首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined invertebrate floral visitor responses to floral richness, floral abundance, and distance between floral patches within a newly planted pollinator restoration habitat in an arid ecosystem in central Arizona, United States. We created a pollinator habitat experiment consisting of a large central garden (11‐m diameter) surrounded by concentric rings of smaller habitat patches (1‐m diameter), separated from one another by 1, 8, 13, and 21 m, respectively, and including four flowering species. We observed plant and visitor interactions via structured 10‐minute flower visitation observations over a 3‐month period. Key findings included: (1) each plant species interacted with a variety of flower visitors, but flower visitor groups differed only marginally among the plant species; (2) floral patches outside the central garden exhibited reduced quantities of floral structures; and (3) number of floral structures per patch, but not isolation of floral patches within the habitat, affected the number of visitors and visitor taxa richness. For practitioners and land managers looking to restore pollination systems in arid ecosystems with low establishment via seeding, the results of this study suggest that installing species‐rich and florally abundant patches of flowering plant species within a habitat could efficiently support plant‐pollinator interactions.  相似文献   

2.
Aims The majority of angiosperms are pollinated by animals, and this interaction is of enormous importance in both agricultural and natural systems. Pollinator behavior is influenced by plants' floral traits, and these traits may be modified by interactions with other community members. In recent years, knowledge of ecological linkages between above- and belowground organisms has grown tremendously. Soil communities are extremely diverse, and when their interactions with plants influence floral characteristics, they have the potential to alter pollinator attraction and visitation, but plant–pollinator interactions have been neglected in studies of the direct and indirect effects of soil organism–root interactions. Here, we review these belowground interactions, focusing on the effects of nitrogen-fixing bacteria, arbuscular mycorrhizal fungi and root-feeding herbivores, and their effects on floral traits and pollinators. Further, we identify gaps in our knowledge of these indirect effects and recommend promising directions and topics that should be addressed by future research.Important findings Belowground organisms can influence a wide variety of floral traits that are important mediators of pollinator attraction, including the number and size of flowers and nectar and pollen production. Other traits that are known to influence pollinators in some plant species, such as floral volatiles, color and nectar composition, have rarely or never been examined in the context of belowground plant interactions. Despite clear effects on flowers, relatively few studies have measured pollinator responses to belowground interactions. When these indirect effects have been studied, both arbuscular mycorrhizal fungi and root herbivores were found to shift pollinator visitation patterns. Depending on the interaction, these changes may either increase or decrease pollinator attraction. Finally, we discuss future directions for ecological studies that will more fully integrate belowground ecology with pollination biology. We advocate a multilevel approach to these questions to not only document indirect effect pathways between soil interactions and pollination but also identify the mechanisms driving changes in pollinator impacts and the resultant effects on plant fitness. A more thorough understanding of these indirect interactions will advance ecological theory and may inform management strategies in agriculture and conservation biology.  相似文献   

3.
The nutrient‐rich organic waste generated by ants may affect plant reproductive success directly by enhancing fruit production but also indirectly, by affecting floral traits related with pollinator attraction. Understanding how these soil‐nutrient hot spots influence floral phenotype is relevant to plant–pollination interactions. We experimentally evaluated whether the addition of organic waste from refuse dumps of the leaf‐cutting ant Acromyrmex lobicornis (Hymenoptera: Formicidae: Attini) alters floral traits associated with pollinator attraction in Eschscholzia californica (Ranunculales: Papaveraceae), an entomophilous herb. We analysed flower shape and size using geometric morphometric techniques in plants with and without the addition of refuse‐dumps soil, under greenhouse conditions. We also measured the duration of flowering season, days with new flowers, flower production and floral display size. Plants growing in refuse‐dumps soil showed higher flower shape diversity than those in control soil. Moreover, plants in refuse‐dumps soil showed bigger flower and floral display size, longer flowering season, higher number of flowering days and flower production. As all these variables may potentially increase pollinator visits, plants in refuse‐dumps soil might increase their fitness through enhanced attraction. Our work describes how organic waste from ant nests may enhance floral traits involved in floral attraction, illustrating a novel way of how ants may indirectly benefit plants.  相似文献   

