首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nonagglutinating derivative of wheat germ agglutinin (WGA), prepared by treating the native lectin with cyanogen bromide and formic acid and purified by affinity chromatography on an N-acetyl-D-glucosamine column, inhibited human polymorphonuclear leukocyte (PMN) chemotaxis to the synthetic chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP). The WGA derivative (WGA-D) did not influence either the ability of PMN to migrate randomly or their chemotactic response to the complement-derived peptide C5a. Similarly, WGA-D had no effect on either FMLP-induced PMN polarization or other FMLP-induced PMN functions (i.e., selective discharge of lysosomal enzymes from cytochalasin B-treated cells, generation of superoxide anion). The inhibition of FMLP-induced PMN chemotaxis by WGA-D could not be reversed by washing the cells, or by incubating lectin-treated PMN at 37 degrees C for 20 min. The inhibitory effect of WGA-D was mediated by its specific binding to N-acetyl-D-glucosamine residues on the cell surface. WGA-D did not alter the specific binding of [3H]-FMLP to its receptor(s) on the PMN membrane. The data presented here suggest that WGA-D inhibits FMLP-induced PMN chemotaxis at a step distal to stimulus recognition.  相似文献   

2.
Removal of surface sialic acid specifically inhibits human polymorphonuclear leukocyte (PMN) chemotactic responses to N-formyl-methionyl-leucyl-phenylalanine (FMLP). Neuraminidase-treated (NT)-PMN bound and internalized [3H]FMLP (used as receptor marker) as well as normal PMN. NT-PMN, however, retained more [3H]FMLP-associated radioactivity than normal PMN. Subcellular fractionation studies demonstrated that NT-PMN retained more sedimentable (100,000 X G for 180 min) [3H]FMLP-associated radioactivity within light Golgi-containing fractions than normal PMN. Furthermore, NT-PMN exhibited a defect in their ability to reexpress (or recycle) a population of FMLP receptors. Abnormal receptor recycling was associated with inhibition of FMLP-induced PMN chemotaxis. Thus, it appears that recycling of formyl peptide receptors may be necessary for optimal PMN chemotactic responses to FMLP. We postulate that removal of PMN surface sialic acid inhibits FMLP-induced PMN chemotaxis by blocking the reexpression (or recycling) of a population of formyl peptide receptors, perhaps by preventing trafficking of desialated receptors through a light Golgi pathway.  相似文献   

3.
Previously, we reported that a derivative of wheat germ agglutinin (termed WGA-D) specifically inhibits human polymorphonuclear leukocyte (PMN) chemotaxis to FMLP by blocking reexpression (or recycling) of formyl peptide receptors. WGA-D (? formyl peptide receptor probe) binds to a protein on the PMN membrane that exhibits the same m.w. as the formyl peptide receptor. Since clustering (i.e., capping) of ligand-receptor complexes most likely precedes their internalization, we examined the ability of normal and stimulated PMN to cap fluoresceinated WGA-D. We found that, in contrast to capping of fluoresceinated Con A, PMN cap WGA-D in a chemotactic factor-specific fashion. Fluoresceinated WGA-D (5.0 to 20 micrograms/ml) alone did not induce either PMN shape changes (i.e., activation) or capping. Both FMLP (1 to 1000 nM) and human C5a (0.1 to 1.0 nM) induced PMN to polarize and to cap bound WGA-D, in a concentration-dependent fashion. Interestingly, leukotriene B4 (LTB4) (5.0 nM), while inducing the same degree of PMN polarization as FMLP (100 nM) and C5a (0.5 nM), failed to induce PMN to cap bound WGA-D. In contrast, FMLP (100 nM), C5a (0.5 nM), and LTB4 (5.0 nM) induced PMN to cap bound fluoresceinated Con A (10 micrograms/ml) to the same extent. The effect of suboptimal concentrations of FMLP and C5a on capping of WGA-D by PMN was additive. LTB4 did not enhance either FMLP or C5a-induced capping of WGA-D by PMN. Also, FMLP and C5a (but not LTB4) were capable of inducing both desensitization and cross-desensitization of WGA-D capping by PMN. Studies using rhodamine-labeled WGA-D and a fluoresceinated analog of FMLP revealed that both capped to the same place on the PMN membrane. Thus, the data suggest that WGA-D binds to a site on the PMN membrane that is either the FMLP receptor or very closely associated with it.  相似文献   

