首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spleen cells were treated with TNBS in order to determine if cell surface H-2 antigens are derivatized with TNP. By labeling the cell membrane of the TNP-modified cells with 125I, followed by detergent lysis and immune precipitation with anti-TNP, it was determined that no H-2 antigenic activity remained in the supernatant. Further, by the use of an antibody-induced antigen redistribution assay it was found that previous exposure to TNP-modified cells to anti-TNP in the absence of complement rendered these cells resistant to lysis by anti-H-2 in the presence of complement. Together these data indicate that at the concentration of TNBS used for modification, H-2 antigens are derivatized with TNP. However, in addition to H-2, other proteins including immunoglobulin were also derivatized with TNP. Anti-TNP cytotoxic effector cells were blocked from their cytotoxic activity by anti-TNP antiserum. These data indicate that TNP directly couples to H-2 antigens on the cell surface of TNP-modified cells and that TNP is associated with the antigenic determinant that the cytotoxic T cell recognizes.  相似文献   

2.
Cross-reactivity of TNP-immune, virus-immune, and alloreactive murine cytotoxic thymus-derived (Tc) cells was investigated at the level of target cell lysis. Alloreactive Tc cells cross-reacted on TNP-modified and unmodified third-party targets and on syngeneic TNP-modified targets but did not cross-react on syngeneic virus-infected targets. TNP-immune Tc cells showed marked cross-reactivity on certain allogeneic targets modified by TNP (loss of H-2 restriction) and also on certain unmodified allogeneic targets but did not cross-lyse virus-infected syngeneic targets. Targets treated with TNP-Sendai virus were not lysed by TNP-immune Tc cells, but Tc cells stimulated by cells treated with TNP-Sendai virus lysed such targets readily. These results are consistent with the view that Tc-cell recognition of foreign H-2 antigens and TNP-modified self-H-2 antigens are mechanistically similar (possibly via one receptor), whereas recognition of viral plus H-2 antigens is different (possibly via two receptors).Virus-immune Tc cells ubiquitously exhibited strong cross-reactivity on syngeneic TNP-modified targets using pox-, arena-, alpha-, myxo-, and paramyxoviruses for Tc-cell induction. The lysis of virus-infected targets by virus-immune Tc cells could be inhibited by cold TNP-modified competitors, thus establishing that some individual virus-immune Tc cells could recognize both types of target cells. This genuine cross-reactivity at the effector level was not observed at the level of induction of secondary responses, since the cross-reactive subset of virus-immune memory Tc cells could not be activated by TNP-modified stimulator cells but could be activated by virus-infected stimulators. These results implied that requirements for stimulation of precursor Tc cells are sometimes different from antigenic requirements for recognition and lysis of effector Tc cells.  相似文献   

3.
The role of the recently defined L antigen (a second D region product) in allogeneic and TNP-specific syngeneic primary CML responses has been investigated. The lysis by anti-L specific cytotoxic effector cells was not inhibited when the target cells were pretreated with an antiserum directed against K and D, whereas an antiserum against L completely abrogated this response. Therefore, H-2L products are recognized on the target cell independently of H-2K and H-2D locus products. Both A.SW cells as well as B10 cells were found to respond to Ld alloantigens, in addition to Dd alloantigens when stimulated by cells differing only in the D region. The results of cold target blocking and antiserum inhibition experiments failed to detect cytotoxic cells with specificity of L antigens in association with TNP, under conditions in which TNP-specific effectors to K and D antigens were demonstrable. These findings suggest that there is a more limited involvement of H-2L locus products than the H-2K or H-2D locus products in the induction and specificity of these responses.  相似文献   

