首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glyoxalase I (GLO1), a methylglyoxal detoxification enzyme, is implicated in the progression of human malignancies. The role of GLO1 in gastric cancer development or progression is currently unclear. The expression of GLO1 was determined in primary gastric cancer specimens using quantitative polymerase chain reaction, immunohistochemistry (IHC), and western blotting analyses. GLO1 expression was higher in gastric cancer tissues, compared with that in adjacent noncancerous tissues. Elevated expression of GLO1 was significantly associated with gastric wall invasion, lymph node metastasis, and pathological stage, suggesting a novel role of GLO1 in gastric cancer development and progression. The 5-year survival rate of the lower GLO1 expression groups was significantly greater than that of the higher expression groups (log rank P = 0.0373) in IHC experiments. Over-expression of GLO1 in gastric cancer cell lines increases cell proliferation, migration and invasiveness. Conversely, down-regulation of GLO1 with shRNA led to a marked reduction in the migration and invasion abilities. Our data strongly suggest that high expression of GLO1 in gastric cancer enhances the metastasis ability of tumor cells in vitro and in vivo, and support its efficacy as a potential marker for the detection and prognosis of gastric cancer.  相似文献   

3.
4.
Recently, microRNAs have emerged as regulators of cancer metastasis through acting on multiple signaling pathways involved in metastasis. In this study, we have analyzed the level of miR-10b and cell motility and invasiveness in several human esophageal squamous cell carcinoma cell lines. Our results reveal a significant correlation of miR-10b level with cell motility and invasiveness. Overexpression of miR-10b in KYSE140 cells increased cell motility and invasiveness, whereas inhibition of miR-10b in EC9706 cells reduced cell invasiveness, although it did not alter cell motility. Additionally, we identified KLF4, a known tumor suppressor gene that has been reported to suppress esophageal cancer cell migration and invasion, as a direct target of miR-10b. Furthermore, overexpression of miR-10b in KYSE140 and KYSE450 cells led to a reduction of endogenous KLF4 protein, whereas silencing of miR-10b in EC9706 cells caused up-regulation of KLF4 protein. Coexpression of miR-10b and KLF4 in KYSE140 cells and coexpression of small interfering RNA for KLF4 mRNA and miR-10b-AS in EC9706 cells partially abrogated the effect of miR-10b on cell migration and invasion. Finally, analyses of the miR-10b level in 40 human esophageal cancer samples and their paired normal adjacent tissues revealed an elevated expression of miR-10b in 95% (38 of 40) of cancer tissues, although no significant correlation of the miR-10b level with clinical metastasis status was observed in these samples.  相似文献   

5.
RhoE, a novel member of the Rho protein family, is a key regulator of the cytoskeleton and cell migration. Our group has previously shown that RhoE as a direct target for HIF-1α and mediates hypoxia-induced epithelial to mesenchymal transition in gastric cancer cells. Therefore, we assumed that RhoE might play an important role in gastric cancer metastasis. In the present study, we have explored the role of RhoE expression in gastric cancer, cell invasion and metastasis, and the influence of RhoE on regulating the potential expression of down-stream genes. RhoE expression was elevated in gastric cancer tissues as compared with normal gastric tissues. We also found a close correlation between the histological grade and the diagnosis of the patient. Up-regulation of RhoE significantly enhanced the migratory and invasive abilities of gastric cancer cells both in vitro and in vivo. Moreover, down-regulation of RhoE diminished the metastatic potential of cancer cells. PCR array and subsequent transwell assay showed that the regulation of gastric cancer metastasis by RhoE was partially mediated by CXCR4. This observation suggested that CXCR4 might be a downstream effector for RhoE. In summary, our study identified RhoE as a novel prognostic biomarker and metastatic-promoting gene of gastric cancer.  相似文献   