4.
Polymorphonuclear leukocyte (PMN) surface membrane glycoproteins are probably involved in the phenomenon of stimulus-response coupling. Consequently, we examined the effects of either removal or oxidation of surface membrane-associated sialic acid residues on some responses of human PMN to chemotactic factors. Treatment of human PMN with either neuraminidase or sodium metaperiodate did not affect the ability of these cells to migrate randomly, but did inhibit their ability to respond chemotactically to the synthetic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP). Treated PMN responded normally, however, to the complement-derived peptide C5a, and to the lipoxygenase product leukotriene B4. Enzymatic removal or oxidation of membrane sialic acid residues did not affect either FMLP-induced PMN degranulation or FMLP-induced generation by PMN of superoxide anion radicals. Removal of sialic acid did not significantly alter specific binding of [3H]FMLP to its receptor(s) on the PMN membrane. These findings indicate that sialic acid residues on the PMN surface membrane play an important role in modulating PMN responses to FMLP.  相似文献   

5.
The formyl peptide receptor (FPR) and the glycosyl-phosphatidylinositol-linked type III receptor for the Fc portion of IgG (Fc gamma RIIIB; CD16) play important roles in various inflammatory responses in human neutrophils. The mechanisms of signaling by the glycosyl phosphatidylinositol-anchored Fc gamma RIIIB are not known. Therefore, we investigated the possibility that Fc gamma RIIIB and FPR may act in concert to mediate neutrophil functions. We observed that pretreatment of normal human neutrophils with Fab fragments of a mAb to the Fc gamma RIII (3G8) specifically inhibited their chemotaxis into micropore filters in response to the formylated peptides FMLP or formyl-norleucyl-leucyl-phenylalanine. Pretreatment of neutrophils with a saturating concentration of 3G8 Fab (100 nM or 5 micrograms/ml) followed by exposure to FMLP (0.5 to 500 nM) indicated that significant inhibition of chemotaxis was observed at peptide concentrations greater than 5 nM. However, 3G8 Fab had no effect on the neutrophil response to a wide range (0.05 to 500 nM) of other chemotactic factors, including C5a, leukotriene B4, IL-8 (neutrophil-activating peptide-1), and platelet-activating factor. Moreover, pretreatment of neutrophils with mAb to other cell surface molecules (decay-accelerating factor, Fc gamma RII, and HLA class I) did not affect chemotaxis to FMLP. Inhibition of movement was not due to degradation of FMLP by the cell surface endopeptidase 24.11 (CD10), because neutrophils pretreated with the CD10 inhibitor phosphoramidone and 3G8 Fab displayed the same altered response to FMLP as cells pretreated with 3G8 Fab alone. Ligation of the Fc binding site of Fc gamma RIIIB appears to be essential for altering the FMLP-induced response, since soluble aggregated IgG and other anti-Fc gamma RIII antibodies, all of which recognize the ligand binding site, mimic the inhibitory effect of the 3G8 Fab on FMLP-induced chemotaxis. In contrast, a mAb (214.1) that does not recognize the Fc binding site of Fc gamma RIIIB had no effect on FMLP-induced chemotaxis. Not only did anti-Fc gamma RIII inhibit neutrophil chemotaxis to FMLP in a filter-based migration assay, but 3G8 Fab also inhibited FMLP-induced neutrophil transendothelial migration. Scatchard plot analysis of radioligand binding experiments indicated that 3G8 Fab did not significantly alter the number of FMLP binding sites on neutrophils but significantly increased the affinity of the FPR for [3H]FMLP. Removal of greater than 80% of cell surface Fc gamma RIIIB by phospholipase C abolished the neutrophil chemotactic response to FMLP but did not affect movement toward C5a, IL-8, or leukotriene B4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
We have previously found that the retroviral p15E-derived hexapeptide LDLLFL is a potent inhibitor of the FMLP-induced polarization response that is an early event in chemotaxis of monocytes and granulocytes. We investigated the mechanism of action of LDLLFL. LDLLFL inhibited the changes in [Ca2+]i in response to FMLP, but not to C5a or leukotriene B4. The reverse peptide LFLLDL was not inhibitory. In the presence of LDLLFL, the FMLP dose-response curve shifted to higher concentrations, indicating that LDLLFL interfered with binding of FMLP to its receptor. Indeed, binding of [3H]FMLP to neutrophilic granulocytes was inhibited in the presence of LDLLFL. Furthermore, immunosuppressive LDLLFL homologs also inhibited binding of FMLP to granulocytes, whereas noninhibitory LDLLFL homologs did not. Our results suggest that retroviral p15E and p15E-like factors, which can be found in serum of patients with cancer or chronic upper airway infections, may interfere with the interaction of N-formylpeptides derived from (opportunistic) bacteria, with monocytes and granulocytes. This receptor interference may impair monocyte and granulocyte reactivity toward these agents.  相似文献   

