruded the conoid when treated with ionomycin in Ca2+-free saline complemented with EGTA. The effect of ionomycin was reversible and could be induced a second time in about half of the responsive population. Similar results were obtained with A23187. Conoid extrusion induced by ionomycin in Ca2+-free medium was almost completely abolished when the tachyzoites were previously loaded with a permeable compound known to chelate intracellular Ca2+ (BAPTA/AM; 25μM). On the other hand, exposure of tachyzoites to the Ca2+-ATPase inhibitor thapsigargin (0.5-1μM) produced significant extrusion of the conoid. Tachyzoites loaded with BAPTA/AM as well as those treated with ionomycin, i.e. with conoids paralyzed in opposite positions, had a diminished capacity to invade cultured epithelial cells. A substantial reduction in the response to stimulation by ionomycin was found also in parasites treated with cytochalasin-D, a drug that depolymerizes actin-filaments. The results suggest that Ca2+-release from internal stores may act as a key signal to activate a mechanism of conoid extrusion probably mediated, at least in part, by actin-filaments.  相似文献   

9.
Intracellular activities of K+, H+, Mg2+, Ca2+, and Cl?, measured with ion selective microelectrodes in the oocyte and the nurse cells in ovarian follicles of Hyalophora cecropia, indicated that a Ca2+ current is a key component of the electrical potential that is maintained across the intercellular bridges connecting these two cells. In vitellogenic follicles, Ca2+ activity averaged 650 nM in the oocyte and 190 nM in the nurse cells, whereas activities of the other ions studied differed between these cells by no more than 6%. Incubation in 200 μM ammonium vanadate caused a reversal of electrical potential from 8.3 mV, nurse cell negative, to 3.0 mV, oocyte negative, and at the same time the Ca2+ gradient was reversed: activities rose to an average 3.0 μM in the nurse cells and 1.6 μM in the oocyte, whereas transbridge ratios of the other cations remained at 0–3%. In immature follicles that had not yet initiated their transbridge potentials, Ca2+ activities averaged ~? 2 μM in both oocyte and nurse cells. The results suggest that vitellogenic follicles possess a vanadatesensitive Ca2+ extrusion mechanism that is more powerful in the nurse cells than in the oocyte. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The effect of Ca2+ on programmed death of guard cells (GC) and epidermal cells (EC) determined from destruction of the cell nucleus was investigated in epidermis of pea leaves. Ca2+ at concentrations of 1–100 μM increased and at a concentration of 1 mM prevented the CN—induced destruction of the nucleus in GC, disrupting the permeability barrier of GC plasma membrane for propidium iodide (PI). Ca2+ at concentrations of 0.1–1 mM enhanced drastically the number of EC nuclei stained by PI in epidermis treated with chitosan, an inducer of programmed cell death. The internucleosomal DNA fragmentation caused by CN? was suppressed by 2 mM Ca2+ on 6 h incubation, but fragmentation was stimulated on more prolonged treatment (16 h). Presumably, the disruption of the permeability barrier of plasma membrane for PI is not a sign of necrosis in plant cells. Quinacrine and diphenylene iodonium at 50 μM concentration prevented GC death induced by CN? or CN? + 0.1 mM Ca2+ but had no influence on respiration and photosynthetic O2 evolution in pea leaf slices. The generation of reactive oxygen species determined from 2′,7′-dichlorofluorescein fluorescence was promoted by Ca2+ in epidermal peels from pea leaves.  相似文献   

