首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Protoplasts of Brevibacterium flavum cultured in a medium containing 50 g·l-1 of biotin were prepared with lysozyme and immobilized in matrices of agar-acetylcellulose filters. The immobilized protoplasts were applied to l-glutamate production from glucose and urea in a batch system. The productivity of l-glutamate by the immobilized protoplasts was 2.5 times higher than that by immobilized whole cells under optimal conditions. Maximal productivity initially reached 1.5 mg·ml-1. The immobilized protoplasts of B. flavum could be used six times for l-glutamate production with retention of about 70% of the initial productivity.  相似文献   

2.
The synthesis of l-tyrosine or 3,4-dihydroxyphenyl-l-alanine (l-dopa) from pyruvate, ammonia and phenol or pyrocatechol was studied with intact cells of Erwinia herbicola ATCC 21434 containing high tyrosine phenol lyase activity. By elemental analyses and determination of optical activity, the tyrosine or dopa synthesized was confirmed to be entirely of l-form. Maximum amount of l-tyrosine (60.5 g/liter) or l-dopa (58.5 g/liter) was formed using this enzymatic method by feeding sodium pyruvate and phenol or pyrocatechol. However, large amounts of by-products were formed in the l-dopa synthetic reaction mixture. By-products were proved to be formed from l-dopa and pyruvate by a nonenzymic reaction. pH and the temperature of reaction had intensive effects on the formation of by-products. A simple method using a boric acid-pyrocatechol complex was devised, as the feeding procedure of substrates was complicated.  相似文献   

3.
Escherichia intermedia cells were immobilized by entrapment in a carrageenan gel and used for -DOPA synthesis from catechol, pyruvate, and ammonia. A preparation containing 75 mg of cell per gram of gel retained 60–65% of its original activity. The effect of substrate concentrations on the initial rate of -DOPA synthesis was very similar for free and immobilized cells, and substrate inhibition was observed for the three substrates. In batch reactors, up to 7.8 g l−1 of -DOPA was obtained in 20 h (productivity 0.39 g l−1 h−1). Cells immobilized in a carrageenan gel showed higher -DOPA synthesis, in both initial rates conditions and batch reactors, than cells immobilized in a polyacrylamide gel.  相似文献   

4.
Summary l-Phenylalanine dehydrogenase [l-phenylalanine: NAD+-oxidoreductase (deaminating)] of Rhodococcus sp. strain M4 was studied emphasizing its application for the production of l-phenylalanine. A high enzyme level (30,000 U·l-1, 25–30 U·mg-1 in the crude extract) could be reached during aerob degradation of l-phenylalanine (10 g·l-1) under optimized growth coditions. A partial purification of the intracellular enzyme by liquid-liquid extraction, and DEAE-cellulose led to a specific activity of more than 1300 U·mg-1. The continuous production of l-phenylalanine in an enzyme-membrane-reactor for 350h resulted in a space-time yield of 456 g·l-1·d-1 with a mean substrate conversion of 95%. Consumption of phenylalanine dehydrogenase was 1,500 U·kg Phe-1.Abbreviations BSA bovine serum albumine - pheDH l-phenylalanine dehydrogenase - phepyr phenylpyruvate - OD optical density - FDH formate dehydrogenase  相似文献   

5.
Summary Cells of Escherichia intermedia were immobilized by entrapment in a polyacrylamide gel and used for the enzymatic production of l-tyrosine from phenol, pyruvate, and ammonia. A preparation containing 50 mg of cells/g of gel retained 60% of its original activity. The effect of temperature, pH and substrate concentration on the activity of free cells was almost identical with the effect on immobilized cells. Phenol showed inhibition and inactivation of the catalyst at high concentration. Synthesis of l-tyrosine (up to 10 g/l) was demonstrated in batch reactors with high conversion yields (95–100%) and a maximal productivity of 2 g/l/h. In continuous reactor the catalyst showed a very high operational stability (more than 54 days without losses).  相似文献   