7.
Leukocyte chemotaxis is initiated by the binding of chemotactic factors to specific, high-affinity receptors. Amphotericin B, a polyene antibiotic that binds to membrane cholesterol, inhibits human neutrophil (PMN) chemotaxis. We examined the effects of this drug on PMN functions mediated by the oligopeptide chemotactic factor receptor. The antibiotic irreversibly inhibited chemotaxis and depressed the binding of the radiolabeled chemoattractant, fMet-Leu-[3H]Phe, to its receptor without affecting the receptor's specificity. The drug lowered the binding affinity of the receptor by up to fivefold and slightly increased its number. Doses of amphotericin B that depressed receptor affinity and inhibited chemotaxis did not diminish lysosomal enzyme secretion or superoxide anion production. Nystatin, a less potent polyene antibiotic, also diminished chemotactic factor binding, but to a lesser degree than amphotericin B did. A chemically unrelated antifungal agent had no effect on either binding or chemotaxis. Thus, pharmacologic manipulation can alter the affinity of the chemotactic factor receptor on human PMN; this alteration is associated with a change in receptor function. The data suggest that receptor affinity regulates or at least reflects its functional state, and that the transduction mechanisms for various biologic responses mediated by the chemoattractant receptor are heterogeneous. By pharmacologic alterations of receptor affinity, one may be able to modulate specific biologic responses elicited by chemoattractant receptor-ligand interactions.  相似文献   

8.
Recent studies have characterized a specific binding site for the C-terminal 3-8 fragment of angiotensin II (Ang IV). In the present study we looked at the internalization process of this receptor on bovine aortic endothelial cells (BAEC). Under normal culture conditions, BAEC efficiently internalized (125)I-Ang IV as assessed by acid-resistant binding. Internalization of (125)I-Ang IV was considerably decreased after pretreatment of cells with hyperosmolar sucrose or after pretreatment of BAEC with inhibitors of endosomal acidification such as monensin or NH(4)Cl. About 50% of internalized (125)I-Ang IV recycled back to the extracellular medium during a 2 h incubation at 37 degrees C. (125)I-Ang IV remained mostly intact during the whole process of internalization and recycling as assessed by thin layer chromatography. As expected, internalization of (125)I-Ang IV was completely abolished by divalinal-Ang IV, a known AT(4) receptor antagonist. Interestingly, (125)I-divalinal-Ang IV did not internalize into BAEC. These results suggest that AT(4) receptor undergoes an agonist-dependent internalization and recycling process commonly observed upon activation of functional receptors.  相似文献   

