共查询到20条相似文献,搜索用时 15 毫秒
1.
以中国科学院新疆巴音布鲁克草原生态站为依托,于2010年5月—2011年10月利用静态箱-气相色谱法对短期禁牧(2005年围封)、长期禁牧(1984年围封)和自由放牧(冬季放牧)3种草地的CO2、CH4、N2O气体通量进行了野外连续试验研究。结果表明:新疆天山高寒草原对CO2,CH4和N2O通量表现出明显的季节排放特点。在植物的生长季(5—10月),新疆天山高寒短期禁牧、长期禁牧和自由放牧草原的CO2通量平均值分别为:(89.8±49.3)、(52.8±28.7)、(57.0±30.7)mg·m-2·h-1,CH4通量平均值分别为:(-66.3±21.3)、(-104.5±32.8)、(-103.0±39.0)μg·m-2·h-1,N2O通量平均值分别为:(21.2±11.8)、(13.6±6.9)、(13.2±6.2)μg·m-2·h-1;短期禁牧草原与长期禁牧和自由放牧草原CH4平均通量具有显著性差异(P0.05),但CO2和N2O差异不显著(P0.05)。在植物的非生长季(11月—翌年4月),新疆天山高寒短期禁牧、长期禁牧以及自由放牧草原的3种温室气体的通量较低且差异均不显著。 相似文献
2.
Anu Liikanen Eeva Ratilainen Sanna Saarnio Jukka Alm Pertti J. Martikainen Jouko Silvola 《Freshwater Biology》2003,48(3):500-511
SUMMARY 1. The effects of increasing CO2 and nitrogen loading and of a change in water table and temperature on littoral CH4, N2O and CO2 fluxes were studied in a glasshouse experiment with intact sediment cores including vegetation (mainly sedges), taken from a boreal eutrophic lake in Finland. Sediments with the water table held at a level of 0 or at ?15 cm were incubated in an atmosphere of 360 or 720 p.p.m. CO2 for 18 weeks. The experiment included fertilisation with NO3– and NH4+ (to a total 3 g N m?2). 2. Changes in the water table and temperature strongly regulated sediment CH4 and cCO2 fluxes (community CO2 release), but did not affect N2O emissions. Increase in the water table increased CH4 emissions but reduced cCO2 release, while increase in temperature increased emissions of both CO2 and CH4. 3. The raised CO2 increased carbon turnover in the sediments, such that cCO2 release was increased by 16–26%. However, CH4 fluxes were not significantly affected by raised CO2, although CH4 production potential (at 22 °C) of the sediments incubated at high CO2 was increased. In the boreal region, littoral CH4 production is more likely to be limited by temperature than by the availability of carbon. Raised CO2 did not affect N2O production by denitrification, indicating that this process was not carbon limited. 4. A low availability of NO3– did severely limit N2O production. The NO3– addition caused up to a 100‐fold increase in the fluxes of N2O. The NH4+ addition did not increase N2O fluxes, indicating low nitrification capacity in the sediments. 相似文献
3.
采用土柱室内模拟的方法,通过添加0%、0.5%、2%、4%、6%、8%生物黑炭于土壤中,测定土壤CO2、CH4、N2O排放通量,探讨生物黑炭对旱地土壤CO2、CH4、N2O排放及其环境效益的影响。结果表明:室内模拟土柱培养期内,施用生物黑炭能显著增加CO2排放,且生物黑炭添加百分数(x)与CO2累积排放量(y)之间满足线性方程:y=12.591x+235.02(R2=0.834,n=24);当生物黑炭添加量达到2%及以上时,基本抑制了CH4的排放和显著减少土壤N2O排放,并显著减少CH4和N2O的综合温室效应,当其达到4%以上时,CH4和N2O的综合温室效应降幅更大并趋于稳定,但施用少量生物黑炭(0.5%)可显著促进N2O排放,对减少CH4和N2O综合温室效应并无明显效果。生物黑炭表观分解率随其添加量的增加逐渐减少,生物黑炭添加比例越高,积累于土壤中的碳越多,从投入生物黑炭量与固碳量和减排比角度综合考虑,农业生产中推荐生物黑炭施用量为20 t/hm2,其固碳减排效果俱佳。 相似文献
4.