11.
The characteristics and properties of the increase in cytosolic [Ca2+] that occurs in bovine adrenal medullary chromaffin cells on exposure to histamine have been investigated. Specifically, these experiments were conducted to determine how much external Ca2+ enters the cell through a (capacitative) Ca2+ entry pathway activated as a consequence of intracellular Ca2+ store mobilization, relative to that which enters independently of store depletion via other channels activated by histamine. In Fura-2 loaded cells continued exposure to histamine (10 μM) caused a rapid but transient increase in cytosolic [Ca2+] followed by a lower plateau that was sustained as long as external Ca2+ was present. In the absence of external Ca2+ only the initial brief transient was observed. In cells previously treated with thapsigargin (100 nM) in Ca2+-free medium to deplete the internal Ca2+ stores, histamine caused no increase in cytosolic [Ca2+] when external Ca2+ was absent. Re-introduction of external Ca2+ to thapsigargin-treated store-depleted cells caused a sustained increase in cytosolic [Ca2+] that was further increased (P < 0.0002) upon exposure to histamine. The histamine-evoked increase was prevented by the H1-receptor antagonist, mepyramine (2 μM). A comparison was made between store-dependent Ca2+ entry consequent upon store mobilization with histamine in Ca2+-free medium and plateau phase Ca2+ entry resulting from stimulation with histamine in Ca2+-containing medium. The latter was found to be approximately 3 times greater in magnitude than the former (P ? 0.0001) at the same concentration of histamine (10 μM). It is concluded that histamine causes Ca2+ entry not only via a capacitative entry pathway secondary to internal store mobilization, but also causes substantial Ca2+ entry through other pathways.  相似文献   

12.
The action of acetylcholine and adenosine triphosphate (ATP) on cytoplasmic Ca2+ concentration ([Ca2+]i) was studied in the otocyst epithelium of embryonic day 3 chicks with Ca2+-sensitive fluorescence measurements. Increases in [Ca2+]i were evoked by the bath application of acetylcholine (1 μM or higher). The rise in [Ca2+]i was due to the release of Ca2+ from intracellular Ca2+ stores, since the Ca2+ response occurred even in a Ca2+-free medium. The Ca2+ response to acetylcholine was mediated by muscarinic receptors. Atropine of 1 μM abolisehd the response to 10 μM acetylcholine; muscarine and carbamylcholine (100 μM each) evoked Ca2+ rises. Increases in [Ca2+]i were also evoked by the bath application of ATP (10 μM or higher). The Ca2+ rise by ATP was evoked even in a Ca2+-free medium. Adenosine (500 μM) did not cause any Ca2+ response. Suramin and reactive blue 2 (200 μM each) completely blocked the Ca2+ response to 500μM ATP. Uridine triphosphate (500 μM) caused comparable Ca2+ responses with those to 500 μM ATP. These results suggested the involvement of P2U purinoceptors. The potentiation of Ca2+ rise was observed when acetylcholine and ATP were co-applied at submaximal concentrations (10 μM and 100 μM, respectively). We conclude that undifferentiated cells in the otocyst epithelium have CaCa2+ mobilizing systems activated by acetylcholine and ATP. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
BackgroundIn this work we studied the effects of the melatonin receptor-antagonist luzindole (1 μM–50 μM) on isolated mouse pancreatic acinar cells.MethodsChanges in intracellular free-Ca2+ concentration, reactive oxygen species production and trypsin secretion were analyzed.ResultsLuzindole induced increases in [Ca2+]i that diminished CCK-8 induced Ca2+ mobilization, compared with that observed when CCK-8 was applied alone. Treatment of cells with thapsigargin (1 μM), in the absence of Ca2+ in the extracellular medium, evoked a transient increase in [Ca2+]i. The additional incubation of cells with luzindole (10 μM) failed to induce further mobilization of Ca2+. In the presence of luzindole a concentration-dependent increase in ROS generation was observed that decreased in the absence of Ca2+ or by pretreatment of cells with melatonin (100 μM). Incubation of pancreatic acinar cells with luzindole (10 μM) impaired CCK-8-induced trypsin secretion. Melatonin was unable to revert the effect of luzindole on CCK-8-induced trypsin secretion.ConclusionThe melatonin receptor-inhibitor luzindole induces Ca2+-mediated pro-oxidative conditions and impairment of enzyme secretion, which creates a situation in pancreatic acinar cells that might compromise their function.General significanceThe effects of luzindole that we have observed, might be unspecific and could mislead the observations when it is used to study the actions of melatonin on the gland. Another possibility is that melatonin receptors exhibit a basal or agonist-independent activity in pancreatic acinar cells, which might be modulated by melatonin or luzindole.  相似文献   