6.
Summary Direct alcoholic fermentation of dextrin or soluble starch with selected amylolytic yeasts was studied in both batch and immobilized cell systems. In batch fermentations, Saccharomyces diastaticus was capable of fermenting high dextrin concentrations much more efficiently than Schwanniomyces castellii. From 200 g·l–1 of dextrin S. diastaticus produced 77 g·l–1 of ethanol (75% conversion efficiency). The conversion efficiency decreased to 59% but a higher final ethanol concentration of 120 g·l–1 was obtained with a medium containing 400 g·l–1 of dextrin. With a mixed culture of S. diastaticus and Schw. castellii 136 g·l–1 of ethanol was produced from 400 g·l–1 of dextrin (67% conversion efficiency). S. diastaticus cells attached well to polyurethane foam cubes and a S. diastaticus immobilized cell reactor produced 69 g·l–1 of ethanol from 200 g·l–1 of dextrin, corresponding to an ethanol productivity of 7.6g·l–1·h–1. The effluent from a two-stage immobilized cell reactor with S. diastaticus and Endomycopsis fibuligera contained 70 g·l–1 and 80 g·l–1 of ethanol using initial dextrin concentrations of 200 and 250 g·l–1 respectively. The corresponding values for ethanol productivity were 12.7 and 9.6 g·l–1·h–1. The productivity of the immobilized cell systems was higher than for the batch systems, but much lower than for glucose fermentation.  相似文献   

7.
Summary The continuous degradation of phenol by immobilized cells of Pseudomonas putida P8 under different conditions was investigated. The bacterial cells were entrapped in polyacrylamidehydrazide (PAAH) and cultivated in a columnar fluidized-bed bioreactor. Working with a dilution rate of 0.067 h-1 the phenol content in the feed was varied to find the capacity of an one-stage system with complete phenol degradation.Under sterile conditions and with phenol as the sole carbon source a degradation rate of 7.2 g·l-1·d-1 was reached whereas in non-sterile waste water only 3.12 g·l-1·d-1 were degraded. In any case the immobilized cells showed a stable phenol degradation activity and even simultaneously fed cresols or 4-chlorophenol were utilized completely.  相似文献   

8.
The rate of l-phenylalanine production from phenylpyruvic acid by whole cells of Pseudomonas fluorescens strain ATCC 11250 was greater than 3 g·l-1 h-1. Synthesis of transaminase was constitutive but activity was greatest in medium containing d- or l- phenylalanine as sole nitrogen source. Maximum conversion was observed at 34–40° C and at alkaline pH, with over six times initial rate of conversion at pH 12 than at pH 5. The optimum catalyst (cell) concentration was between 10–20 mg ml-1 dry weight. The initial rate of conversion was directly proportional to phenylpyruvate concentration, up to 4%, but the conversion yield steadily decreased between 2% and 4% substrate concentration. The rate of conversion, as expected, increased as the concentration of glutamate increased. Whole cells were still capable of over 63% conversion after 40 days providing reactions were supplemented with pyridoxal phosphate. Immobilisation of cells in calcium alginate and operation of a packed bed bioreactor enabled the continuous production of l-phenylalanine in concentrations greater than 15 g·l-1 after 60 days operation.  相似文献   

9.
Recombinant Escherichia coli whole cells harboring Bacillus licheniformis l-arabinose isomerase (BLAI) were immobilized with alginate. The operational conditions for immobilization were optimized with response surface methodology. Optimal alginate concentration, Ca2+ concentration, and cell mass loading were 1.8% (w/v), 0.1 M, and 44.5 g L−1, respectively. The interactions between Ca2+ concentration, alginate concentration, and initial cell mass were significant. After immobilization of BLAI, cross-linking with 0.1% glutaraldehyde significantly reduced cell leakage. The half-life of immobilized whole cells was 150 days, which was 50-fold longer than that of free cells. In seven repeated batches for l-ribulose production, the productivity was as high as 56.7 g L−1 h−1 at 400 g L−1 substrate concentration. The immobilized cells retained 89% of the initial yield after 33 days of reaction. Immobilization of whole cells harboring BLAI, therefore, makes a suitable biocatalyst for the production of l-ribulose, particularly because of its high stability and low cost.  相似文献   