6.
Curcumin, a natural and crystalline compound isolated from the plant Curcuma longa with low toxicity in normal cells, has been shown to protect against carcinogenesis and prevent tumor development. However, little is known about antimetastasis effects and mechanism of curcumin in lung cancer. Rac1 is an important small Rho GTPases family protein and has been widely implicated in cytoskeleton rearrangements and cancer cell migration, invasion and metastasis. In this study, we examined the influence of curcumin on in vitro invasiveness of human lung cancer cells and the expressions of Rac1. The results indicate that curcumin at 10 μM slightly reduced the proliferation of 801D lung cancer cells but showed an obvious inhibitory effect on epidermal growth factor or transforming growth factor β1-induced lung cancer cell migration and invasion. Meanwhile, we demonstrated that the suppression of invasiveness correlated with inhibition of Rac1/PAK1 signaling pathways and matrix metalloproteinase (MMP) 2 and 9 protein expression by combining curcumin treatment with the methods of Rac1 gene silence and overexpression in lung cancer cells. Laser confocal microscope also showed that Rac1-regulated actin cytoskeleton rearrangement may be involved in anti-invasion effect of curcumin on lung cancer cell. At last, through xenograft experiments, we confirmed the connection between Rac1 and the growth and metastasis inhibitory effect of curcumin in vivo. In summary, these data demonstrated that low-toxic levels of curcumin could efficiently inhibit migration and invasion of lung cancer cells through inhibition of Rac1/PAK1 signaling pathway and MMP-2 and MMP-9 expression, which provided a novel insight into the molecular mechanism of curcumin against lung cancer.  相似文献   

7.
This study was performed to analyze the expression of four and a half LIM domains 1 (FHL1) in gastric carcinoma tissue and its correlation with the clinicopathological characteristics of gastric cancer. In addition, the role of FHL1 in the invasion and metastasis of gastric cancer cells was investigated to provide an experimental basis for future treatments of gastric cancer. FHL1 mRNA and protein expression in gastric carcinoma and the adjacent normal gastric mucosa tissue were determined using RT-PCR and western blots. Correlations of FHL1 expression with the incidence, progression, and clinicopathological characteristics of gastric cancer were analyzed. Changes in the invasion and metastatic potential of MKN45 human gastric cancer cells were observed after the transient transfection with an eukaryotic expression vector containing full-length FHL1. Expression of FHL1 mRNA in gastric carcinoma tissue was significantly lower than that in the adjacent normal tissue (P < 0.05). FHL1 expression in gastric carcinoma tissue from patients who were positive for lymph node metastasis was significantly lower than those in patients who were negative for lymph node metastasis (P < 0.05). Lower FHL1 expression was correlated with lower degrees of differentiation, higher TNM stages, and greater invasive potential of the gastric cancer (P < 0.05). The FHL1 mRNA and protein expression patterns were similar in gastric cancer. FHL1 protein expression in gastric carcinoma tissue was significantly lower than that in the surrounding normal tissue (P < 0.05). FHL1 protein expression was significantly lower in gastric carcinoma tissue from patients who were positive for lymph node metastasis than that detected in patients with no lymph node metastasis (P < 0.05). Lower FHL1 protein expression was correlated with lower degrees of differentiation, higher TNM stages, and greater invasive potential in gastric cancer (P < 0.05). However, the expression of FHL1 was independent of the patient's gender, age, and tumor size (P > 0.05). Overexpression of FHL1 in the MKN45 human gastric cancer cell line using an eukaryotic expression vector resulted in a significant reduction in the invasiveness and metastatic ability of these cells as determined using the Transwell chamber invasion assay (P < 0.05). The decrease in or loss of FHL1 expression may be related to the incidence, progression, invasiveness, and metastatic potential of gastric cancer.  相似文献   

8.
Helicobacter pylori, a Gram-negative, microaerophilic bacterium found in the stomach, is assumed to be associated with carcinogenesis, invasion and metastasis in digestive diseases. Cytotoxin-associated gene A (CagA) is an oncogenic protein of H. pylori that is encoded by a Cag pathogenicity island related to the development of gastric cancer. The epithelial–mesenchymal transition (EMT) is the main biological event in invasion or metastasis of epithelial cells. H. pylori may promote EMT in human gastric cancer cell lines, but the specific mechanisms are still obscure. We explored the underlying molecular mechanism of EMT induced by H. pylori CagA in gastric cancer. In our article, we detected gastric cancer specimens and adjacent non-cancerous specimens by immunohistochemistry and found increased expression of the EMT-related regulatory protein TWIST1 and the mesenchymal marker vimentin in cancer tissues, while programmed cell death factor 4 (PDCD4) and the epithelial marker E-cadherin expression decreased in cancer specimens. These changes were associated with degree of tissue malignancy. In addition, PDCD4 and TWIST1 levels were related. In gastric cancer cells cocultured with CagA expression plasmid, CagA activated TWIST1 and vimentin expression, and inhibited E-cadherin expression by downregulating PDCD4. CagA also promoted mobility of gastric cancer cells by regulating PDCD4. Thus, H. pylori CagA induced EMT in gastric cancer cells, which reveals a new signaling pathway of EMT in gastric cancer cell lines.  相似文献   

