首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Current climate models project changes in both temperature and precipitation patterns across the globe in the coming years. Migratory species, which move to take advantage of seasonal climate patterns, are likely to be affected by these changes, and indeed, a number of studies have shown a relationship between changing climate and the migration timing of various species. However, these studies have almost exclusively focused on the effects of temperature change on species that inhabit temperate zones. Here, we explore the relationship between rainfall and migration timing in a tropical species, Gecarcoidea natalis (Christmas Island red crab). We find that the timing of the annual crab breeding migration is closely related to the amount of rain that falls during a ‘migration window’ period prior to potential egg release dates, which is in turn related to the Southern Oscillation Index, an atmospheric El Niño‐ Southern Oscillation Index. As reproduction in this species is conditional on successful migration, major changes in migration patterns could have detrimental consequences for the survival of the species. This study serves to broaden our understanding of the effects of climate change on migratory species and will hopefully inspire future work on rainfall and tropical migrations.  相似文献   

2.
The influence of El Niño/Southern Oscillation (ENSO) on rainfall and its possible effect on availability of food for white‐tailed deer (Odocoileus virginianus) in a tropical dry forest in the Pacific coast of Mexico was studied. From 1977 to 2003 there were three significant El Niño and La Niña events. During El Niño years rainfall decreased during the wet season ( June to October) and increased during the dry season (November to May), with the opposite effect during La Niña years. Plant diversity was monitored in permanent plots during the wet and dry seasons of 1989–1993. The results provide evidence that ENSO events affect deer food availability, particularly in the dry season.  相似文献   

3.
Changes in the world's oceans have altered nutrient flow, and affected the viability of predator populations when prey species become unavailable. These changes are integrated into the tissues of apex predators over space and time and can be quantified using stable isotopes in the inert feathers of historical and contemporary avian specimens. We measured δ13C and δ15N values in Flesh‐footed Shearwaters (Puffinus carneipes) from Western and South Australia from 1936–2011. The Flesh‐footed Shearwaters more than doubled their trophic niche (from 3.91 ± 1.37 ‰2 to 10.00 ± 1.79 ‰2), and dropped an entire trophic level in 75 years (predicted δ15N decreased from +16.9 ‰ to + 13.5 ‰, and δ13C from ?16.9 ‰ to ?17.9 ‰) – the largest change in δ15N yet reported in any marine bird, suggesting a relatively rapid shift in the composition of the Indian Ocean food web, or changes in baseline δ13C and δ15N values. A stronger El Niño‐Southern Oscillation results in a weaker Leeuwin Current in Western Australia, and decreased Flesh‐footed Shearwater δ13C and δ15N. Current climate forecasts predict this trend to continue, leading to increased oceanic ‘tropicalization' and potentially competition between Flesh‐footed Shearwaters and more tropical sympatric species with expanding ranges. Flesh‐footed Shearwater populations are declining, and current conservation measures aimed primarily at bycatch mitigation are not restoring populations. Widespread shifts in foraging, as shown here, may explain some of the reported decline. An improved understanding and ability to mitigate the impacts of global climactic changes is therefore critical to the long‐term sustainability of this declining species.  相似文献   

4.
The control of vegetative phenology in tropical trees is not well understood. In dry forest trees, leaf abscission may be enhanced by advanced leaf age, increasing water stress, or declining photoperiod. Normally, it is impossible to dissect the effects of each of these variables because most leaves are shed during the early dry season when day length is near its minimum and leaves are relatively old. The 1997 El‐Niño Southern Oscillation caused a ten‐week long, severe abnormal drought from June to August in the semi‐deciduous forests of Guanacaste, Costa Rica. We monitored the effect of this drought on phenology and water status of trees with young leaves and compared modifications of phenology in trees of different functional types with the pattern observed during the regular dry season. Although deciduous trees at dry sites were severely water stressed (Ψstem < ‐7MPa) and their mesic leaves remained wilted for more than two months, these and all other trees retained all leaves during the abnormal drought. Many trees exchanged leaves three to four months earlier than normal during the wet period after the abnormal drought and shed leaves again during the regular dry season. Irrigation and an exceptional 70 mm rainfall during the mid‐dry season 1998/1999 caused bud break and flushing in all leafless trees except dormant stem succulents. The complex interactions between leaf age and water stress, the principal determinants of leaf abscission, were found to vary widely among trees of different functional types.  相似文献   