4.
开花式样对传粉者行为及花粉散布的影响   总被引:8,自引:0,他引:8  
唐璐璐  韩冰 《生物多样性》2007,15(6):680-686
理解植物花的特征可以从单花特征和群体特征两个层次入手。开花式样是植物的花在群体上的特征体现, 通过在开花数目、开花类型以及花的排列上的变化, 不同的开花式样对传粉者具有不同的吸引力, 影响昆虫在植株上的活动, 使花粉运动的方向发生相应变化, 从而影响着植物最终的交配结果。此外开花式样随环境改变也会发生一些变化。本文介绍了开花式样研究的进展, 对开花数目、开花类型以及花的排列等3个方面的已有研究进行了分别阐述, 并提出开花式样研究应更多地考虑影响传粉的各种因素。  相似文献   

5.
Pollinators are known to exert natural selection on floral traits, but the extent to which combinations of floral traits are subject to correlational selection (nonadditive effects of two traits on fitness) is not well understood. Over two years, we used phenotypic manipulations of plant traits to test for effects of flower colour, flower shape and their interaction on rates of pollinator visitation to Polemonium foliosissimum. We also tested for correlational selection based on weighting visitation by the amount of conspecific pollen delivered per visit by each category of insect visitor. Although bumblebees were the presumed pollinators, solitary bees and flies contributed substantially (42%) to pollination. In manipulations of one trait at a time, insects visited flowers presenting the natural colour and shape over flowers manipulated to present artificial mutants with either paler colour or a more open or more tubular flower. When both colour and shape were manipulated in combination, selection on both traits arose, with bumblebees responding mainly to colour and flies responding mainly to shape. Despite selection on both floral traits, in a year with many bumblebees, we saw no evidence for correlational selection of these traits. In a year when flies predominated, fly visitation showed a pattern of correlational selection, but not favouring the natural phenotype, and correlational selection was still not detected for expected pollen receipt. These results show that flower colour and shape are subject to pollinator‐mediated selection and that correlational selection can be generated based on pollinator visitation alone, but provide no evidence for correlational selection specifically for the current phenotype.  相似文献   

6.
The main selective force driving floral evolution and diversity is plant–pollinator interactions. Pollinators use floral signals and indirect cues to assess flower reward, and the ensuing flower choice has major implications for plant fitness. While many pollinator behaviors have been described, the impact of parasites on pollinator foraging decisions and plant–pollinator interactions have been largely overlooked. Growing evidence of the transmission of parasites through the shared‐use of flowers by pollinators demonstrate the importance of behavioral immunity (altered behaviors that enhance parasite resistance) to pollinator health. During foraging bouts, pollinators can protect themselves against parasites through self‐medication, disease avoidance, and grooming. Recent studies have documented immune behaviors in foraging pollinators, as well as the impacts of such behaviors on flower visitation. Because pollinator parasites can affect flower choice and pollen dispersal, they may ultimately impact flower fitness. Here, we discuss how pollinator immune behaviors and floral traits may affect the presence and transmission of pollinator parasites, as well as how pollinator parasites, through these immune behaviors, can impact plant–pollinator interactions. We further discuss how pollinator immune behaviors can impact plant fitness, and how floral traits may adapt to optimize plant fitness in response to pollinator parasites. We propose future research directions to assess the role of pollinator parasites in plant–pollinator interactions and evolution, and we propose better integration of the role of pollinator parasites into research related to pollinator optimal foraging theory, floral diversity and agricultural practices.  相似文献   

7.
  • Long‐lived flowers increase pollen transfer rates, but these entail high water and carbon maintenance costs. The retention of pollinated and reward‐free old flowers enhances pollinator visitation to young receptive flowers by increasing floral display size. This mechanism is associated with acropetal inflorescences or changes in flower colour and openness, but the retention of unchanging solitary flowers remains overlooked.
  • We examined pollination‐dependent variation in floral longevity and determined stigmatic receptivity, pollen viability and pollen removal rates among flower ages in Kielmeyera regalis, a Neotropical savanna shrub. We also evaluated the effects of floral display size on pollinator visitation rates. Lastly, we determined whether old flowers are unvisited and exclusively increase pollinator attraction to young flowers through flower removal experiments.
  • Regardless of pollination treatment, flowers lasted fully open with no detectable physical changes for 3 days. Over time, stigmas remained receptive but >95% of pollen was removed. Pollinator visitation significantly increased with floral display size and intermediate percentages (15–30%) of newly opened flowers. Accordingly, the retention of reward‐free and unvisited old flowers increased young flower–pollinator interaction.
  • Our results reveal the importance of a prolonged floral longevity in increasing pollinator attraction toward newly opened receptive flowers without changes in flower colour and form. We conclude that the retention of pollinated, reward‐free and unvisited colour‐unchanged old flowers in K. regalis is a strategy that counteracts the water use costs associated with the maintenance of large flowers with increased mate opportunities in a pollen‐limited scenario.
  相似文献   