10.
Summary Optimization of d-(-)-2,3-butanediol production from the Jerusalem artichoke, Helianthus tuberosus, by Bacillus polymyxa ATCC 12 321 is described. The effects of initial sugar concentration and oxygen transfer rate were examined. The latter appears to be the most important parameter affecting the kinetics of the process. The best results (44 g·l-1 2,3-butanediol, productivity of 0.79 g·l-1·h-1) were obtained by setting an optimal k L a profile during batch culture.  相似文献   

11.
Summary The fermentation by Candida shehatae and Pichia stipitis of xylitol and the various sugars which are liberated upon hydrolysis of lignocellulosic biomass was investigated. Both yeasts produced ethanol from d-glucose, d-mannose, d-galactose and d-xylose. Only P. stipitis fermented d-cellobiose, producing 6.5 g·l-1 ethanol from 20 g·l-1 cellobiose within 48 h. No ethanol was produced from l-arabinose, l-rhamnose or xylitol. Diauxie was evident during the fermentation of a sugar mixture. Following the depletion of glucose, P. stipitis fermented galactose, mannose, xylose and cellobiose simultaneously with no noticeable preceding lag period. A similar fermentation pattern was observed with C. shehatae, except that it failed to utilize cellobiose even though it grew on cellobiose when supplied as the sole sugar. P. stipitis produced considerably more ethanol from the sugar mixture than C. shehatae, primarily due to its ability to ferment cellobiose. In general P. stipitis exhibited a higher volumetric rate and yield of ethanol production. This yeast fermented glucose 30–50% more rapidly than xylose, whereas the rates of ethanol production from these two sugars by C. shehatae were similar. P. stipitis had no absolute vitamin requirement for xylose fermentation, but biotin and thiamine enhanced the rate and yield of ethanol production significantly.Nomenclature max Maximum specific growth rate, h-1 - Q p Maximum volumetric rate of ethanol production, calculated from the slope of the ethanol vs. time curve, g·(l·h)-1 - q p Maximum specific rate of ethanol production, g·(g cells·h) - Y p/s Ethanol yield coefficient, g ethanol·(g substrate utilized)-1 - Y x/s Cell yield coefficient, g biomass·(g substrate utilized)-1 - E Efficiency of substrate utilization, g substrate consumed·(g initial substrate)-1·100  相似文献   

12.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

13.
Summary Radioactive penicillin G production from l-[1-14C]-valine (1.75 GBq · mmol-1) by native and by calcium alginate gel immobilized mycelium of Penicillium chrysogenum PQ-96 in a medium for antibiotic production as well as by vesicles isolated from the protoplasts of the same strain in a well-defined reaction mixture was investigated. Specific radioactivity of the penicillin G produced by the native vesicles was 1.45 GBq · mmol-1 and that of the antibiotic synthesized by the calcium alginate gel immobilized vesicles was 1.48 GBq · mmol-1. By comparison, the specific radioactivity of penicillin G produced by native mycelium was 0.42 GBq · mmol-1 and of that synthesized by the immobilized mycelium was 0.96 GBq · mmol-1. Production of radioactive penicillin G by native and immobilized vesicles in repeated use was also investigated. At the beginning of the production phase, the radioactive penicillin G synthesized by the immobilized vesicles was 25 nmol · mg protein-1 · h-1 and decreased after 8 days to a level of 11 nmol · mg protein-1 · h-1. The half-life of the immobilized vesicles was 7 days. The native vesicles showed a rapid decrease in radioactive antibiotic production. In comparison, the penicillin G production in a repeated use of immobilized vesicles decreased during 40 days from 140 nmol · mg protein-1 · h-1 to 60 nmol · mg protein-1 · h-1. The half-life of the immobilized vesicles was 35 days. The native vesicles showed after 4 days a lack of activity of penicillin G production. The stability of immobilized mycelium or vesicles in the process of radioactive penicillin G production is discussed.  相似文献   