Natural wetlands are critically important to global change because of their role in modulating atmospheric concentrations of CO2, CH4, and N2O. One 4‐year continuous observation was conducted to examine the exchanges of CH4 and N2O between three wetland ecosystems and the atmosphere as well as the ecosystem respiration in the Sanjiang Plain in Northeastern China. From 2002 to 2005, the mean annual budgets of CH4 and N2O, and ecosystem respiration were 39.40 ± 6.99 g C m?2 yr?1, 0.124 ± 0.05 g N m?2 yr?1, and 513.55 ± 8.58 g C m?2 yr?1 for permanently inundated wetland; 4.36 ± 1.79 g C m?2 yr?1, 0.11 ± 0.12 g N m?2 yr?1, and 880.50 ± 71.72 g C m?2 yr?1 for seasonally inundated wetland; and 0.21 ± 0.1 g C m?2 yr?1, 0.28 ± 0.11 g N m?2 yr?1, and 1212.83 ± 191.98 g C m?2 yr?1 for shrub swamp. The substantial interannual variation of gas fluxes was due to the significant climatic variability which underscores the importance of long‐term continuous observations. The apparent seasonal pattern of gas emissions associated with a significant relationship of gas fluxes to air temperature implied the potential effect of global warming on greenhouse gas emissions from natural wetlands. The budgets of CH4 and N2O fluxes and ecosystem respiration were highly variable among three wetland types, which suggest the uncertainties in previous studies in which all kinds of natural wetlands were treated as one or two functional types. New classification of global natural wetlands in more detailed level is highly expected. 相似文献
5.
Pengfei Dang;Miaomiao Zhang;Xinli Chen;Michel Loreau;J. Emmett Duffy;Xin'e Li;Shuyue Wen;Xiaoqing Han;Lechen Liao;Tiantian Huang;Chenxi Wan;Xiaoliang Qin;Kadambot H. M. Siddique;Bernhard Schmid; 《Ecology letters》2024,27(7):e14469
The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE—a critical but previously unexamined aspect of biodiversity–ecosystem functioning. 相似文献
6.
7.
Change in fluxes of carbon dioxide,methane and nitrous oxide due to forest drainage of mire sites of different trophy 总被引:6,自引:0,他引:6
Northern peatlands accumulate atmospheric CO2 thus counteracting climate warming. However, CH4 which is more efficient as a greenhouse gas than CO2, is produced in the anaerobic decomposition processes in peat. When peatlands are taken for forestry their water table is lowered by ditching. We studied long-term effects of lowered water table on the development of vegetation and the annual emissions of CO2, CH4 and N2O in an ombrotrophic bog and in a minerotrophic fen in Finland. Reclamation of the peat sites for forestry had changed the composition and coverage of the field and ground layer species, and increased highly the growth of tree stand at the drained fen. In general, drainage increased the annual CO2 emissions but the emissions were also affected by the natural fluctuations of water table. In contrast to CO2, drainage had decreased the emissions of CH4, the drained fen even consumed atmospheric CH4. CO2 and CH4 emissions were higher in the virgin fen than in the virgin bog. There were no N2O emissions from neither type of virgin sites. Drainage had, however, highly increased the N2O emissions from the fen. The results suggest that post-drainage changes in gas fluxes depend on the trophy of the original mires. 相似文献
8.
Methane and nitrous oxide exchange in differently fertilised grassland in southern Germany 总被引:4,自引:0,他引:4
We examined the effect of fertilisation (200 kg cattle slurry-N ha–1 year–1) on the exchange of N2O and CH4 in the soil–plant system of meadow agroecosystems in southern Germany. From 1996 to 1998, we regularly determined the gas fluxes (closed chamber method) and associated environmental parameters. N2O and CH4 fluxes were not significantly affected by fertilisation. N2O fluxes at the unfertilised and fertilised plots were small, generally between 50 and –20 g N m–2 h–1. We identified some incidents of N2O uptake. CH4-C fluxes ranged from 1.3 to –0.2 mg m–2 h–1 and were not significantly different from 0 at both plots. We budgeted an annual net emission of 15.5 and 29.6 mg m–2 N2O-N and an annual CH4-C net emission of 184.2 and 122.7 mg m–2 at the unfertilised and fertilised plots, respectively. Apparently, rapid N mineralization and uptake in the densely rooted topsoil prevents N losses and the inhibition of CH4 oxidation. 相似文献
9.