9.
The study of polymorphonuclear neutrophil (PMN) surface receptor expression provides a means for the assessment of PMN function and state of cellular activation. In this study, we characterized binding of the chemotactic peptide FMLP to whole PMN, with particular attention to those variables that may account for the wide variation reported in the literature. These included avoidance of oxidized FMLP as a radioligand contaminant, determination of the optimal cold ligand concentration necessary for achieving minimal nonspecific binding throughout the range of radioligand concentrations used in saturation experiments (greater than or equal to 5 x 10(-5) M), avoidance of radioligand concentrations that equal or exceed receptor saturation and are not suitable for Scatchard analysis (greater than or equal to 60 to 80 nM), and avoidance of inadvertent receptor mobilization due to room temperature PMN isolation techniques and cell warming. PMN isolated and maintained at 4 degrees C expressed a single, high affinity population of FMLP receptors (approximately 6000 receptors per cell) with a KD of 15.5 nM. These characteristics, and in particular the single-affinity nature of the expressed FMLP receptor site, were derived from saturation experiments and confirmed with agonist competition studies. PMN subjected to room temperature isolation or 37 degrees C warming exhibited a 2.5-fold increase in FMLP receptor expression (approximately 15,000 receptors per cell) without changes in receptor affinity. These latter PMN, in correlation with increased receptor expression, had increased initial, maximal rates of FMLP-induced superoxide generation (10.2 vs 6.3 nmol/min/10(6) PMN for cells isolated and maintained at 4 degrees C) as a manifestation of their functional activation. The avoidance of inadvertent cellular activation during PMN isolation is essential to studies of PMN function, activation and the role of FMLP receptor expression/mobilization in these processes.  相似文献   

10.
Human rTNF-alpha (greater than or equal to U/ml) decreased PMN nondirected and directed migration to FMLP to approximately 50% of control. Adenosine (100 microM) almost completely restored hrTNF-inhibited migration (nondirected from 54 to 92% and directed migration to from 54 to 93% of control). The lowest concentration of adenosine that restored hrTNF-inhibited migration was 3 microM, and the adenosine analogue, 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA) was more potent than adenosine. Although CPCA binds to A2-receptors and stimulates adenylate cyclase, the reversal of hrTNF-inhibited chemotaxis was found to be independent of both PMN cAMP content and binding to A2-receptors, because neither 8-Br-cAMP nor pertussis adenylate cyclase restored hrTNF-inhibited PMN chemotaxis and the A2-receptor antagonist, 1,3-dipropyl-7-methylxanthine decreased CPCA stimulated cAMP but enhanced CPCA-restoration of hrTNF-inhibited chemotaxis. The effect of adenosine could be augmented by inhibition of adenosine uptake and decreased by adenosine deamination. Pentoxifylline, (3,7 dimethyl-1-[5 oxo-hexyl] xanthine), like adenosine also restored PMN chemotaxis inhibited by hrTNF. The adenosine receptor antagonist, 1,3-dipropyl-8(phenyl-p-acrylate)-xanthine (BW A1433U), decreased restoration of hrTNF-inhibited chemotaxis by CPCA or pentoxifylline. Thus, the inhibitory effect of hrTNF on PMN migration can be counteracted by adenosine, CPCA, pentoxifylline, and compounds that increase adenosine availability to the surface of the PMN. Inasmuch as an A1-selective agonist N6-cyclopentyladenosine was less active, and the action of the A2-selective agonist CPCA was enhanced by an A2-receptor antagonist, we hypothesize that neither A1 or A2 receptors are involved in adenosine restoration of hrTNF-inhibited chemotaxis. Further, increased cAMP, an A2-regulated event, does not cause the effect, and adenosine restoration of hrTNF-inhibited migration does not appear to be mediated by changes in PMN [F-actin], FMLP receptor expression, or cytosolic calcium. Hence, the restoration of hrTNF-inhibited chemotaxis is controlled by a novel cyclic AMP-independent action on the PMN surface.  相似文献   

11.
An inhibitor for lutropin receptor site binding (LH-RBI), which strongly inhibited the binding of 125I-labeled ovine lutropin ([125I]oLH) to ovarian LH receptors, did not inhibit the [125I]oLH binding to testicular LH receptors. Preincubation of the LH-RBI with [125I]oLH did not affect the binding of preincubated ]125I]oLH to ovarian LH receptors. No inhibition of [125I]oLH binding to testicular LH receptors was observed even uhen the concentration of LH-RBI was significantly increased or when the testicular LH receptors uere first incubated with LH-RBI prior to the addition of [125I]oLH and a second incubation. Scatchard analysis revealed that the dissociation constant of [125I]oLH binding was essentially the same in the presence or absence of LH-RBI. The results suggest that: (i) the lutropin receptor of ovaries, but not of testes, has a specific LH-RBI binding site in addition to the lutropin binding site, and (ii) the binding of the LH-RBI produces an "allosteric" type of inhibition to the binding of lutropin at the lutropin binding site.  相似文献   