4.
Spleen cells were modified with varying concentrations of trinitrobenzene sulfonic acid and then assayed for both their ability to stimulate syngeneic spleen cells into displaying a cytotoxic effect against TNP-modified target cells and for the extent of TNP derivatization of H-2 antigens. It was found that there was a direct correlation between the extent of derivatization of H-2 antigens and the ability of such derivatized cells to act as stimulator cells in the TNP-CML assay. Thus, these data lend support to the altered self or interaction antigen hypothesis as the explanation for the H-2 gene restriction of syngeneic CML. Target cells were also modified with TNBS at varying concentrations to determine the optimal concentration required to permit lysis in the CML assay. The results of these experiments indicate that similar concentration ranges of TNBS are required to create antigenic determinants on the target cells as well as immunogenic determinants on the stimulator cells that can be recognized by cytotoxic T cells.  相似文献   

5.
It has been shown that peritoneal exudate cells (PEC) from BALB/c mice immunized with minor histocompatibility antigens presented by DBA/2 or B10.D2 spleen cells are capable of lysing syngeneic YC8 tumor cells in a 4-hr 51Cr-release assay. In this study, we employed limiting dilution analysis to determine the frequency of CTL precursors (CTL-P) reactive against both the specific DBA/2 (or P815) target and the syngeneic tumor YC8. The mean frequency of anti-DBA/2 CTL-P in PEC from BALB/c mice immunized with DBA/2 was 1/302. Between one-third and one-fifth of limiting dilution microcultures that exhibited lytic activity against DBA/2 lymphoblasts (or P815) were also able to lyse YC8. No lysis of YC8 was observed in the absence of a parallel lysis on DBA/2 lymphoblasts or P815 target cells. T cell clones, derived by micromanipulation from microcultures selected for cytotoxic activity against YC8 and/or P815, maintained either the specific anti-allogeneic or the doubly reactive ( antiallogeneic plus anti-syngeneic tumor) phenotype. Fourteen clones (six specific and eight doubly reactive) were tested for cytotoxic activity on a panel of target cells with different haplotypes. All showed H-2-restricted specificity for minor histocompatibility antigens shared by DBA/2 and B10.D2. The restriction element for some of the clones mapped in the K region of the H-2 complex, whereas for other clones the restriction element mapped in the D region; both K- and D-restricted clones were able to lyse YC8. When the clones that exhibited lysis on YC8 were tested on two other BALB/c tumor targets, LSTRA, a Moloney virus induced lymphoma, and RL male-1, a radiation induced lymphoma, two of seven were found to lyse all three syngeneic tumor targets equally well, but not syngeneic BALB/c blasts. These clones were functionally categorized as conventional CTL because they were unable to proliferate when cultured with antigen in the absence of exogenous lymphokines, and were unable to produce lymphokine with IL 2 activity when stimulated by the appropriate splenocytes. When tested in vivo in a Winn assay, a strong anti-tumor activity against YC8 was exerted by the anti-DBA/2 clones DY4 -3 and DY16 -3. These clones lysed both YC8 and the immunizing target cells in vitro. No in vivo effect in neutralizing YC8 tumor growth was observed with clone D2-1, a clone that lysed DBA/2 targets but not YC8 in vitro.  相似文献   

6.
An H-2Kb- negative clone of BL6 melanoma (BL6-8) was transfected with neor, H-2Kb, or H-2IAk genes. In an 18-h cytotoxicity assay clones with high levels of H-2Kb Ag expression were found more sensitive to lysis by spleen cells of syngenic and allogeneic mice than H-2Kb low clones. NK cells were involved in the lysis of H-2Kb+ BL6 melanoma clones, with spleen cell cytotoxicity of mice increased after poly I:C stimulation or decreased after pretreatment with anti-asialo GM1 serum or NK1.1 mAb. Anti-TNF Ab were also able to reduce the cytotoxicity of normal spleen cells and completely abolished the cytotoxicity of the NK-depleted spleen cells suggesting involvement of NC cells in lysis of H-2Kb+ BL6 melanoma clones. Increase in sensitivity of H-2Kb+ BL6 cells to natural cell-mediated cytotoxicity was associated with the appearance of NK recognizable determinants as assessed by the cold target inhibition assay. All BL6 clones, irrespective of sensitivity to natural cell-mediated cytotoxicity, showed high sensitivity to lysis by LGL-derived granules. In contrast, all H-2Kb low BL6 clones were resistant and all H-2Kb highly positive clones were sensitive to lysis by TNF-alpha. When an H-2Kb highly positive clone was selected in vitro for resistance to TNF, it concomitantly showed increased resistance to cytotoxicity by spleen cells, confirming the importance of TNF in spleen cell cytotoxicity against H-2Kb+ melanoma cells. Taken together, the data indicate that class I H-2Kb but not class II H-2IAk gene product could increase the sensitivity of BL6 cells to lysis by NK and natural cytotoxic cells as well as TNF. We hypothesize that these effects could be due to pleiotropic effects of H-2Kb gene products on various biologic properties of BL6 melanoma cells some of which may be more directly involved in regulation of tumor cell sensitivity to lysis by NK and/or natural cytotoxic cells.  相似文献   