5.
Large‐scale climate modes such as El Niño Southern Oscillation (ENSO) influence population dynamics in many species, including marine top predators. However, few quantitative studies have investigated the influence of large‐scale variability on resident marine top predator populations. We examined the effect of climate variability on the abundance and temporary emigration of a resident bottlenose dolphin (Tursiops aduncus) population off Bunbury, Western Australia (WA). This population has been studied intensively over six consecutive years (2007–2013), yielding a robust dataset that captures seasonal variations in both abundance and movement patterns. In WA, ENSO affects the strength of the Leeuwin Current (LC), the dominant oceanographic feature in the region. The strength and variability of the LC affects marine ecosystems and distribution of top predator prey. We investigated the relationship between dolphin abundance and ENSO, Southern Annular Mode, austral season, rainfall, sea surface salinity and sea surface temperature (SST). Linear models indicated that dolphin abundance was significantly affected by ENSO, and that the magnitude of the effect was dependent upon season. Dolphin abundance was lowest during winter 2009, when dolphins had high temporary emigration rates out of the study area. This coincided with the single El Niño event that occurred throughout the study period. Coupled with this event, there was a negative anomaly in SST and an above average rainfall. These conditions may have affected the distribution of dolphin prey, resulting in the temporary emigration of dolphins out of the study area in search of adequate prey. This study demonstrated the local effects of large‐scale climatic variations on the short‐term response of a resident, coastal delphinid species. With a projected global increase in frequency and intensity of extreme climatic events, resident marine top predators may not only have to contend with increasing coastal anthropogenic activities, but also have to adapt to large‐scale climatic changes.  相似文献   

6.
Tropical arid to semi‐arid ecosystems are nearly as diverse as more humid forests and occupy large parts of the tropics. In comparison, however, they are vastly understudied. For instance, fog precipitation alone supports a unique vegetation formation, locally termed lomas, on coastal mountains in the Peruvian desert. To effectively protect these highly endemic and threatened ecosystems, we must increase our understanding of their diversity patterns in relation to environmental factors. Consequently, we recorded all vascular species from 100 random 4 × 4 m plots on the fog‐exposed southern slope of the mountain Mongón. We used topographic and remotely sensed covariates in statistical models to generate spatial predictions of alpha diversity and plant species' distribution probabilities. Altitude was the most important predictor in all models and may represent fog moisture levels. Other significant covariates in the models most likely refer also to water availability but on a finer spatial scale. Additionally, model‐based clustering revealed five altitudinal vegetation zones. This study contributes to a better spatial understanding of the biodiversity and spatial arrangement of vegetation belts of the largely unknown but highly unique lomas formations. Furthermore, mapping species richness and plant species' distributions could support a long‐needed lomas strategic conservation scheme.  相似文献   

7.
Tropical forests will experience relatively large changes in temperature and rainfall towards the end of this century. Little is known about how tropical trees will respond to these changes. We used tree rings to establish climate‐growth relations of a pioneer tree, Mimosa acantholoba, occurring in tropical dry secondary forests in southern Mexico. The role of large‐scale climatic drivers in determining interannual growth variation was studied by correlating growth to sea surface temperature anomalies (SSTA) of the Atlantic and Pacific Oceans, including the El Niño‐Southern Oscillation (ENSO). Annual growth varied eightfold over 1970–2007, and was correlated with wet season rainfall (r=0.75). Temperature, cloud cover and solar variation did not affect growth, although these climate variables correlated with growth due to their relations with rainfall. Strong positive correlations between growth and SSTA occurred in the North tropical Atlantic during the first half of the year, and in the Pacific during the second half of the year. The Pacific influence corresponded closely to ENSO‐like influences with negative effects of high SSTA in the eastern Pacific Niño3.4 region on growth due to decreases in rainfall. During El Niño years growth was reduced by 37%. We estimated how growth would be affected by the predicted trend of decreasing rainfall in Central America towards the end of this century. Using rainfall predictions of two sets of climate models, we estimated that growth at the end of this century will be reduced by 12% under a medium (A1B) and 21% under a high (A2) emission scenario. These results suggest that climate change may have repercussions for the carbon sequestration capacity of tropical dry forests in the region.  相似文献   

8.
Organismal traits interact with environmental variation to mediate how species respond to shared landscapes. Thus, differences in traits related to dispersal ability or physiological tolerance may result in phylogeographic discordance among co‐distributed taxa, even when they are responding to common barriers. We quantified climatic suitability and stability, and phylogeographic divergence within three reed frog species complexes across the Guineo‐Congolian forests and Gulf of Guinea archipelago of Central Africa to investigate how they responded to a shared climatic and geological history. Our species‐specific estimates of climatic suitability through time are consistent with temporal and spatial heterogeneity in diversification among the species complexes, indicating that differences in ecological breadth may partly explain these idiosyncratic patterns. Likewise, we demonstrated that fluctuating sea levels periodically exposed a land bridge connecting Bioko Island with the mainland Guineo‐Congolian forest and that habitats across the exposed land bridge likely enabled dispersal in some species, but not in others. We did not find evidence that rivers are biogeographic barriers across any of the species complexes. Despite marked differences in the geographic extent of stable climates and temporal estimates of divergence among the species complexes, we recovered a shared pattern of intermittent climatic suitability with recent population connectivity and demographic expansion across the Congo Basin. This pattern supports the hypothesis that genetic exchange across the Congo Basin during humid periods, followed by vicariance during arid periods, has shaped regional diversity. Finally, we identified many distinct lineages among our focal taxa, some of which may reflect incipient or unrecognized species.  相似文献   