8.
Hegland SJ  Totland Ø 《Oecologia》2005,145(4):586-594
Knowledge about plant–plant interactions for pollinator service at the plant community level is still scarce, although such interactions may be important to seed production and hence the population dynamics of individual plant species and the species compositions of communities. An important step towards a better understanding of pollination interactions at the community level is to assess if the variation in floral traits among plant species explain the variation in flower visitation frequency among those species. We investigated the relative importance of various floral traits for the visitation frequency of all insects, and bumblebees and flies separately, to plant species by measuring the visitation frequency to all insect-pollinated species in a community during an entire flowering season. Visitation frequency was identified to be strongly positive related to the visual display area and the date of peak flowering of plant species. Categorical variables, such as flower form and symmetry, were important to the visitation frequency of flies only. We constructed floral similarity measures based on the species’ floral traits and found that the floral similarity for all species’ traits combined and the continuous traits separately were positively related to individual visitation frequency. On the other hand, plant species with similar categorical floral traits did not have similar visitation frequencies. In conclusion, our results show that continuous traits, such as flower size and/or density, are more important for the variation in visitation frequency among plant species than thought earlier. Furthermore, differences in visitation frequency among pollinator groups give a poor support to the expectations derived from the classical pollination syndromes.  相似文献   

9.
Reproductive isolation due to pollinator behavior is considered a key mode of speciation in flowering plants. Although floral scent is thought to mediate pollinator behavior, little is known about its effects on pollinator attraction and floral visitation in the wild. We used field experiments with wild hawkmoths and laboratory experiments with naïve hawkmoths to investigate attraction to and probing of flowers in response to indole, a volatile emitted by Ipomopsis tenuituba but not its close relative I. aggregata, both alone and in combination with floral color differences. We demonstrated that indole attracts wild hawkmoths to flowers, but has little effect on the rate at which those attracted moths probe flowers. In contrast, white flower color did not influence hawkmoth attraction in the field, but caused more attracted moths to probe flowers. Thus, the moths require both scent and high visual contrast, in that order, to feed at flowers at dusk. Their preference for indole-scented flowers is innate, but species-specific preference is mitigated by previous experience and plant spatial patterning. This context-dependent behavior helps explain why these Ipomopsis species show geographical variation in the extent of hybridization and may potentially explain formation of hybrid bridges in other systems of hawkmoth-pollinated plants.  相似文献   

10.
Large floral displays favour pollinator attraction and the import and export of pollen. However, large floral displays also have negative effects, such as increased geitonogamy, pollen discounting and nectar/pollen robber attraction. The size of the floral display can be measured at different scales (e.g. the flower, inflorescence or entire plant) and variations in one of these scales may affect the behaviour of flower visitors in different ways. Moreover, the fragmentation of natural forests may affect flower visitation rates and flower visitor behaviour. In the present study, video recordings of the inflorescences of a tree species (Tabebuia aurea) from the tropical savannah of central Brazil were used to examine the effect of floral display size at the inflorescence and tree scales on the visitation rate of pollinators and nectar robbers to the inflorescence, the number of flowers approached per visit, the number of visits per flower of potential pollinators and nectar robbers, and the interaction of these variables with the degree of landscape disturbance. Nectar production was quantified with respect to flower age. Although large bees are responsible for most of the pollination, a great diversity of flower insects visit the inflorescences of T. aurea. Other bee and hummingbird species are highly active nectar robbers. Increases in inflorescence size increase the visitation rate of pollinators to inflorescences, whereas increases in the number of inflorescences on the tree decrease visitation rates to inflorescences and flowers. This effect has been strongly correlated with urban environments in which trees with the largest floral displays are observed. Pollinating bees (and nectar robbers) visit few flowers per inflorescence and concentrate visits to a fraction of available flowers, generating an overdispersed distribution of the number of visits per inflorescence and per flower. This behaviour reflects preferential visits to young flowers (including flower buds) with a greater nectar supply.  相似文献   