7.
Using serial antigenic challenge as the method of selection and stimulation, continuous lines of cytotoxic T-lymphocytes (CTL) directed against TNBS-modified syngeneic spleen cells (TNP-self) have been generated. Spleen cells from C3H/HeJ (H-2k) mice were primed in vitro with autologous spleen cells modified with TNBS, and subsequently cloned by limiting dilution and in soft agar in the presence of IL2. These CTL clones grew continuously in medium supplemented with IL2 and in the presence of antigen. They are antigen specific and H-2 restricted in their target cell recognition. They all express Thyl and Lyt2 surface markers. None of the clones exhibit natural killer (NK) cell activity. All CTL clones tested so far are restricted in their target cell recognition to H-2Kk-TNP and none were found to be restricted to H-2Dk-TNP. These findings demonstrate at the clonal level the H-2K/D restriction of TNP-self specific CTL. These clones provide tools that may facilitate an understanding of the development and regulation of antigen specific CTL. They may also serve as models useful towards an understanding of the mechanism of lysis by CTL.  相似文献   

8.
In this paper we have examined the phenomenon of hapten-specific tolerance in the cytolytic T lymphocyte (CTL), using the trinitrophenyl (TNP) and azobenzenearsonate haptens. We found that the H-2 K and H-2 D-end restricted CTL in H-2a mice are differentiable in the ease with which they are tolerized to the TNP hapten. With TNP modified syngeneic spleen cells (TNP-SC), or low amounts of trinitrobenzylsulfonic acid as tolerogen, preferential hyporesponsiveness of D-end restricted CTL can be observed. Larger doses of hapten, e.g. a higher amount of trinitrobenzylsulfonic acid, will tolerize both K- and D-end restricted TNP-specific CTL in H-2a mice. The phenomenon of preferential D-end restricted CTL hyporesponsiveness is not observed in H-2d, H-2k, or H-2b mice, nor is it observed in H-2a mice with respect to the azobenzenearsonate hapten. We have also shown that the clones of CTL responsible for lysis of TNP-modified allogeneic targets (cross-reactive lysis) in H-2a mice probably overlap with the D-end restricted TNP-specific CTL since D-end restricted hyporesponsiveness induced by intravenous injection of TNP spleen cells also results in the elimination of cross-reactive lysis of TNP-modified allogeneic targets. The possible mechanisms of preferential D-end hyporesponsiveness to the TNP hapten in the H-2a mice as well as its significance and relationship to previous work in this area are discussed in this paper.  相似文献   