12.
Localization of chemotactic peptide receptors on rabbit neutrophils   总被引:1,自引:0,他引:1  
The chemotaxis of blood leukocytes is initiated by the binding of a chemoattractant to specific receptors on the leukocyte cell surface. Although a great deal is known about the biochemical and morphological events accompanying chemotactic activation, there is very little morphological information about the chemoattractant receptors themselves. This latter information is needed so that we may understand the mechanism by which these inflammatory cells detect and respond to chemical gradients. One class of chemotactic factors extensively used to characterize the complex behavioral responses following leukocyte activation are the synthetic formylmethionyl peptides. These peptides, now known to be the analogs of the naturally occurring N-terminal peptides produced by bacteria, are released into culture medium and are believed to be responsible, at least in part, for the accumulation of leukocytes at the sites of bacterial infection. We have localized the receptors for the chemotactic hexapeptide N-formylnorleucyl-leucyl-phenylalanine-norleucyl-[125I]tyrosyl-lys ine [N-fNle-Leu-Phe-Nle-[125I]Tyr-Lys] on whole rabbit peritoneal neutrophils (PMN) using light microscope autoradiography. By this method, the inherent formylpeptide receptor distribution on cells incubated at 4 degrees C appears to be uniform over the surface of both rounded and structurally polarized PMN. Following a short 37 degrees C incubation, cells retain a large proportion of labelled hexapeptide at or near the cell surface and, in addition, polarized PMN redistribute the hexapeptide anteriorly away from the cell uropod.  相似文献   

13.
The extracellular matrix component, laminin, enhances the chemotactic responsiveness of polymorphonuclear leukocytes (PMN) in vitro, and low doses of chemoattractant substances augment the expression of PMN cell surface receptors for laminin. This study determined whether laminin acts in concert with chemoattractants to activate PMN. Laminin (5 to 100 micrograms/ml) stimulated lysozyme release and superoxide production in response to the chemoattractant, FMLP by as much as 69%. These results could be explained by changes in cell surface chemoattractant receptor expression in that incubation of normal PMN with laminin (5 to 75 micrograms/ml) increased the binding of 19 nM FML[3H]P by 35 to 80%. This corresponded to as much as a 2.5-fold increase in the number of chemoattractant receptors/cells which had a lower average affinity. Laminin did not change the number or affinity of FML[3H]P receptors present on organelle-depleted PMN cytoplasts, and the laminin-induced increase in FML[3H]P receptors expressed on PMN from a patient with a specific granule deficiency was only 11 to 21% of that seen in normal PMN. These findings suggest that chemoattractants augment the expression of laminin receptors which mediate PMN attachment to basement membranes, followed by laminin-induced increases in the expression of cryptic chemoattractant receptors contained in intracellular granules, with resultant augmentation of the oxidative burst.  相似文献   

14.
Certain tumor cells generate factors that inhibit neutrophil chemotaxis. Our study was designed to explore whether such factors are produced by K 562 malignant cells and whether these have a broader effect in altering neutrophil functions. After 48 h of in vitro culture of K 562 cells, the culture medium and the cells were separated, lyophilized, and extracted with ethanol. These K 562 products, i.e., either the cell or supernatant extract, inhibited both nonstimulated locomotion and locomotion induced either by FMLP or activated serum. Furthermore, K 562 products inhibited neutrophil adherence and oxidative burst induced by opsonized zymosan, whereas oxidative burst induced by PMA or FMLP was not altered. K 562 products had an inhibitory effect on the PMN binding to iC3b-coated particles. They did not modify Mo1 expression of resting cells, did not alter the up-regulation of the receptor induced by FMLP but inhibited the FMLP-induced capping of Mo1 Ag. Con A capping was also inhibited. Actin polymerization in FMLP-stimulated PMN, as measured by flow cytometry and phalloidin binding to F-actin, was inhibited by K 562 products. The inhibitory factor present in K 562 products (cell and culture supernatant) was purified in three steps including gel filtration, ion-exchange chromatography, and IEF. The eluted active fraction corresponded to single band of about 8 kDa on SDS-PAGE. From these experiments, it is concluded that K 562 malignant cells in culture contain and release a low molecular mass factor (congruent to 8 kDa) that inhibits all adherence-related functions of neutrophils, whereas it does not alter FMLP- or PMA-induced oxidative burst. Further studies are needed to assess whether products of other tumor cells also act on the neutrophil by inhibiting adherence-related functions, Mo1 function and capping, and actin polymerization.  相似文献   