14.
A cell culture consisting mainly of satellite cells and mononuclear myoblasts was derived from femoral muscles of infant (aged 3–7 days) and adult rats. Satellite cells identified by expression of the specific marker Pax7 accounted for approximately 80% of the isolated cell fraction. Mononuclear myoblasts represented by proliferating and postmitotic cell pools were identified immunocytochemically by the expression of markers Ki67 and desmin. Differentiation of satellite cells and myoblasts in the culture depended on the concentration of Ca2+ in the culture medium (F12 with different Ca2+ concentrations or DMEM). Differentiation of myogenic cells manifested in myoblasts fusion, formation of myotubes, and expression of myosin in myofibrils was observed only in the medium with a high Ca2+ concentration (2mM). Satellite cells and myoblasts from the muscles of newborn and adult rats did not differ noticeably in their capacity for differentiation.  相似文献   

15.
Effect of calcium on differentiation of Friend leukemia cells   总被引:2,自引:0,他引:2  
Induction of hemoglobin synthesis of Friend leukemia cells is inhibited by changing the ratio between internal and external Ca2+ concentrations. The concentration ratio can be successfully manipulated by the addition of the growth medium of (1) Ca2+ channel blocker D600 (90 nM-4 × 102 nM), (2) Ca2+ ionophore A23187 (1 × 102–2 × 102 nM), and (3) EGTA at molar concentrations comparable to the Ca2+ concentration of the medium formulation (3 × 102 μM). The observations suggest that a specific ratio between intra- and extracellular Ca2+ is required for erythroid differentiation to proceed.  相似文献   

16.
Changes of intracellular calcium concentration ([Ca2+]i) induced by the extracellular application of ATP and bradykinin in mouse mammary tumour cells (MMT060562) were investigated by image analysis of fluo-3 fluorescence at 24°C and 35°C. ATP (0·1–100 μM ) and bradykinin (0·1 nM –1 μM ) induced the increase of [Ca2+]i at both temperatures and Ca2+-depletion did not affect these [Ca2+]i responses. Both [Ca2+]i responses became more sensitive at 35°C than at 24°C. A clear latency of [Ca2+]i increased after the application of the agonists was observed, and it changed with the concentration of the agonist. As concentrations of ATP or bradykinin became lower, the latency and rise time became longer. At higher concentrations, the latency and rise time approached a constant value. The latency shortened remarkably at 35°C. These results suggested the involvement of a regenerative or threshold process in the [Ca2+]i responses in mammary tumour cells. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Growth patterns and intracellular Ca2+ concentrations in the mutant strain Aspergillus awamori 66A containing a recombinant aequorin gene were studied in the presence of a permeabilizing fungicidal agent amphotericin B. The cell response, i.e., changes in the growth and development of the fungus (initiation of spore germination, mycelial growth, and intensity of sporulation) was dose-dependent. Low concentrations of amphotericin B (2.5 μM) stimulated spore germination: the number of germinating spores was 2–3 times higher than in the control (without the fungicide). At higher amphotericin concentrations (20 μM) spore germination was inhibited. Amphotericin B had a dose-dependent effect on mycelial growth and sporulation intensity on solid Vogel medium. Intracellular Ca2+ concentrations in the presence of amphotericin B were investigated using the luminescence of the photoprotein aequorin. High concentrations of amphotericin B (10 and 20 μM) were shown to cause an instantaneous increase in Ca2+ concentrations compared to the control and lower amphotericin concentration (2.5 μM). Ca2+ concentrations remained elevated throughout the experiment and correlated with the inhibition of mycelial growth and development.  相似文献   