After drainage of natural boreal peatlands, the decomposition of organic matter increases and peat soil may turn into a net source of CO2 and N2O, whereas CH4 emission is known to decrease. Afforestation is a potential mitigation strategy to reduce greenhouse gas emission from organic agricultural soils. A static chamber technique was used to evaluate the fluxes of CH4, N2O and CO2 from three boreal organic agricultural soils in western Finland, afforested 1, 6 or 23 years before this study. The mean emissions of CH4 and N2O during the growing seasons did not correlate with the age of the tree stand. All sites were sources of N2O. The highest daily N2O emission during the growing season, measured in the oldest site, was as high as 29 mg N2O m–2d–1. In general, organic agricultural soils are sinks for methane. Here, the oldest site acted as a small sink for methane, whereas the two youngest afforested organic soils were sources for methane with maximum emission rates (up to 154 mg m–2d–1) similar to those reported for minerogenous natural peatlands. Soil respiration rates decreased with the age of the forest. The high soil respiration in the younger sites, probably resulted from the high biomass production of herbs, could create soil anaerobiosis and increase methane production. Our results show that afforestation of agricultural peat soils does not abruptly terminate the N2O emissions during the first two decades, and afforestation can even enhance methane emission for a few years. The carbon accumulation in the developing tree stand can partly compensate the carbon loss from soil. 相似文献
10.
Jukka Alm Sanna Saarnio Hannu Nykänen Jouko Silvola Pertti J. Martikainen 《Biogeochemistry》1999,44(2):163-186
CO2 and CH4 fluxes during the winter were measured at natural and drained bog and fen sites in eastern Finland using both the closed chamber method and calculations of gas diffusion along a concentration gradient through the snowpack. The snow diffusion results were compared with those obtained by chamber, but the winter flux estimates were derived from chamber data only. CH4 emissions from a poor bog were lower than those from an oligotrophic fen, while both CO2 and CH4 fluxes were higher in theCarex rostrata- occupied marginal (lagg) area of the fen than in the slightly less fertile centre. Average estimated winter CO2-C losses from virgin and drained forested peatlands were 41 and 68 g CO2-C m–2, respectively, accounting for 23 and 21% of the annual total CO2 release from the peat. The mean release of CH4-C was 1.0 g in natural bogs and 3.4 g m–2 in fens, giving rise to winter emissions averaging to 22% of the annual emission from the bogs and 10% of that from the fens. These wintertime carbon gas losses in Finnish natural peatlands were even greater than reported average long-term annual C accumulation values (less than 25g C m–2). The narrow range of 10–30% of the proportion of winter CO2 and CH4 emissions from annual emissions found in Finnish peatlands suggest that a wider generalization in the boreal zone is possible. Drained forested bogs emitted 0.3 g CH4-C m–2 on the average, while the effectively drained fens consumed an average of 0.01 g CH4-C m–2. Reason for the low CH4. efflux or net oxidation in drained peatlands probably lies in low substrate supply and thus low CH4 production in the anoxic deep peat layers. N2O release from a fertilized grassland site in November–May was 0.7 g N2O m–2, accounting for 38% of the total annual emission, while a forested bog released none and two efficiently drained forested fens 0.09 (28% of annual release) and 0.04 g N2O m–2 (27%) during the winter, respectively. 相似文献
11.
Arctic soils store large amounts of labile soil organic matter (SOM) and several studies have suggested that SOM characteristics may explain variations in SOM cycling rates across Arctic landscapes and Arctic ecosystems. The objective of this study was to investigate the influence of routinely measured soil properties and SOM characteristics on soil gross N mineralization and soil GHG emissions at the landscape scale. This study was carried out in three Canadian Arctic ecosystems: Sub‐Arctic (Churchill, MB), Low‐Arctic (Daring Lake, NWT), and High‐Arctic (Truelove Lowlands, NU). The landscapes were divided into five landform units: (1) upper slope, (2) back slope, (3) lower slope, (4) hummock, and (5) interhummock, which represented a great diversity of Static and Turbic Cryosolic soils including Brunisolic, Gleysolic, and Organic subgroups. Soil gross N mineralization was measured using the 15N dilution technique, whereas soil GHG emissions (N2O, CH4, and CO2) were measured using a multicomponent Fourier transform infrared gas analyzer. Soil organic matter characteristics were determined by (1) water‐extractable organic matter, (2) density fractionation of SOM, and (3) solid‐state CPMAS 13C nuclear magnetic resonance (NMR) spectroscopy. Results showed that gross N mineralization, N2O, and CO2 emissions were affected by SOM quantity and SOM characteristics. Soil moisture, soil organic carbon (SOC), light fraction (LF) of SOM, and O‐Alkyl‐C to Aromatic‐C ratio positively influenced gross N mineralization, N2O and CO2 emissions, whereas the relative proportion of Aromatic‐C negatively influenced those N and C cycling processes. Relationships between SOM characteristics and CH4 emissions were not significant throughout all Arctic ecosystems. Furthermore, results showed that lower slope and interhummock areas store relatively more labile C than upper and back slope locations. These results are particularly important because they can be used to produce better models that evaluate SOM stocks and dynamics under several climate scenarios and across Arctic landscapes and ecosystems. 相似文献
12.