11.
BACKGROUND AND AIMS: This study examined the effect of plant traits and environmental factors on pollinator visitation in the winter-flowering Helleborus foetidus (Ranunculaceae) in three distant regions in the Iberian Peninsula. METHODS: Geographical variation in floral visitor assemblage, plant traits and environmental factors were analysed during the flowering season. KEY RESULTS: Differences were found in all plant traits measured (number of open flowers, flower size, number of stamens per flower, and number of nectaries) both within and among regions, and differences among regions in all the environmental factors considered (air temperature, exposure to sunlight, canopy cover, and distance to the nearest neighbour). Differences were also found among regions in the probability that plants would be visited by pollinators. CONCLUSIONS: The results show that, although floral display (i.e. number of open flowers on a plant on a given day) consistently explained among-plant differences in visitation rate in all regions, visitation rate was not significantly affected by any other biological or environmental variable. In Helleborus foetidus, then, 'how' the plant is would seem to be more important than 'where' is it.  相似文献   

12.
  • It has been hypothesised that intense metabolism of nectar‐inhabiting yeasts (NIY) may change nectar chemistry, including volatile profile, which may affect pollinator foraging behaviours and consequently plant fitness. However, empirical evidence for the plant–microbe–pollinator interactions remains little known.
  • To test this hypothesis, we use a bumblebee‐pollinated vine Clematis akebioides endemic to southwest China as an experimental model plant. To quantify the incidence and density of Metschnikowia reukaufii, a cosmopolitan NIY in floral nectar, a combination of yeast cultivation and microscopic cell‐counting method was used. To examine the effects of NIY on plant–pollinator interactions, we used real flowers filled with artificial nectar with or without yeast cells. Then the volatile metabolites produced in the yeast‐inoculated nectar were analysed with coupled gas chromatography and mass spectrometry (GC‐MS).
  • On average 79.3% of the C. akebioides flowers harboured M. reukaufii, and cell density of NIY was high to 7.4 × 104 cells mm?3. In the field population, the presence of NIY in flowers of C. akebioides increased bumblebee (Bombus friseanus) pollinator visitation rate and consequently seed set per flower. A variety of fatty acid derivatives produced by M. reukaufii may be responsible for the above beneficial interactions.
  • The volatiles produced by the metabolism of M. reukaufii may serve as an honest signal to attract bumblebee pollinators and indirectly promote the female reproductive fitness of C. akebioides, forming a potentially tripartite plant–microbe–pollinator mutualism.
  相似文献   

13.
Frost is an important episodic event that damages plant tissues through the formation of ice crystals at or below freezing temperatures. In montane regions, where climate change is expected to cause earlier snow melt but may not change the last frost‐free day of the year, plants that bud earlier might be directly impacted by frost through damage to flower buds and reproductive structures. However, the indirect effects of frost mediated through changes in plant–pollinator interactions have rarely been explored. We examined the direct and pollinator‐mediated indirect effects of frost on three wildflower species in southwestern Colorado, USA, Delphinium barbeyi (Ranunculaceae), Erigeron speciosus (Asteraceae), and Polemonium foliosissimum (Polemoniaceae), by simulating moderate (?1 to ?5°C) frost events in early spring in plants in situ. Subsequently, we measured plant growth, and upon flowering measured flower morphology and phenology. Throughout the flowering season, we monitored pollinator visitation and collected seeds to measure plant reproduction. We found that frost had species‐specific direct and indirect effects. Frost had direct effects on two of the three species. Frost significantly reduced flower size, total flowers produced, and seed production of Erigeron. Furthermore, frost reduced aboveground plant survival and seed production for Polemonium. However, we found no direct effects of frost on Delphinium. When we considered the indirect impacts of frost mediated through changes in pollinator visitation, one species, Erigeron, incurred indirect, negative effects of frost on plant reproduction through changes in floral traits and pollinator visitation, along with direct effects. Overall, we found that flowering plants exhibited species‐specific direct and pollinator‐mediated indirect responses to frost, thus suggesting that frost may play an important role in affecting plant communities under climate change.  相似文献   

14.
Plant mating systems are driven by several pre‐pollination factors, including pollinator availability, mate availability and reproductive traits. We investigated the relative contributions of these factors to pollination and to realized outcrossing rates in the patchily distributed mass‐flowering shrub Rhododendron ferrugineum. We jointly monitored pollen limitation (comparing seed set from intact and pollen‐supplemented flowers), reproductive traits (herkogamy, flower size and autofertility) and mating patterns (progeny array analysis) in 28 natural patches varying in the level of pollinator availability (flower visitation rates) and of mate availability (patch floral display estimated as the total number of inflorescences per patch). Our results showed that patch floral display was the strongest determinant of pollination and of the realized outcrossing rates in this mass‐flowering species. We found an increase in pollen limitation and in outcrossing rates with increasing patch floral display. Reproductive traits were not significantly related to patch floral display, while autofertility was negatively correlated to outcrossing rates. These findings suggest that mate limitation, arising from high flower visitation rates in small plant patches, resulted in low pollen limitation and high selfing rates, while pollinator limitation, arising from low flower visitation rates in large plant patches, resulted in higher pollen limitation and outcrossing rates. Pollinator‐mediated selfing and geitonogamy likely alleviates pollen limitation in the case of reduced mate availability, while reduced pollinator availability (intraspecific competition for pollinator services) may result in the maintenance of high outcrossing rates despite reduced seed production.  相似文献   