9.
Eleven long-term cytotoxic T lymphocyte (CTL) clones derived from C57BL/10 T cells sensitized in vivo and in vitro with trinitrobenzene sulfonate- (TNBS) treated syngeneic cells were all restricted to the K end of H-2b. The fine specificity of these CTL clones was analyzed by using H-2Kbm mutant target cells and H-2Kb-specific monoclonal antibodies (mAb). Seven distinct patterns of reactivity of the T cell clones could be observed with the use of six H-2Kbm mutant target cells. Further heterogeneity could be detected in terms of the ability of anti-Lyt-2 mAb to inhibit CTL activity. Cross-reactivity between H-2Kb + TNP and H-2Kbm + TNP was observed for all clones tested for bm5 and bm6, but less frequently for bm3 (8/11), bm8 (7/10), bm4 (4/11), and bm1 (3/11). It was further observed that amino acid substitutions located in the first domain only (one clone), or in the second domain only (six clones), or in either the first or the second domain (three clones) of the H-2Kb molecule could affect target cell recognition by a given T cell clone. the latter type of reactivity suggested that some clones recognized "conformational" determinants of the H-2 molecule, or that amino acid substitutions in one domain might influence the structure of the next domain. One H-2Kb + TNP-reactive clone exhibited a heteroclitic behavior with decreasing avidities for target cells expressing H-2Kbm8 + TNP, H-2Kb + TNP, and H-2Kbm8, which further extends the various patterns of T cell cross-reactions observed within a given class of MHC products. The use of H-2Kb-specific mAb in blocking studies as an attempt to define further the H-2Kb epitopes recognized by CTL clones indicated that: a) TNBS treatment may affect the antigenicity of the H-2Kb molecule as assessed by some mAb; and b) that the T cell clone-target cell interaction may or may not be inhibited by a given mAb, depending on structural variations of the H-2Kb molecule (use of H-2Kbm mutants) that do not affect the interaction itself. These results indicate that this type of analysis does not permit correlation of serologic- and T cell-defined epitopes.  相似文献   

10.
The secretion and the specificity of cytotoxic mediators from H-2-restricted cytotoxic T lymphocytes (CTL) were examined using non-virus-producing target tumor cells induced by the Schmidt-Ruppin strain of Rous sarcoma virus (SR-RSV) in B10 congenic and recombinant mice. By using rat concanavalin A supernatant, two H-2-restricted CTL clones were established from cytotoxic effector cells of B10.A(5R) mice primed with SR-RSV-induced syngeneic tumor Cell-free supernatants from the H-2-restricted CTL clones cocultured with syngeneic tumor cells had selectively high cytotoxic activity for syngeneic and H-2-compatible tumor cells, but not for H-2-incompatible tumor cells. YAC-1 cells, and B10.A(5R) blasts as defined in the 5-hr 51Cr-release assay. The cytotoxic activity was detected in the cell-free supernatants from the CTL clones cocultured with the CTL-sensitive syngeneic and H-2-compatible tumor cells, but not with the CTL-insensitive tumor cells and YAC-1 cells. The cytotoxic activity of the cell-free supernatant could be adsorbed by the syngeneic tumor cells, but not by YAC-1 and L(s) cells. Thus, the H-2-restricted CTL clones against SR-RSV-induced tumor cells were capable of releasing cytotoxic mediators by coculturing with syngeneic or H-2-compatible tumor cells, and the cytotoxic mediators showed a certain H-2-restricted manner in killing the target cells. These results suggest that the lysis of RSV-induced tumor cells by H-2-restricted CTL can at least in part be mediated by cytotoxic factors.  相似文献   

11.
The specificities of cytotoxic T lymphocytes (CTL) were studied for the analysis of CTL against tumor-specific cell surface antigen(s) (TSSA) of non-virus-producing tumor cells induced by the Schmidt-Ruppin strain of Rous sarcoma virus (SR-RSV) in B10 congenic and recombinant mice. Eight CTL clones were established from immune spleen cells of B10.A(5R) mice. These clones demonstrated six patterns of cytotoxic reactivity in vitro: Two clones showed H-2 restriction in tumor cell lysis. Two other clones had the capacity to lyse syngeneic, H-2K-compatible B10 and H-2-incompatible B10.A(4R) tumor cells, but not YAC-1 cells. One clone had cytotoxic activity against syngeneic, H-2D-compatible B10.D2 tumor cells and YAC-1 cells, but not against H-2-incompatible tumor cells. One clone had cytotoxic activity against syngeneic and YAC-1 tumor cells, but not against either H-2-compatible or H-2-incompatible tumor cells. One clone had lytic activity to syngeneic, H-2-compatible, H-2-incompatible, and YAC-1 tumor cells. Another clone killed H-2-incompatible B10.A(4R) tumor and YAC-1 cells, but not syngeneic or H-2-compatible tumor cells. All these clones strongly expressed surface Thy-1.2 antigens, whereas the expression of Lyt-1.2 and Lyt-2.2 antigens was different from clone to clone. These results demonstrate heterogeneity of both lytic specificity and phenotype of CTL against RSV-induced mouse tumor cells, suggesting the existence of multiple antigenic sites on the RSV TSSA recognized by CTL populations.  相似文献   