15.
Hypaque-Ficoll-purified human polymorphonuclear neutrophils (PMN) equilibrated with the membrane potential-sensitive probe 3,3'dipentyloxacarbocyanine [di-O-C(5)(3)] were incubated with buffer or cytochalasin B (cyto B) followed by incubation with prostaglandin E1 (PGE1) (0 to 10(-5) M) for 5 min at 37 degrees C. The cells were then stimulated with N-formyl-methionyl-leucyl-phenylalanine (FMLP) (0 to 10(-5) M). Changes in forward light scatter (FWD-SC), 90 degrees scatter (90 degrees -SC), and fluorescence intensity were measured by flow cytometry to determine the effects of PGE1 on FMLP-induced shape change, secretion, and membrane potential responses, respectively. In other experiments, the effects of PGE1 preincubation on FMLP +/- cyto B and phorbol myristate acetate-induced (O2) production were measured by superoxide dismutase-inhibitable cyto c reduction. PGE1 had no direct effects on the FWD-SC, 90 degrees-SC, or resting potential fluorescence of unstimulated or cyto B-pretreated PMN. PGE1 produced a dose-dependent inhibition of the proportion of depolarizing PMN in response to FMLP, which was maximal at 10(-6) M (42.1 +/- 6.9% inhibition, p less than 0.005), but was apparent at 10(-8) M. The PGE1-induced inhibition was maximal after 30 sec of incubation at 37 degrees C and was caused by a decrease in the maximal percentage of depolarizing PMN without a significant change in the FMLP dose-response curve (Km = 2.43 vs 3.62 X 10(-8) M, control vs PGE1-treated) or an inhibition in the degree of depolarization by the responding subpopulation. PGE1 also inhibited the loss of 90 degrees-SC induced by FMLP in cyto B-pretreated cells (secretion response) (46.2 +/- 16.5% inhibition of the maximal 90 degrees-SC loss, n = 5, p less than 0.005), but did not affect the increase in FWD-SC seen with FMLP-induced PMN activation or the ability of cyto B to recruit more PMN to depolarize. PGE1 also inhibited FMLP +/- cyto B-induced O2 production in a dose-dependent fashion; phorbol myristate acetate-induced O2 production was also slightly inhibited, but only at high PGE1 concentrations. The data indicate that PGE1 inhibits FMLP-induced cell activation by a mechanism that involves a step distal to the recruitment of unresponsive PMN by cyto B, and that PGE1 is capable of inhibiting depolarization responses without affecting FMLP-induced shape change, providing more support for a dissociation between the two activation pathways.  相似文献   

16.
LTB4-induced proinflammatory responses in PMN including chemotaxis, chemokinesis, aggregation and degranulation are thought to be initiated through the binding of LTB4 to membrane receptors. To explore further the nature of this binding, we have established a receptor binding assay to investigate the structural specificity requirements for agonist binding. Human PMN plasma membrane was enriched by homogenization and discontinuous sucrose density gradient purification. [3H]-LTB4 binding to the purified membrane was dependent on the concentration of membrane protein and the time of incubation. At 20 degrees C, binding of [3H]-LTB4 to the membrane receptor was rapid, required 8 to 10 min to reach a steady-state and remained stable for up to 50 min. Equilibrium saturation binding studies showed that [3H]-LTB4 bound to high affinity (dissociation constant, Kd = 1.5 nM), and low capacity (density, Bmax = 40 pmol/mg protein) receptor sites. Competition binding studies showed that LTB4, LTB4-epimers, 20-OH-LTB4, 2-nor-LTB4, 6-trans-epi-LTB4 and 6-trans-LTB4, in decreasing order of affinity, bound to the [3H]-LTB4 receptors. The mean binding affinities (Ki) of these analogs were 2, 34, 58, 80, 1075 and 1275 nM, respectively. Thus, optimal binding to the receptors requires stereospecific 5(S), 12(R) hydroxyl groups, a cis-double bond at C-6, and a full length eicosanoid backbone. The binding affinity and rank-order potency of these analogs correlated with their intrinsic agonistic activities in inducing PMN chemotaxis. These studies have demonstrated the existence of high affinity, stereoselective and specific receptors for LTB4 in human PMN plasma membrane.  相似文献   