14.
Summary The effect of various culture conditions on growth kinetics of an homofermentative strain of the lactic acid bacterium Streptococcus cremoris were investigated in batch cultures, in order to facilitate the production of this organism as a starter culture for the dairy industry. An optimal pH range of 6.3–6.9 was found and a lactose concentration of 37 g·l-1 was shown to be sufficient to cover the energetic demand for biomass formation, using the recommended medium. The study of the effect of lactic acid concentration on growth kinetics revealed that the end-product was not the sole factor affecting growth. The strain was characterized for its tolerance towards lactic acid and a critical concentration of 70 g·l-1 demonstrated. With the product yield of 0.9 g·g-1 at non-lactose limiting conditions the lactic acid concentration of 33 g·l-1 could not explain the low growth rates obtained, implicating a nutritional limitation.Symbols t f fermentation duration (h) - X Biomass concentration (g·l-1) - X m maximum biomass concentration (g·l-1) - S lactose concentration (g·l-1) - S r residual lactose concentration (g·l-1) - P produced lactic acid concentration (g·l-1) - P a added lactic acid concentration (g·l-1) - P c critical lactic acid concentration (g·l-1) - specific growth rate (h-1) - max maximum specific growth rate (h-1) - R x/S biomass yield (g·g-1) calculated when =0 - R P/S product yield (g·g-1)  相似文献   

15.
Based on the report that the introduction of the biosynthetic precursor of lincomycin, propylproline, could increase the production of lincomycin (Bruce et al. in US Patent 3,753,859, 1973), a mutant strain pro10–20, with resistance of feedback suppression of proline (an analog of propylproline) was thus selected and lincomycin production increased by 10%. The addition of three amino acids (l-proline, l-tyrosine, l-alanine) which are the precursors of propylproline to the fermentation medium was found to enhance the accumulation of l-dopa through different pathways and was favorable to lincomycin biosynthesis. The production of lincomycin was increased by 23, 10, 13%, respectively, with the addition of 0.05 g L−1 l-proline at 60 h, 0.005 g L−1 l-tyrosine and 0.1 g L−1 l-alanine directly in the medium.  相似文献   

16.
The effects of anoxia (N2 atmosphere at 5 °C) or freezing (at-8 °C) exposure in vivo on the activities of five enzymes of carbohydrate metabolism were assessed in foot muscle and hepatopancreases of the marine periwinkle Littorina littorea. Changes in glycogen phosphorylase, glycogen synthetase, pyruvate kinase and pyruvate dehydrogenase under either stress were generally consistent with covalent modification of the enzymes to decrease enzyme activity and/or convert the enzyme to a less active form. However, no evidence for a similar covalent modification of phosphofructokinase was found. The metabolic effects of freezing and anoxia were generally similar, suggesting that a primary contributor to freezing survival is the implementation of anaerobic metabolism and metabolic arrest mechanisms that also promote anoxia survival in marine molluses. However, in hepatopancreas phosphorylase was activated and pyruvate kinase remained in two enzyme forms in freezing-exposed snails, contrary to the results for anoxic animals. Ion exchange chromatography on DE-52 Sephadex revealed the presence of two forms of pyruvate kinase in both tissues of control L. littorea, eluting at 30–50 mmol·1-1 KCl (peak I) or 90–110 mmol·1-1 KCl (peak II). Anoxia exposure converted pyruvate kinase in both tissues to the peak I form, as did freezing for foot muscle pyruvate kinase. Kinetic analysis showed that peak I pyruvate kinase had lower affinities for substrates, phosphoenolpyruvate and ADP, and was very strongly inhibited by l-alanine compared with the peak II enzyme. Peak I pyruvate kinase had an I 50 value for l-alanine of 0.38 mmol·1-1, whereas peak II pyruvate kinase was unaffected by l-alanine evenat 40 mmol·1-1. In vitro incubation of extracts from control foot muscle under conditions promoting phosphorylation or dephosphorylation identified the peak I and II forms as the low and high phosphate forms, respectively. This result for L. littorea pyruvate kinase was highly unusual and contrary to the typical effect of anoxia on pyruvate kinase in marine molluscs which is to stimulate the phosphorylation of pyruvate kinase and, thereby, convert the enzyme to a less active form.Abbreviations AABS p-(p-aminophenylazo)benzene sulphonic acid - F2, 6P fructose-2,6-bisphosphate - F6P fructose-6-phosphate - G6P glucose-6-phosphate - GP glycogen phosphorylase - GS glycogen synthase - I 50 inhibitor concentration reducing enzyme velocity by 50% - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenopyruvate - PFK phosphofructokinase - PK pyruvate kinase - SW sea water - F a air temperature - TCA trichloroacetic acid - UDPG uridine-diphosphate glucose - WW wet weight  相似文献   