12.
H-2 dependency of T cell-mediated cytotoxicity and transplantation immunity to leukemia-associated antigens has been investigated. Through the use of a 20-hr 125IUdR release assay, it was found that the induction of T cell-mediated cytotoxicity against Friend virus-induced leukemias of different H-2 haplotype orgins could be produced by immunization with both syngeneic and allogeneic tumor cells; the effector cells that were generated by syngeneic immunization could also provide effective killing of allogeneic tumor cells, although the killing of allogeneic targets might require a longer incubation time (20 to 40 hr). Furthermore, in vivo transplantation immunity against Friend virus-induced leukemias also was induced by immunization with both syngeneic and allogeneic tumors and syngeneic immunization could induce specific protection against the challenge with a-logeneic tumor in x-irradiated hosts. These findings clearly indicate that, both at the sensitizing phase and effector phase of the immune response, there is no strict H-2 dependency for T cell-mediated cytotoxicity or in in vivo transplantation imunity to leukemia-associated antigens.  相似文献   

13.
There are conflicting results as to whether the response of athymic nude mice to TNP-modified self determinants is or is not H-2 restricted. We cultured spleen cells from 29 individual RNC (H-2k) nude mice with TNP-modified self determinants and tested the cultures for their ability to lyse TNP-modified self (RNC-TNP) and TNP-modified allogeneic (BALB/c-TNP) target cells. Each mouse was stimulated by two different protocols: either by the addition of TNP-modified irradiated nu/+ spleen cells or by TNP modification of the nude responder cells without addition of other cells. All mice could lyse RNC-TNP targets and about one-half could also lyse BALB/c-TNP targets, i.e., there was a 50:50 division between restricted and unrestricted responses. The magnitude of the response against RNC-TNP and whether the response was restricted were both independent of the method of stimulation. We conclude that H-2 restriction in these mice is imposed by an as yet unidentified environmental influence that can vary from one nude mouse to the next. The influence appears to act through negative selection because the modified self response is, if anything, higher in mice showing an unrestricted response.  相似文献   

14.
The sensitivity of H-2b-high and H-2b-low variants of BL6 melanoma to the cytotoxic action of NK and lymphokine-activated killer cells was investigated. BL6 mouse melanoma cells lack detectable H-2Kb and had low levels of expression of H-2Db Ag. The BL6T2 variant cells, obtained after treatment of BL6 cells with mutagen N-methyl-N-nitro-N'-nitro-soguanidine, had relatively high levels of expression of class I H-2b Ag. Poly(I:C)-stimulated spleen cells of nude mice were highly cytotoxic for BL6T2, whereas H-2b-low BL6 cells were less sensitive to NK activity in an 18-h 51Cr-release assay. Similar results were obtained after 4-h incubation of radio-labeled tumor cells with IL-2-activated effector cells. In contrast, both lines were equally sensitive to lysis by purified granules derived from rat large granular lymphocytes (LGL) or by macrophages. By using various clones selected from BL6 or BL6T2 cells, it was found that BL6 or BL6T2 clones with low H-2b Ag expression were less sensitive to lysis by NK cells than H-2b-high clones. After IFN treatment of either BL6 or BL6T2, the target cells became more resistant to lysis by either NK cells or by purified LGL granules. IFN-treated BL6 cells had substantially increased expression of H-2b Ag and in this respect became similar to untreated BL6T2. However, IFN-treated BL6 cells were more resistant than BL6T2 cells to lysis by NK cells and LGL granules, suggesting that augmentation of H-2b Ag expression and NK resistance could be two independent IFN-induced effects. With a cold target inhibition assay, it was found that BL6T2 or its H-2 positive clones were highly competitive and inhibited the cytotoxic activity of NK and lymphokine-activated killer cells against radiolabeled YAC-1 and BL6T2, whereas BL6 cells or H-2-negative clones of BL6T2 and BL6 lines showed poor competitive ability. Thus, our data indicate that the NK resistance of H-2-low BL6 cells may be due to a paucity of NK recognizable determinants. N-Methyl-N-nitro-N'-nitroguanidine treatment of BL6 melanoma cells was associated with an increase in class I H-2b Ag expression and NK sensitivity, suggesting the involvement of class I MHC Ag in the sensitivity of tumor cells to NK cell-mediated cytotoxicity.  相似文献   