9.
Tree growth at northern treelines is generally temperature‐limited due to cold and short growing seasons. However, temperature‐induced drought stress was repeatedly reported for certain regions of the boreal forest in northwestern North America, provoked by a significant increase in temperature and possibly reinforced by a regime shift of the pacific decadal oscillation (PDO). The aim of this study is to better understand physiological growth reactions of white spruce, a dominant species of the North American boreal forest, to PDO regime shifts using quantitative wood anatomy and traditional tree‐ring width (TRW) analysis. We investigated white spruce growth at latitudinal treeline across a >1,000 km gradient in northwestern North America. Functionally important xylem anatomical traits (lumen area, cell‐wall thickness, cell number) and TRW were correlated with the drought‐sensitive standardized precipitation–evapotranspiration index of the growing season. Correlations were computed separately for complete phases of the PDO in the 20th century, representing alternating warm/dry (1925–1946), cool/wet (1947–1976) and again warm/dry (1977–1998) climate regimes. Xylem anatomical traits revealed water‐limiting conditions in both warm/dry PDO regimes, while no or spatially contrasting associations were found for the cool/wet regime, indicating a moisture‐driven shift in growth‐limiting factors between PDO periods. TRW reflected only the last shift of 1976/1977, suggesting different climate thresholds and a higher sensitivity to moisture availability of xylem anatomical traits compared to TRW. This high sensitivity of xylem anatomical traits permits to identify first signs of moisture‐driven growth in treeline white spruce at an early stage, suggesting quantitative wood anatomy being a powerful tool to study climate change effects in the northwestern North American treeline ecotone. Projected temperature increase might challenge growth performance of white spruce as a key component of the North American boreal forest biome in the future, when drier conditions are likely to occur with higher frequency and intensity.  相似文献   

10.
The zooplankton of the northern California Current are typically characterized by an abundance of lipid‐rich copepods that support rapid growth and survival of ecologically, commercially, and recreationally valued fish, birds, and mammals. Disruption of this food chain and reduced ecosystem productivity are often associated with climatic variability such as El Niño events. We examined the variability in timing, magnitude, and duration of positive temperature anomalies and changes in copepod species composition in the northern California Current in relation to 10 tropical El Niño events. Measurable impacts on mesozooplankton of the northern California Current were observed during seven of 10 of these events. The occurrence of anomalously warm water and the response of the copepod community was rapid (lag of zero to 2 months) following the initiation of canonical Eastern Pacific (EP) events, but delayed (lag of 2–8 months) following ‘Modoki’ Central Pacific (CP) events. The variable lags in the timing of a physical and biological response led to impacts in the northern California Current peaking in winter during EP events and in the spring during CP events. The magnitude and duration of the temperature and copepod anomalies were strongly and positively related to the magnitude and duration of El Niño events, but were also sensitive to the phase of the lower frequency Pacific Decadal Oscillation. When fisheries managers and biological oceanographers are faced with the prospect of a future El Niño event, prudent management and observation will require consideration of the background oceanographic conditions, the type of event, and both the magnitude and duration of the event when assessing the potential physical and biological impacts on the northern California Current.  相似文献   

11.
Banana (Musa spp.) is severely damaged by Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc). Biocontrol by inducing systemic resistance has been considered as one of the most important strategies to improve plant health. Very few studies have investigated appropriate reference gene selection for RT‐qPCR (quantitative real‐time polymerase chain reaction) analysis suitable for conditions of systemic activated resistance. In this study, we assessed over a time‐course the expression of seven candidate reference genes (EF1, TUB, ACT1, ACT2, L2, RPS2 and RAN) for Cavendish cultivar Brazilian (Musa spp. AAA) and dwarf banana cultivar Guangfen No. 1 (Musa spp. ABB) that were inoculated by Bacillus subtilis strain TR21 and Foc. We choose these plants because they are commonly planted in Southern China. Expression stability of the candidate genes was evaluated using various software packages (GeNorm, NormFinder and BestKeeper). L2 and TUB genes displayed maximum stability in Guangfen No. 1. In Brazilian, ACT1 and TUB were the most stable genes. To further validate the suitability of the reference genes identified in this study, the expression of pathogenesis‐related 1 (PR1) gene under TR21 and Foc strains Foc004/Foc009 treatments was also studied. Identified reference genes in this work that are most suitable for normalizing gene expression data in banana under Fusarium wilt resistance induction conditions will contribute to the understanding of disease resistance mechanisms induced by biocontrol strains in banana.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号