17.
We studied the action of iodinated thyronines on the superoxide (O2-) production of human neutrophils stimulated with a chemotactic peptide N-formylmethionylleucylphenylalanine (FMLP) in vitro. L-Thyroxine and L-triiodothyronine elicited dose dependently a potent inhibitory action on the FMLP-induced O2- production with IC50 values of about 10(-6) M and 7.10(-6) M, respectively, but L-diiodothyronine did not. No difference in the inhibition was observed between the L-form and the D-form of the compounds. Inhibition of the O2- production by L-thyroxine was restored by the washing of the cells. L-Thyroxine did not affect the O2- production stimulated with either the fifth component of the complement (C5a) or phorbol 12-myristate 13-acetate. L-Thyroxine and L-triiodothyronine were found to block [3H]FMLP binding to its own receptor with IC50 values similar to those for the inhibition of the O2- production by changing the affinity for the peptide but not the number of the receptors. These results suggest that thyroxine and triiodothyronine interfere with the binding of FMLP to the receptors, leading to the inhibition of neutrophil functions, such as O2- production, and that the inhibitory effects result from extranuclear actions rather than nuclear receptor-mediated ones.  相似文献   

18.
Incubation of pulmonary alveolar macrophages (PAM) with the synthetic chemotactic tripeptide, N-formyl-methionyl-leucyl-phenylalanine (FMLP) results in deactivation of PAM chemotaxis. The chemotactic response to 10(-8) M FMLP was inhibited 85% after 30 min of preincubation with 10(-6) M FMLP and 48% by 10(-8) M FMLP. Only the higher dose of FMLP (10(-6) M) caused deactivation of the chemotactic response to C5a (20%). Preincubation with partially purified C5a at a concentration of 100 microliter/ml produced a 32% inhibition of the PAM response to 10(-8) M FMLP. In contrast, preincubation with FMLP had no significant effect on superoxide generation, either at baseline or after stimulation. Levels of intracellular cyclic adenosine-3',5'-monophosphate (cAMP) increased in response to PGE1 in the presence of 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor, but FMLP failed to induce a change in cAMP levels. Studies of 3H-FMLP binding were consistent with two populations of membrane receptors with different affinities. Preincubation of PAM with FMLP did not result in a reduction of maximal binding. We conclude that FMLP induces deactivation of PAM chemotaxis, but cross-deactivation occurs only after high dose treatment. Unlike the PMN, macrophage chemotactic activation is not accompanied by an elevation in cAMP levels. These observations suggest that PAM chemotaxis is influenced by prior exposure to chemotactic stimuli, but other aspects of the PAM response diverge from that of PMN. The mechanism of deactivation of PAM does not appear to result from a shift in the dose-response curve or decreased availability of membrane receptors, but may involve uncoupling of post-receptor cellular responses.  相似文献   