15.
The phenomenon that strong syngeneic T-cell-mediated cytotoxicity is observed if killer, stimulator, and target cells share H-2 histocompatibility antigens is called H-2 restriction. Here a syngeneic model system making use of hapten-coupled stimulator and target cells is used to explore whether H-2 restriction is absolute or not. Using TNP-coupled spleen or tumor cells as stimulator or target cells in syngeneic and allogeneic situations, it is shown that neither the induction step nor the effector step of TNP-dependent killing is H-2 restricted. By varying the experimental assay conditions more or less H-2-restricted, TNP-dependent killing can be observed. For instance, suboptimal coupling of TNP to targets may result in H-2-restricted killing. Similarly, the use of spleen cell targets as opposed to spleen blast cells or tumor cells may result in H-2-restricted lysis. In contrast optimal coupling of TNP to sensitive target cells and coupling of TNP to cells with certain H-2 haplotypes may lead to significant TNP-dependent killing which is not H-2 restricted. Since hapten-coupled cells lacking H-2 are neither stimulators nor targets these results suggest that the T-cell receptor recognizes TNP-modified H-2 antigens simply as nonself-H-2. Thus hapten coupling of syngeneic cells appears to lead to a histocompatibility antigen change similar to the situation in an allogeneic cytotoxic reaction. Experiments are presented which support this view showing that TNP-coupled and uncoupled syngeneic or allogeneic stimulator and target cells cross-react. For instance allogeneic sensitization may lead to killing on TNP-coupled targets syngeneic to the effector cells and TNP-coupled stimulator cells syngeneic to the effector cells may induce killing on uncoupled syngeneic targets. TNP-dependent cytotoxicity can therefore be envisaged as a kind of allogeneic reactivity due to modification of H-2 antigens by the TNP coupling. This conclusion may have bearing on other model systems in which syngeneic killing appears to be H-2 restricted. In support of this possibility it is shown that allogeneic sensitization may lead to priming of memory cells able to respond to minor histocompatibility antigens.  相似文献   

16.
H-2 restriction in cytolytic T lymphocyte (CTL)-mediated lysis of syngeneic murine Moloney leukemia virus (MoLV)-induced tumor cells was studied at the clonal level by testing the inhibitory effect of monoclonal anti-H-2 antibodies on the lytic interaction between CTL clones and target cells. Large numbers of MoLV-specific CTL clones were generated by placing limiting numbers of C57BL/6 regressor (responder) spleen cells into micro-mixed leukocyte-tumor cell cultures. The clonal CTL populations thus obtained were split into 5 aliquots and tested for lytic activity in the presence (or absence) of 1 of 3 monoclonal antibodies or of an anti-whole H-2b haplotype antiserum. Two of the monoclonal antibodies were directed against H-2Db and one against H-2Kb determinants. Specificity of these reagents had been verified by demonstrating inhibition of lysis by CTL populations directed against H-2Db and H-2Kb alloantigens. In 44 of a total of 51 clones tested, results showed selective inhibition by the anti-H-2Db (and the anti-whole haplotype) reagents, and lack of inhibition by the anti-H-2Kb antibody., Of the remaining 7 clones, none was inhibited by the anti-H-2Db antibody, and 3 were inhibited by the anti-whole haplotype antiserum. These studies show that the recognition of MoLV-associated antigens by the majority of CTL clones was restricted to the H-2Db region, and that there exists limited heterogeneity in the H-2 restriction of such clones.  相似文献   