18.
The transformation of certain cells reduces the requirement of extracellular Ca2+ for growth. The SV-40 transformed human lung fibroblasts, WI-38 VA13, require less Ca2+ than normal WI-38 cells. Spreading area of normal cells decreases when cultured in 10 μM Ca2+ medium. Intracellular calcium concentration ([Ca2+]i), of the normal and transformed cells cultured in 10μM and 2 mM Ca2+ media was measured by the fluorescence microscope technique using fura-2 as a probe. The [Ca2+], is measured in the resting state and during mobilization by serum or bradykinin stimulation. The lowering of extracellular calcium concentration results in a decrease in the resting state [Ca2+],i of both normal and transformed cells. Although the total decrease in [Ca2+]i is the same for both cell, the rate of decrease is much faster in normal cells than in transformed cells. Low extracellular Ca2+ reduces the number of cells responsive to the serum or bradykinin stimulation and decreases the peak [Ca2+]i value in both cells. In addition, we investigated, using BCECF as a fluorecent probe, the intracellular pH (pHi) of normal and transformed cells maintained at low and normal Ca2+. The low Ca2+ condition makes pHi acidic in normal cells but not in transformed cells. The acidification of the normal cell is accompanied by a decrease in the spreading area of the cells. The decrease of the cell attacment, followed by the reduced spreading area, induced the acidic pHi. These results suggest that the reduced Ca2+ requirement of transformed cells for growth is related to the mechanism of pHi regulation rather than Ca2+ homeostasis and, possibly, to the anchorage-independent growth, which is a unique feature of transformed cells. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Minoxidil is clinically used to prevent hair loss. However, its effect on Ca2+ homeostasis in prostate cancer cells is unclear. This study explored the effect of minoxidil on cytosolic-free Ca2+ levels ([Ca2+]i) and cell viability in PC3 human prostate cancer cells. Minoxidil at concentrations between 200 and 800?μM evoked [Ca2+]i rises in a concentration-dependent manner. This Ca2+ signal was inhibited by 60% by removal of extracellular Ca2+. Minoxidil-induced Ca2+ influx was confirmed by Mn2+-induced quench of fura-2 fluorescence. Pre-treatment with the protein kinase C (PKC) inhibitor GF109203X, PKC activator phorbol 12-myristate 13 acetate (PMA), nifedipine and SKF96365 inhibited minoxidil-induced Ca2+ signal in Ca2+ containing medium by 60%. Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-ditert-butylhydroquinone (BHQ) in Ca2+-free medium abolished minoxidil-induced [Ca2+]i rises. Conversely, treatment with minoxidil abolished BHQ-induced [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished minoxidil-evoked [Ca2+]i rises. Overnight treatment with minoxidil killed cells at concentrations of 200–600?μM in a concentration-dependent fashion. Chelation of cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM) did not prevent minoxidil’s cytotoxicity. Together, in PC3 cells, minoxidil induced [Ca2+]i rises that involved Ca2+ entry through PKC-regulated store-operated Ca2+ channels and PLC-dependent Ca2+ release from the endoplasmic reticulum. Minoxidil-induced cytotoxicity in a Ca2+-independent manner.  相似文献   

20.
Cyanide-induced neurotoxicity is associated with altered cellular Ca2+ homeostasis resulting in sustained elevation of cytosolic Ca2+. In order to characterize the effect of cyanide on intracellular signaling mechanisms, the interaction of KCN with the inositol 1,4,5-triphosphate Ca2+ signaling system was determined in the PC12 cell line. KCN in the concentration range of 1.0–100 μM produced a rapid rise in intracellular IP3 levels (peak level occurred within 60 sec); 10 μM KCN elevated intracellular levels of IP3 to 148% of control levels. This response was mediated by phospholipase C (PLC) since U73122, a specific PLC inhibitor, blocked the response. Removal of Ca2+ from the incubation medium and chelation of intracellular Ca2+ with BAPTA partially attenuate the cyanide-stimulated IP3 generation, showing that the response is partially Ca2+ dependent. Also, treatment of cells with nifedipine or LaCl3, Ca2+ channel blockers, partially blocked the generation of IP3. This study shows that cyanide in concentrations as low as 1 μM stimulates IP3 generation that may be mediated by receptor and nonreceptor IP3 production since they have differential dependence on Ca2+. It is proposed that this response is an early intracellular signaling action that can contribute to altered Ca2+ homeostasis characteristic of cyanide neurotoxicity. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号