19.
Thrombospondin (TSP), a 450-kDa extracellular matrix protein secreted by platelets may be instrumental in triggering polymorphonuclear leukocyte (PMN) activation and mediating PMN-endothelial cell interactions. TSP alone had no effect on O-2 generation but caused a significant increase in the chemoattractant FMLP-mediated O-2 generation. Purified HBD, but not the 140-kDa COOH-terminal fragment of TSP, retained the priming activity indicating that the priming effect was mediated through the HBD of TSP. The priming of FMLP-mediated O-2 generation by TSP, and our recent studies demonstrating that TSP stimulates PMN adhesion and motility suggested the presence of specific receptors for TSP on PMN. Binding studies on unactivated PMN, using 125I-TSP and competition with excess unlabeled TSP, demonstrated 2.4 x 10(3) binding sites/cell with an apparent Kd of 7 nM. Heparin did not compete for binding as effectively as unlabeled TSP. There were 1.5 x 10(3) heparin-inhibitable binding sites/cell with an apparent Kd of 8 nM that represented approximately 60% of the TSP-specific sites. Therefore, two distinct TSP receptors appeared to exist on unactivated PMN; one interacting with the heparin-binding domain of TSP and one interacting with a different site. Treating PMN with cytochalasin B followed by FMLP caused a 30-fold increase in TSP receptor expression. Binding studies on activated PMNs revealed 7.6 x 10(4) sites/cell; 60% of which were heparin inhibitable. The majority (5.3 x 10(4) sites/cell) of receptors expressed had an affinity of approximately 20 nM. About 50% of these sites were heparin inhibitable. In addition, there were 2.3 x 10(4) higher affinity sites/cell with an apparent Kd of 6 nM. Heparin-inhibitable sites comprised 70% of the higher affinity sites. The existence of a subset of TSP receptors that were heparin-inhibitable on PMN suggests that binding of TSP may trigger functionally independent responses. Increased receptor expression and expression of two high affinity binding sites following PMN activation may modulate PMN-endothelium or PMN-basement membrane interactions localized at the blood vessel wall.  相似文献   

20.
SRIF receptors are membrane-bound glycoproteins. To structurally identify the carbohydrate components of SRIF receptors, solubilized rat brain SRIF receptors were subjected to lectin affinity chromatography. Solubilized SRIF receptors specifically bound to wheat germ agglutinin-lectin affinity columns but not to succinylated wheat germ agglutinin. This finding, as well as the ability of the solubilized receptor to interact with a Sambucus nigra L. lectin affinity column suggested that sialic acid residues are associated with SRIF receptors. The inability of the receptor to bind to concanavalin A, Dolichus biflorus agglutinin, Ulex europeaus I, and Jacalin lectin affinity columns suggests that high mannose, N-acetylgalactosamine, fucose, and O-linked carbohydrates are not associated with receptor. To investigate the functional role of the carbohydrate groups in brain SRIF receptors, specific sugars were selectively cleaved from SRIF receptors and the subsequent effect on the specific high affinity binding of the agonist [125I]MK 678 to SRIF receptors was determined. Treatment of the receptor with endoglycosidase D did not affect the specific binding of [125I] MK 678 to the solubilized SRIF receptors, consistent with the finding from lectin affinity chromatography that high mannose-type carbohydrate structures were not associated with SRIF receptors. Treatment of solubilized SRIF receptors with peptide-N-glycosidase F and endoglycosidases H and F reduced [125I]MK 678 binding to SRIF receptors indicating that either hybrid, or a combination of hybrid and complex N-linked carbohydrate structures, have a role in maintaining the receptor in a high affinity state for agonists. Treatment of solubilized SRIF receptors with neuraminidase from Vibrio cholera abolished high affinity agonist binding to the receptors, whereas treatment of the receptor with neuraminidase from Newcastle disease virus did not affect [125I]MK 678 binding to the receptor. These findings suggest that sialic acid residues in an alpha 2,6-configuration have a role in maintaining the SRIF receptor in a high affinity conformation for agonists. This is further indicated by studies on SRIF receptors in the pituitary tumor cell line, AtT-20. Treatment of AtT-20 cells in culture with neuraminidase (V. cholera) greatly reduces high affinity [125I] MK 678 binding sites, but did not alter the maximal ability of SRIF to inhibit forskolin-stimulated cAMP accumulation in intact AtT-20 cells. This finding suggests that the desialylated SRIF receptor is functionally active and remains coupled to GTP-binding proteins, but exhibits a reduced affinity for agonists. Treatment of AtT-20 cell membranes with neuraminidase from V. cholera was also able to greatly reduce the affinity of SRIF receptors for [125I]MK 678.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号