Exchange of CO2, CH4 and N2O between the atmosphere and two northern boreal ponds with catchments dominated by peatlands or forests 总被引:1,自引:0,他引:1
Huttunen Jari T. Väisänen Tero S. Heikkinen Mirja Hellsten Seppo Nykänen Hannu Nenonen Olli Martikainen Pertti J. 《Plant and Soil》2002,242(1):137-146
Concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in the water column and their exchange at the water/air interface were studied during the open water period in two freshwater ponds with different catchment characteristics in the northern boreal zone in Finland; either peatlands or coniferous upland forests dominated the catchment of the ponds. Both ponds were supersaturated with dissolved CO2 and CH4 with respect to the equilibrium with the atmosphere, but were close to the equilibrium with N2O. The mean CO2 efflux from the pond was higher in the peatland-dominated catchment (22 mg m–2 h–1) than in the forested catchment (0.7 mg m–2 h–1), whereas the mean CH4 emissions were similar (7.6 and 3.5 mg m–2 d–1, respectively). The fluxes of N2O were generally negligible. The higher CO2 concentrations and efflux in the pond with the peatland-dominated catchment were attributed to a greater input of allochthonous carbon to that pond from its catchment due to its higher water colour and higher total organic carbon (TOC) concentration. The water pH, which also differed between the ponds, could additionally affect the CO2 dynamics. Since the catchment characteristics can regulate aquatic carbon cycles, catchment-scale studies are needed to attain a deeper understanding of the aquatic greenhouse gas dynamics. 相似文献
13.
The influence of forest stand age in a Picea sitchensis plantation on (1) soil fluxes of three greenhouse gases (GHGs – CO2, CH4 and N2O) and (2) overall net ecosystem global warming potential (GWP), was investigated in a 2‐year study. The objective was to isolate the effect of forest stand age on soil edaphic characteristics (temperature, water table and volumetric moisture) and the consequent influence of these characteristics on the GHG fluxes. Fluxes were measured in a chronosequence in Harwood, England, with sites comprising 30‐ and 20‐year‐old second rotation forest and a site clearfelled (CF) some 18 months before measurement. Adjoining unforested grassland (UN) acted as a control. Comparisons were made between flux data, soil temperature and moisture data and, at the 30‐year‐old and CF sites, eddy covariance data for net ecosystem carbon (C) exchange (NEE). The main findings were: firstly, integrated CO2 efflux was the dominant influence on the GHG budget, contributing 93–94% of the total GHG flux across the chronosequence compared with 6–7% from CH4 and N2O combined. Secondly, there were clear links between the trends in edaphic factors as the forest matured, or after clearfelling, and the emission of GHGs. In the chronosequence sites, annual fluxes of CO2 were lower at the 20‐year‐old (20y) site than at the 30‐year‐old (30y) and CF sites, with soil temperature the dominant control. CH4 efflux was highest at the CF site, with peak flux 491±54.5 μg m−2 h−1 and maximum annual flux 18.0±1.1 kg CH4 ha−1 yr−1. No consistent uptake of CH4 was noted at any site. A linear relationship was found between log CH4 flux and the closeness of the water table to the soil surface across all sites. N2O efflux was highest in the 30y site, reaching 108±38.3 μg N2O‐N m−2 h−1 (171 μg N2O m−2 h−1) in midsummer and a maximum annual flux of 4.7±1.2 kg N2O ha−1 yr−1 in 2001. Automatic chamber data showed a positive exponential relationship between N2O flux and soil temperature at this site. The relationship between N2O emission and soil volumetric moisture indicated an optimum moisture content for N2O flux of 40–50% by volume. The relationship between C : N ratio data and integrated N2O flux was consistent with a pattern previously noted across temperate and boreal forest soils. 相似文献
14.