15.
Failures in the process of pollen transfer among conspecific plants can severely impact female reproductive success. Thus, pollen limitation can cause selection on plant mating systems and floral traits. The relationships between pollen limitation and floral traits might be partly mediated by the quantity and identity of pollinator visits. However, very little is known about the relationship between pollinator visits and pollen limitation. We examined the relationships between pollen limitation and floral traits at the community level to connect them to community ecology processes. We used 48 plant species from two contrasting communities: one species‐rich lowland community and one species‐poor alpine community. In addition, we calculated visitation rates and ecological pollination generalization for 38 of the species to examine the relationship between pollinator visitation and pollen limitation at the community level. We found low overall levels of pollen limitation that did not differ significantly between the alpine and the lowland community. In both communities, species with evolutionary specialized flowers were more pollen limited than species with unspecialized flowers. Species’ visitation rates and selfing capability were negatively related to pollen limitation in the alpine community, where pollinators are scarcer. However, flower size/number, ecological generalization of plants and flowering onset had greater effects on pollen limitation levels at the lowland community, indicating that the identity of the visitors and plant‐plant competitive interactions are more decisive for plant reproduction in this species‐rich community. There, pollen limitation increased with flower size and flowering onset, and decreased with ecological generalization, but only in species with evolutionary specialized flowers. Our study suggests that selection on plant mating system and floral traits may be idiosyncratic to each particular community and highlights the benefits of conducting community‐level studies for a better understanding of the processes underlying evolutionary responses to pollen limitation.  相似文献   

16.
Aims The calyx, the outermost whorl of a flower (usually green), has been considered to function to protect flowers. In some species, however, calyces are colorful and retained during seed development. Limonium species have been exploited as cut flower crops because the calyces persist for several months after the corolla has closed. To explore the adaptive significance of the persistent calyx in a desert plant Limonium leptolobum, we ask whether persistence of calyces can enhance pollinator attraction by enlarging floral displays, increasing reproductive success in this self-incompatible species.Methods The yellow flower of L. leptolobum lasted 1–2 days but its white, membranous calyx extended fully after the corolla closed, and persisted for over 2 months in the field, making hundreds of 'showy flowers' on one individual. To examine the ecological function of calyces, we test the pollinator attraction hypothesis. In an experimental population, we compared the difference in visit frequency and visitor behavior between intact inflorescences and inflorescences with their calyces removed on the same individual plants.Important findings In four experimental plots four types of floral visitors were observed including bees, butterflies, syrphid flies and day-flying moths. No significant preference was observed between calyx-free and intact inflorescences for both first arrivals and total visit frequency of all types of floral visitors, indicating that the persistence of calyces did not make plants more attractive to potential pollinators. The pollinator attraction hypothesis for the showy calyces was not supported by the current data. Whether the calyx in this desert plant helps seed development or has other functions needs further study.  相似文献   

17.
Climate change can cause changes in expression of organismal traits that influence fitness. In flowering plants, floral traits can respond to drought, and that phenotypic plasticity has the potential to affect pollination and plant reproductive success. Global climate change is leading to earlier snow melt in snow-dominated ecosystems as well as affecting precipitation during the growing season, but the effects of snow melt timing on floral morphology and rewards remain unknown. We conducted crossed manipulations of spring snow melt timing (early vs. control) and summer monsoon precipitation (addition, control, and reduction) that mimicked recent natural variation, and examined plastic responses in floral traits of Ipomopsis aggregata over 3 years in the Rocky Mountains. We tested whether increased summer precipitation compensated for earlier snow melt, and if plasticity was associated with changes in soil moisture and/or leaf gas exchange. Lower summer precipitation decreased corolla length, style length, corolla width, sepal width, and nectar production, and increased nectar concentration. Earlier snow melt (taking into account natural and experimental variation) had the same effects on those traits and decreased inflorescence height. The effect of reduced summer precipitation was stronger in earlier snow melt years for corolla length and sepal width. Trait reductions were explained by drier soil during the flowering period, but this effect was only partially explained by how drier soils affected plant water stress, as measured by leaf gas exchange. We predicted the effects of plastic trait changes on pollinator visitation rates, pollination success, and seed production using prior studies on I. aggregata. The largest predicted effect of drier soil on relative fitness components via plasticity was a decrease in male fitness caused by reduced pollinator rewards (nectar production). Early snow melt and reduced precipitation are strong drivers of phenotypic plasticity, and both should be considered when predicting effects of climate change on plant traits in snow-dominated ecosystems.  相似文献   