17.
The present study investigates the effect of trinitrophenyl- (TNP) modified H-2Kk (TNP-Kk) antigens on the generation of anti-TNP-Dk restricted cytotoxic T lymphocyte (CTL) responses. C3H.OH mice were primed to TNP-self by skin-painting with trinitrochlorobenzene, and spleen cells from these primed mice were subsequently stimulated in vitro with TNP-self. The effector cells generated exhibited appreciable lysis of TNP-modified C3H.OH blast target cells. Cold target inhibition studies demonstrated the generation of two effector cell populations: one that recognizes TNP in association with unique Dk self determinants, and one that recognizes TNP in association with self determinants shared between TNP-Kk and TNP-Dk. This was in contrast to primed C3H/He spleen cells, which did not generate CTL that recognized TNP in association with unique Dk self determinants. When spleen cells from (C3H/He x C3H.OH)F1 mice primed to TNP were stimulated in vitro with TNP-C3H.OH cells, unique Dk self determinants were recognized in association with TNP. However, in vitro stimulation of the same F1 responding cells with TNP-C3H/He or TNP-F1 cells failed to elicit CTL that utilized these Dk-unique self determinants. The findings of this study demonstrate that unique or shared H-2Dk determinants can be differentially utilized by CTL populations, depending on the H-2 alleles expressed by the stimulator cells.  相似文献   

18.
Spleen cells from C57BL/6 (B6) mice generate a strong in vitro cytotoxic T-lymphocyte (CTL) response specific for vesicular stomatitis virus (VSV). Spleen cells from VSV-primed B6-H-2bm3 (bm3) mice, which have a mutation in H-2Kb, require approximately 10-fold more UV-inactivated VSV to generate in vitro secondary anti-VSV CTL, compared with spleen cells from primed B6 mice. Anti-VSV CTL elicited in both bm3 and B6 mice are primarily specific for the viral nucleocapsid protein (N protein), as demonstrated by using recombinant vaccinia viruses that express the VSV N protein. bm3 CTL were found to exhibit only a very low level of lytic activity when tested against autologous VSV-infected concanavalin A spleen cell blasts as well as several H-2b tumor cell lines. The weak anti-VSV response of bm3 CTL was found to be the result of a combination of inefficient recognition of VSV-infected target cells and decreased elicitation of secondary effector cells. VSV-infected bm3 target cells were not killed as well as B6 targets by either bm3 or B6 effectors. This is because of the inefficient recognition of targets, as demonstrated by the fact that VSV-infected bm3 cells were unable to competitively inhibit the lysis of VSV-infected B6 target cells by either bm3 or B6 effectors. By using cells from recombinant mice, it was shown that the CTL response restricted by H-2Kb was low in the bm3 mice, compared with that of the B6 mice. However, the H-2Db-restricted CTL activity was similarly low in both the B6 and bm3 mice. The possibility that the low response to VSV-infected bm3 cells is caused by differences between the bm3 and B6 cells in expression of either viral antigens or H-2K was investigated by radiolabeling and immunoprecipitation. VSV-infected B6 and bm3 cells were found to express equivalent levels of both viral antigens and H-2K. These results indicate that the bm3 mutation alters a functional site on the H-2Kb molecule that is involved in the recognition of VSV-infected cells. The observation that elicitation of bm3 CTL can occur at high antigen doses further suggests that the bm3 mutation results in a lower affinity of H-2K either for viral antigen or for receptor sites on the CTL.  相似文献   