9.
Metastasis is a crucial impediment to the successful treatment for gastric cancer. SPOCK1 has been demonstrated to facilitate cancer metastasis in certain types of cancers; however, the role of SPOCK1 in the invasion and metastasis of gastric cancer remains elusive. SPOCK1 and epithelial‐mesenchymal transition (EMT)‐related biomarkers were detected by immunohistochemistry and Western blot in gastric cancer specimens. Other methods including stably transfected against SPOCK1 into gastric cancer cells, Western blot, migration and invasion assays in vitro and metastasis assay in vivo were also performed. The elevated expression of SPOCK1 correlates with EMT‐related markers in human gastric cancer tissue, clinical metastasis and a poor prognosis in patients with gastric cancer. In addition, knockdown of SPOCK1 expression significantly inhibits the invasion and metastasis of gastric cancer cells in vitro and in vivo, inversely, SPOCK1 overexpression results in the opposite effect. Interestingly, SPOCK1 expression has no effect on cell proliferation in vitro and in vivo. Regarding the mechanism(s) of SPOCK1‐induced cells invasion and metastasis, we prove that Slug‐induced EMT is involved in SPOCK1‐facilitating gastric cancer cells invasion and metastasis. The elevated SPOCK1 expression is closely correlated with cancer metastasis and patient survival, and SPOCK1 promotes the invasion and metastasis of gastric cancer through Slug‐mediated EMT, thereby possibly providing a novel therapeutic target for gastric cancer.  相似文献   

10.
11.
The aim of this study was to investigate the biological characteristics of the RASAL1 gene in a well-differentiated gastric cancer cell line MKN-28 and a poorly differentiated gastric cancer cell line BGC-823 cells, using RNA interference and gene transfection technology, respectively. MKN-28 cells were transfected with the shRNA of RASAL1 and BGC-823 cells were transfected with the pcDNA 3.1 plasmid vector containing RASAL1. RT-PCR and western blotting were then used to detect the expression of RASAL1 mRNA and protein. The activities of RAS and extracellular signal-regulated kinase 1/2 were analyzed by the pull-down method and western blotting. The proliferate capacity, apoptosis rate, invasive and migratory potentials of MKN-28 or BGC-823 cells were also measured by Cell Counting Kit-8 cell proliferation assay, propidium iodide/Annexin V staining coupled with flow cytometry, and transwell chamber assays, respectively. Measurement of RASAL1 mRNA and protein expression in two cells revealed successful transfection of the shRNA of RASAL1 and RASAL1-pcDNA3.1 plasmid into these two cells. Moreover, decreased expression of RASAL1 in MKN-28 cells resulted in increased expression of RAS-GTP and p-ERK1/2. Interestingly, decreased expression of RASAL1 inhibited apoptosis and facilitated cell proliferation, invasion and migration. The increased expression of RASAL1 in BGC-823 cells caused declined expression of RAS-GTP and p-ERK1/2, as well as promoted apoptosis and restrained cell proliferation, invasion and migration. The down-regulation of RASAL1 promoted the proliferation, invasion and migration of gastric cancer MKN-28 cells, and up-regulation of RASAL1 inhibited the proliferation, invasion and migration of BGC-823 gastric cancer cells by regulating the RAS/ERK signaling pathway. Thus, our results suggest that RASAL1 may play an important role as a tumor suppressor gene in gastric cancer.  相似文献   