17.
The effect of nutritional limitations, such as phosphorus and carbon, on the production of l-lysine by Corynebacterium glutamicum was studied in continuous culture. We observed that phosphate-limited cultures at low growth rates were favourable to l-lysine production. l-Lysine was produced when a culture at low dilution rate (0.03 h–1) was established. A dilution rate of about 0.04 h–1 should be maintained in order to assure good productivity and an l-lysine yield of 0.53 g/g. Under carbon-limiting conditions the maintenance energy and growth yield of 0.03 g/g·g–1·h–1 and 0.41 g/g, respectively, have been obtained. Under these limiting conditions the l-lysine production was not favoured even at lower dilution rates.Correspondence to: N. Coello  相似文献   

18.
A new enzymatic resolution process was established for the production of l-threo-3-[4-(methylthio)phenylserine] (MTPS), an intermediate for synthesis of antibiotics, florfenicol and thiamphenicol, using the recombinant low-specificity d-threonine aldolase from Arthrobacter sp. DK-38. Chemically synthesized dl-threo-MTPS was efficiently resolved with either the purified enzyme or the intact recombinant Escherichiacoli cells overproducing the enzyme. Under the optimized experimental conditions, 100 mM (22.8 g l−1) l-threo-MTPS was obtained from 200 mM (45.5 g l−1) dl-threo-MTPS, with a molar yield of 50% and a 99.6% enantiomeric excess. Received: 2 September 1998 / Received revision: 27 October 1998 / Accepted: 29 November 1998  相似文献   

19.
The recombinant Pichia pastoris harboring an improved methionine adenosyltransferase (MAT) shuffled gene was employed to biosynthesize S-adenosyl-l-methionine (SAM). Two l-methionine (l-Met) addition strategies were used to supply the precursor: the batch addition strategy (l-Met was added separately at three time points) and the continuous feeding strategies (l-Met was fed continuously at the rate of 0.1, 0.2, and 0.5 g l−1 h−1, respectively). SAM accumulation, l-Met conversion rate, and SAM productivity with the continuous feeding strategies were all improved over the batch addition strategy, which reached 8.46 ± 0.31 g l−1, 41.7 ± 1.4%, and 0.18 ± 0.01 g l−1 h−1 with the best continuous feeding strategy (0.2 g l−1 h−1), respectively. The bottleneck for SAM production with the low l-Met feeding rate (0.1 g L−1 h−1) was the insufficient l-Met supply. The analysis of the key enzyme activities indicated that the tricarboxylic acid cycle and glycolytic pathway were reduced with the increasing l-Met feeding rate, which decreased the adenosine triphosphate (ATP) synthesis. The MAT activity also decreased as the l-Met feeding rate rose. The reduced ATP synthesis and MAT activity were probably the reason for the low SAM accumulation when the l-Met feeding rate reached 0.5 g l−1 h−1.  相似文献   

20.
A putative ribose-5-phosphate isomerase (RpiB) from Streptococcus pneumoniae was purified with a specific activity of 26.7 U mg−1 by Hi-Trap Q HP anion exchange and Sephacryl S-300 HR 16/60 gel filtration chromatographies. The native enzyme existed as a 96-kDa tetramer with activity maxima at pH 7.5 and 35°C. The RpiB exhibited isomerization activity with l-lyxose, l-talose, d-gulose, d-ribose, l-mannose, d-allose, l-xylulose, l-tagatose, d-sorbose, d-ribulose, l-fructose, and d-psicose and exhibited particularly high activity with l-form monosaccharides such as l-lyxose, l-xylulose, l-talose, and l-tagatose. With l-xylulose (500 g l−1) and l-talose (500 g l−1) substrates, the optimum concentrations of RpiB were 300 and 600 U ml−1, respectively. The enzyme converted 500 g l−1 l-xylulose to 350 g l−1 l-lyxose after 3 h, and yielded 450 g l−1 l-tagatose from 500 g l−1 l-talose after 5 h. These results suggest that RpiB from S. pneumoniae can be employed as a potential producer of l-form monosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号