18.
The rate of pollen exchange within and among flowers may depend on pollinator attraction traits such as floral display size and flowering plant density. Variations in these traits may influence pollinator movements, pollen receipt, and seed number. To assess how floral display size and flowering plant density affect parameters of pollinator visitation rate, pollen receipt per flower, seed number per fruit and the between-plant pollinator movements, we studied the self-incompatible plant, Nierembergia linariifolia. Per-flower pollinator visitation rate and bout length increased linearly with increasing floral display size. Pollen receipt per flower increased linearly with increasing flowering plant density. For seed number per fruit, a polynomial model describing an increased seed number per fruit at low density and a decreased seed number per fruit at high density provided a significant fit. Per-flower pollinator visitation rate was not associated with pollen receipt per flower and seed number per fruit. Bees visited plants located near to the center of the population more frequently than plants located at the periphery. Increases in both floral display size and flowering plant density led to an increased chance of a plant being chosen as the center of the pollinator foraging area. These results suggest that even though large floral displays and high flowering plant density are traits that attract more pollinators, they may also reduce potential mate diversity by restricting pollen movement to conspecific mates that are closely located.  相似文献   

19.
There is discussion over whether pollen limitation exerts selection on floral traits to increase floral display or selects for traits that promote autonomous self‐fertilization. Some studies have indicated that pollen limitation does not mediate selection on traits associated with either pollinator attraction or self‐fertilization. Primula tibetica is an inconspicuous cross‐fertilized plant that may suffer from pollen limitation. We conducted a selection analysis on P. tibetica to investigate whether pollen limitation results in selection for an increased floral display in case the evolution of autonomous self‐fertilization has been difficult for this plant. The self‐ and intra‐morph incompatibility features, the capacity for autonomous self‐fertilization, and the magnitude of pollen limitation were examined through hand‐pollination experiments. In 2016, we applied selection analysis on the flowering time, corolla width, stalk height, flower tube length, and flower number in P. tibetica by tagging 76 open‐pollinated plants and 37 hand‐pollinated plants in the field. Our results demonstrated that P. tibetica was strictly self‐ and intra‐morph incompatible. Moreover, the study population underwent severe pollen limitation during the 2016 flowering season. The selection gradients were found to be significantly positive for flowering time, flower number, and corolla width, and marginally significant for the stalk height. Pollinator‐mediated selection was found to be significant on the flower number and corolla width, and marginally significant on stalk height. Our results indicate that the increased floral display may be a vital strategy for small distylous species that have faced difficulty in evolving autonomous self‐fertilization.  相似文献   

20.
The generalization–specialization continuum exhibited in pollination interactions currently receives much attention. It is well-known that the pollinator assemblage of particular species varies temporally and spatially, and therefore the ecological generalization on pollinators may be a contextual attribute. However, the factors causing such variation and its ecological and evolutionary consequences are still poorly understood. This variation can be caused by spatial or temporal variation in the pollinator community, but also by variation in the plant community. Here, we examined how the floral neighbourhood influenced the generalization on pollinators and the composition of pollinators of six plant species differing in generalization levels and main pollinators. The diversity, identity and density of floral species affected both the level of generalization on pollinators and the composition of visitors of particular plant species. Although the relationships to floral neighbourhood varied considerably among species, generalization level and visitation by uncommon pollinators generally increased with floral diversity and richness. The generalization level of the neighbourhood was negatively related to the generalization level of the focal species in two species. The number of flowers of the pollinator-sharing species and the number of flowers of the focal species had different effects on the composition of visits in different species; attributable to differences in facilitation/competition for pollinator attraction. We propose that an important ecological implication of our results is that variation in species interactions caused by the pollination context may result in increased community stability. The main evolutionary implication of our results is that selection on flower and pollinator traits may depend, to an unknown extent, on the composition of the co-flowering plant community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号