12.
The ability of tumor cells to metastasize is associated with a poor prognosis for cancer. During the process of metastasis, tumor cells circulating in the blood or lymph vessels can adhere to, and potentially transmigrate through, the endothelium and invade the connective tissue. We studied the effectiveness of the endothelium as a barrier against the invasion of 51 tumor cell lines into a three-dimensional collagen matrix. Only nine tumor cell lines showed attenuated invasion in the presence of an endothelial cell monolayer, whereas 17 cell lines became invasive or showed a significantly increased invasion. Endothelial cells cocultured with invasive tumor cells increased chemokine gene expression of IL-8 and Gro-β. Expression of the IL-8 and Gro-β receptor, CXCR2, was upregulated in invasive tumor cells. Addition of IL-8 or Gro-β increased tumor cell invasiveness by more than twofold. Tumor cell variants selected for high CXCR2 expression were fourfold more invasive in the presence of an endothelial cell layer, whereas CXCR2 siRNA knock-down cells were fivefold less invasive. We demonstrate that Gro-β and IL-8 secreted by endothelial cells, together with CXCR2 receptor expression on invasive tumor cells, contribute to the breakdown of the endothelial barrier by enhancing tumor cell force generation and cytoskeletal remodeling dynamics.  相似文献   

13.

Purpose

The tetraspanin CD151 acts as a promoter of metastasis and invasion in several tumors. However, the role of CD151 in human gastric cancer (HGC) remains unclear.

Methods

Twenty HGC specimens and matched nontumor samples, human gastric epithelial cells (HGEC), and four gastric cancer cell lines were used to analyze CD151 expression. Short hairpin RNA-mediated downregulation of CD151 expression in HGC cells was performed to examine the role of CD151 in the proliferation and metastasis/invasion of HGC cells in vivo and in vitro. The relationship of CD151 with integrin α3 in HGC cells was investigated by silencing integrin α3 followed by co-immunoprecipitation and immunofluorescence staining. Finally, the prognostic value of CD151 and integrin α3 was evaluated by immunohistochemistry in tissue microarrays of 76 HGC patients.

Results

CD151 was expressed at higher levels in HGC tissues and HGC cells than in nontumor tissues and HGEC cells. Down-regulation of CD151 by vshRNA-CD151 impaired metastasis and invasion of HGC-27 cells, but did not affect cell proliferation. CD151 formed a complex with integrin α3 in HGC cells. CD151-cDNA transfection rescued the metastatic potential and invasiveness of HGC-27-vshCD151 cells, but not those of HGC-27-vshintegrin α3 cells in vitro. Clinically, CD151 overexpression was significantly correlated with high TNM stage, depth of invasion and positive lymph node involvement (p<0.05), and high levels of integrin α3 were associated with large tumor size, high TNM stage, depth of invasion and lymph node involvement (p<0.05). Importantly, the postoperative 5-year overall survival of patients with CD151low and/or integrin α3low was higher than that of patients with CD151high and/or integrin α3high.

Conclusion

CD151 is positively associated with the invasiveness of HGC, and CD151 or the combination of CD151 and integrin α3 is a novel marker for predicting the prognosis of HGC patients and may be potential therapeutic targets.  相似文献   

14.
15.
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies.  相似文献   

16.
MicroRNA has been recently recognized as playing a prominent role in tumorigenesis and metastasis. Here, we report that miR-338-3p was epigenetically silenced in gastric cancer, and its down-regulation was significantly correlated with gastric cancer clinicopathological features. Strikingly, restoring miR-338-3p expression in SGC-7901 gastric cancer cells inhibited proliferation, migration, invasion and tumorigenicity in vitro and in vivo, at least partly through inducing apoptosis. Furthermore, we demonstrate the oncogene SSX2IP is a target of miR-338-3p. We propose that miR-338-3p functions as a tumor suppressor in gastric cancer, and the methylation status of its CpG island could serve as a potential diagnostic marker for gastric cancer.  相似文献   