土壤生物多样性与微量气体(CO2、CH4、N2O)代谢 总被引:12,自引:2,他引:12
土壤生物是重要的基因库 ,土壤生物多样性是全球生物多样性的重要组成部分。土壤生物是C、N地球化学过程 (土壤库 )的驱动者 ,调控微量气体代谢。在微量气体代谢中 ,土壤微生物具有直接的作用。真菌、CH4 生成菌、CH4 氧化菌、硝化菌以及反硝化菌等是调控微量气体代谢的关键生态功能类群。由于相对大的体积和强大的酶化学分解作用 ,真菌通常主导枯枝落叶的分解活动。“通气—厌气”界面是微生物群落的活跃区域 ,易发生微量气体代谢。“有机—无机”过渡层、水生植物根际区、土壤动物肠道系统是典型的微量气体代谢界面。土壤动物对微量气体代谢的作用通常为前期的和间接的 ,并且又是重要的。节肢动物 (白蚁 )和环节动物 (蚯蚓 )是分别代谢CH4 和N2 O的两个关键性生态功能类群。在研究土壤生物多样性及其对微量气体代谢的作用方面 ,由于土壤生态系统的复杂性 ,需综合传统微生物实验技术与现代同位素技术和分子生物学技术。我国缺乏研究土壤生物多样性及其对微量气体代谢影响的实质性工作 ,有必要开展这方面的研究。 相似文献
15.
Maria Chiara Rosace Fabio Veronesi Stephen Briggs Laura M. Cardenas Simon Jeffery 《Global Change Biology Bioenergy》2020,12(6):445-457
The application of organic materials to soil can recycle nutrients and increase organic matter in agricultural lands. Digestate can be used as a nutrient source for crop production but it has also been shown to stimulate greenhouse gas (GHG) emissions from amended soils. While edaphic factors, such as soil texture and pH, have been shown to be strong determinants of soil GHG fluxes, the impact of the legacy of previous management practices is less well understood. Here we aim to investigate the impact of such legacy effects and to contrast them against soil properties to identify the key determinants of soil GHG fluxes following digestate application. Soil from an already established field experiment was used to set up a pot experiment, to evaluate N2O, CH4 and CO2 fluxes from cattle‐slurry‐digestate amended soils. The soil had been treated with farmyard manure, green manure or synthetic N‐fertilizer, 18 months before the pot experiment was set up. Following homogenization and a preincubation stage, digestate was added at a concentration of 250 kg total N/ha eq. Soil GHG fluxes were then sampled over a 64 day period. The digestate stimulated emissions of the three GHGs compared to controls. The legacy of previous soil management was found to be a key determinant of CO2 and N2O flux while edaphic variables did not have a significant effect across the range of variables included in this experiment. Conversely, edaphic variables, in particular texture, were the main determinant of CH4 flux from soil following digestate application. Results demonstrate that edaphic factors and current soil management regime alone are not effective predictors of soil GHG flux response following digestate application. Knowledge of the site management in terms of organic amendments is required to make robust predictions of the likely soil GHG flux response following digestate application to soil. 相似文献
16.
Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management 总被引:27,自引:0,他引:27
Cai Zucong Xing Guangxi Yan Xiaoyuan Xu Hua Tsuruta Haruo Yagi Kazuyuki Minami Katsuyuki 《Plant and Soil》1997,196(1):7-14
Methane and N2O emissions affected by nitrogen fertilisers were measured simultaneously in rice paddy fields under intermittent irrigation in 1994. Ammonium sulphate and urea were applied at rates of 0 (control), 100 and 300 kg N ha-1. The results showed that CH4 emission, on the average, decreased by 42 and 60% in the ammonium sulphate treatments and 7 and 14% in the urea treatments at rates of 100 and 300 kg N ha-1, respectively, compared to the control. N2O emission increased significantly with the increase in the nitrogen application rate. N2O emission was higher from ammonium sulphate treatments than from the urea treatments at the same application rate. A trade-off effect between CH4 and N2O emission was clearly observed. The N2O flux was very small when the rice paddy plots were flooded, but peaked at the beginning of the disappearance of floodwater. In contrast, the CH4 flux peaked during flooding and was significantly depressed by mid-season aeration (MSA). The results suggest that it is important to evaluate the integrative effects of water management and fertiliser application for mitigating greenhouse gas emissions in order to attenuate the greenhouse effect contributed by rice paddy fields. 相似文献
17.