19.
Cytotoxic T lymphocytes, generated in C57BL/6 mice in response to herpes simplex virus type 1 (HSV) and known to be restricted in their recognition of HSV-encoded antigen(s) in association with the class I H-2Kb gene product, were consistently found to contain a subpopulation that recognized and lysed uninfected, SV40-transformed cells that expressed the H-2Kbm3 and H-2Kbm11 mutant class I gene products on their cell surface. The mutant cell lines, designated Lgbm3SV and Kbm11SV, share a common amino acid substitution at position 77, with the bm3 mutation having an additional amino acid substitution at position 89. Cross-reactive lysis was observed only after in vivo priming with HSV, suggesting an important role for an antigen-dependent driving step in the expansion of these cross-reactive CTL. The phenotype of the cross-reactive effector population was further confirmed as a T lymphocyte by negative-selection techniques. Limiting dilution analysis of the frequency of cross-reactive CTL precursors suggested that cross-reactivity was mediated by a subpopulation of HSV-specific CTL, and this was confirmed by clonal analysis of the reactivity patterns of short-term, HSV-specific CTL clones. However, analysis of the specificity of the cross-reactive CTL population by cold-target inhibition of bulk culture-derived CTL, or by Spearman ranking analysis of limiting dilution-derived CTL, indicated that the specificity of the cross-reactive population for HSV-infected H-2b target cells and for uninfected bm3 or bm11 target cells was quite distinct. These findings suggested that the cross-reactive CTL population played little, if any, role in the HSV-specific CTL response as measured in vitro. The findings also suggested that the HSV-specific CTL clones able to mediate cross-reactive recognition of the bm3 and bm11 targets had a higher intrinsic avidity for the foreign target than for the inducing antigen.  相似文献   

20.
Con A splenic lymphoblasts were incubated with phosphatidyl-inositol specific phospholipase C (PIPLC) derived from Bacillus thuringiensis and subsequently analyzed for Qa-2 Ag with the Qa-2 reactive mAb Qa-m2. This treatment completely removed Qa-2 detectable Ag on lymphoblasts from H-2d animals, indicating that these molecules are likely anchored to the cell membrane through phosphatidyl inositol (PI). Although exposure of lymphoblasts from H-2b mice to PIPLC greatly reduced Qa-2 expression, a subpopulation of cells retained a limited quantity of the Ag. Bulk cultured anti-Qa-2 CTL generated against the Qa-2 region from H-2b haplotype mice lysed Qa-2+ targets from B6.K2 (H-2b) and BALB/cJ (H-2d) animals. Pretreatment of these lymphoblast targets with PIPLC completely abolished lysis of the BALB/cJ target cells, whereas lysis of B6 targets was reduced only slightly. Anti-Qa-2 CTL clones tested against PIPLC-treated B6 target cells revealed two patterns of reactivity. One group of clones was unaffected in its ability to lyse PIPLC-pretreated targets and cross-reacted on Q6d/Ld molecules expressed on transfected L cells. A second group was unable to lyse PIPLC-pretreated lymphoblasts and cross-reacted on Q7d/Ld targets. These data suggest that H-2b-derived lymphoblasts express two different types of Qa-2 molecules with respect to PIPLC sensitivity; one type is sensitive to PIPLC and cross-reactive with Q7d, the other type is resistant to PIPLC and cross-reactive with Q6d. In contrast, H-2d lymphoblasts express only the PIPLC-sensitive type of molecules. It was also noted that bulk cultured anti-Qa-2 CTL more readily lysed H-2b target cells expressing a smaller quantity of PIPLC-resistant Ag than H-2d targets expressing a larger amount of PIPLC-sensitive Ag. Further, anti-Qa-2 CTL clones readily lysed PIPLC-treated target cells expressing very low levels of serologically detectable Qa-2. This suggests that recognition of class I molecules anchored to the membrane via a PIPLC-resistant linkage may more readily activate CTL for expression of lytic activity than molecules anchored through PI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号