17.
18.
MiRNAs play important roles in tumorigenesis. This study focused on exploring the effects and regulation mechanism of miRNA-137 on the biological behaviors of gastric cancer. Total RNA was extracted from tissues of 100 patients with gastric cancer and from four gastric cancer cell lines. Expression of miR-137 was detected by real-time PCR from 100 patients. The effects of miR-137 overexpression on gastric cancer cells’ proliferation, apoptosis, migration and invasion ability were investigated in vitro and in vivo. The target gene of miR-137 was predicted by Targetscan on line software, screened by dual luciferase reporter gene assay and demonstrated by western blot. As a result, the expression of miR-137 was significant reduced in gastric cancer cell line HGC-27, HGC-803, SGC-7901 and MKN-45 as well as in gastric cancer tissues compared with GES-1 cell or matched adjacent non-neoplastic tissues (p<0.001). The re-introduction of miR-137 into gastric cancer cells was able to inhibit cell proliferation, migration and invasion. The in vivo experiments demonstrated that the miR-137 overexpression can reduce the gastric cancer cell proliferation and metastasis. Bioinformatic and western blot analysis indicated that the miR-137 acted as tumor suppressor roles on gastric cancer cells through targeting AKT2 and further affecting the Bad and GSK-3β. In conclusion, the miR-137 which is frequently down-regulated in gastric cancer is potentially involved in gastric cancer tumorigenesis and metastasis by regulating AKT2 related signal pathways.  相似文献   

19.
《Phytomedicine》2014,21(3):348-355
Cyclooxygenase-2 (COX-2) plays an important role in the carcinogenesis and progression of gastric cancer. Harmine is reported as a promising drug candidate for cancer therapy; however, effects and action mechanism of harmine on the human gastric cancer cells remain unclear. This study evaluated the anti-tumor effects of harmine on human gastric cancer both in vitro and in vivo. The cell proliferation was determined using MTT colorimetric assay. Apoptosis was measured by DAPI staining and flow cytometry analysis. The wound healing and transwell invasion assays were performed to evaluate the effects of harmine on the migration and invasion of gastric cancer cells. The expression of COX-2, proliferating cell nuclear antigen (PCNA), Bcl-2, Bax and matrix metalloproteinase-2 (MMP-2) was detected by Western blot analysis. Our results showed that harmine significantly inhibited cellular proliferation, migration, invasion and induced apoptosis in vitro, as well as inhibited tumor growth in vivo. In addition, harmine significantly inhibited the expression of COX-2, PCNA, Bcl-2 and MMP-2 as well as increased Bax expression in gastric cancer cells. These results collectively indicate that harmine induces apoptosis and inhibits proliferation, migration and invasion of human gastric cancer cells, which may be mediated by down-regulation of COX-2 expression.  相似文献   

20.

Background

Chromodomain helicase/ATPase DNA-binding protein 1-like gene (CHD1L), also known as ALC1 (amplified in liver cancer 1 gene), is a new oncogene amplified in many solid tumors. Whether this gene plays a role in invasion and metastasis of breast cancer is unknown.

Methods

Immunohistochemistry was performed to detect the expression of CHD1L in patients with invasive ductal carcinoma and normal mammary glands. Chemotaxis, wound healing, and Transwell invasion assays were also performed to examine cell migration and invasion. Western blot analysis was conducted to detect the expression of CHD1L, MMP-2, MMP-9, pAkt/Akt, pARK5/ARK5, and pmTOR/mTOR. Moreover, ELISA was carried out to detect the expression levels of MMP-2 and MMP-9. Nude mice xenograft model was used to detect the invasion and metastasis of breast cancer cell lines.

Results

CHD1L overexpression was observed in 112 of 268 patients (41.8%). This overexpression was associated with lymph node metastasis (P = 0.008), tumor differentiation (P = 0.020), distant metastasis (P = 0.026), MMP-2 (P = 0.035), and MMP-9 expression (P = 0.022). In the cell experiment, reduction of CHD1L inhibited the invasion and metastasis of breast cancer cells by mediating MMP-2 and MMP-9 expression. CHD1L knockdown via siRNA suppressed EGF-induced pAkt, pARK5, and pmTOR. This knockdown inhibited the metastasis of breast cancer cells into the lungs of SCID mice.

Conclusions

CHD1L promoted the invasion and metastasis of breast cancer cells via the PI3K/Akt/ARK5/mTOR/MMP signaling pathway. This study identified CHD1L as a potential anti-metastasis target for therapeutic intervention in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号