Microbial processes were investigated in the soil of a declining, more eutrophic (Romberk West) and a healthy looking, less eutrophic (Romberk East) freshwater reed stand. Soil was sampled monthly from June to September 1997. Glucose induced carbon dioxide (CO2) production in oxic and anoxic conditions, methane (CH4) production, nitrification and denitrification activities were measured in laboratory conditions in suspensions prepared from homogenised soil samples. Within a stand the proportion of anaerobic (as opposed to aerobic) microbial activity was greatest in June. Potential methanogenesis was highest in June and decreased later in both stands. Methane production was approximately the same in June at both stands but it was higher at Romberk East than at Romberk West stand in later months. Denitrifying activity was higher in August than July at both stands. Nitrifying activity was undetectable at both stands over the entire study period. Generally Romberk West was more anaerobic than Romberk East, with lower redox potential, higher amounts of oxygen-consuming organic matter and a lower ratio of CO2 production in oxic conditions to CO2 production in anoxic conditions. Microbial activity was apparently restricted at Romberk West stand in comparison to Romberk East. The shift from aerobic to anaerobic microbial metabolism and a coinciding restriction of metabolic activities at Romberk West are thought to be indicative of a strengthened oxygen stress in the soil, associated with accumulation of metabolites toxic to both the microorganisms and the reed. Possible links between eutrophication, microbial characteristics and reed performance are discussed. 相似文献
18.
Yanghui He Xuhui Zhou Liling Jiang Ming Li Zhenggang Du Guiyao Zhou Junjiong Shao Xihua Wang Zhihong Xu Shahla Hosseini Bai Helen Wallace Chengyuan Xu 《Global Change Biology Bioenergy》2017,9(4):743-755
Biochar application to soils may increase carbon (C) sequestration due to the inputs of recalcitrant organic C. However, the effects of biochar application on the soil greenhouse gas (GHG) fluxes appear variable among many case studies; therefore, the efficacy of biochar as a carbon sequestration agent for climate change mitigation remains uncertain. We performed a meta‐analysis of 91 published papers with 552 paired comparisons to obtain a central tendency of three main GHG fluxes (i.e., CO2, CH4, and N2O) in response to biochar application. Our results showed that biochar application significantly increased soil CO2 fluxes by 22.14%, but decreased N2O fluxes by 30.92% and did not affect CH4 fluxes. As a consequence, biochar application may significantly contribute to an increased global warming potential (GWP) of total soil GHG fluxes due to the large stimulation of CO2 fluxes. However, soil CO2 fluxes were suppressed when biochar was added to fertilized soils, indicating that biochar application is unlikely to stimulate CO2 fluxes in the agriculture sector, in which N fertilizer inputs are common. Responses of soil GHG fluxes mainly varied with biochar feedstock source and soil texture and the pyrolysis temperature of biochar. Soil and biochar pH, biochar applied rate, and latitude also influence soil GHG fluxes, but to a more limited extent. Our findings provide a scientific basis for developing more rational strategies toward widespread adoption of biochar as a soil amendment for climate change mitigation. 相似文献
19.
森林和湿地是CO2、CH4和N2O等温室气体重要的源、汇和转换器,在全球气候变化过程中起着重要作用。森林和湿地温室气体通量受到诸多因子的作用,其中干扰便是一个重要的因素。不同干扰因素对于森林和湿地生态系统温室气体通量的影响,国际上已经开展了相应的研究。基于人为和自然两大类干扰方式,分别从采伐、施肥、垦殖等人为干扰因素和火烧、台风(飓风)等自然干扰因素综述了干扰对于森林和湿地生态系统CO2、CH4和N2O通量的影响。根据目前研究中存在的不足,提出了今后应需加强的领域,以期更好地揭示干扰对于森林和湿地生态系统温室气体通量的影响及作用机制,为今后深入开展相关研究提供一定的参考价值。 相似文献
20.
The effect of the water table on nitrous oxide (N2O) fluxes from peat profiles representing boreal peatlands of differing nutrient status was studied in the laboratory. Lowering of the water table in peat monoliths taken from two natural waterlogged peatlands for 14 weeks in a greenhouse at 20 °C increased the fluxes of N2O, an effect that was enhanced further by incubation in the dark. Raising of the water table in monoliths from two drained and forested peatlands caused cessation of the N2O fluxes from the drained peats, which had previously been sources of N2O. It is known that N2O fluxes have increased in peatlands drained several decades ago. The results suggest that it is not necessary for the water table to be lowered for several years to change a boreal peatland from a N2O sink to a source of the gas. In addition to the draining of peatlands, climate change can be expected to lower ground water levels during the summertime in the boreal zone, and this could cause marked changes in N2O fluxes from boreal peatlands by enhancing the microbial processes involved in nitrogen transformations. 相似文献