首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
2.
Choosing drought‐tolerant planting stock in reforestation programs may help adapt forests to climate change. To inform such reforestation strategies, we test lodgepole pine (Pinus contorta Doug. ex Loud. var latifolia Englm.) population response to drought and infer potential benefits of a northward transfer of seeds from drier, southern environments. The objective is addressed by combining dendroecological growth analysis with long‐term genetic field trials. Over 500 trees originating from 23 populations across western North America were destructively sampled in three experimental sites in southern British Columbia, representing a climate warming scenario. Growth after 32 years from provenances transferred southward or northward over long distances was significantly lower than growth of local populations. All populations were affected by a severe natural drought event in 2002. The provenances from the most southern locations showed the highest drought tolerance but low productivity. Local provenances were productive and drought tolerant. Provenances from the boreal north showed lower productivity and less drought tolerance on southern test sites than all other sources, implying that maladaptation to drought may prevent boreal populations from taking full advantage of more favorable growing conditions under projected climate change.  相似文献   

3.
  • Relative growth rate (RGR) plays an important role in plant adaptation to the light environment through the growth potential/survival trade‐off. RGR is a complex trait with physiological and biomass allocation components. It has been argued that herbivory may influence the evolution of plant strategies to cope with the light environment, but little is known about the relation between susceptibility to herbivores and growth‐related functional traits.
  • Here, we examined in 11 evergreen tree species from a temperate rainforest the association between growth‐related functional traits and (i) species’ shade‐tolerance, and (ii) herbivory rate in the field. We aimed at elucidating the differential linkage of shade and herbivory with RGR via growth‐related functional traits.
  • We found that RGR was associated negatively with shade‐tolerance and positively with herbivory rate. However, herbivory rate and shade‐tolerance were not significantly related. RGR was determined mainly by photosynthetic rate (Amax) and specific leaf area (SLA). Results suggest that shade tolerance and herbivore resistance do not covary with the same functional traits. Whereas shade‐tolerance was strongly related to Amax and to a lesser extent to leaf mass ratio (LMR) and dark respiration (Rd), herbivory rate was closely related to allocation traits (SLA and LMR) and slightly associated with protein content.
  • The effects of low light on RGR would be mediated by Amax, while the effects of herbivory on RGR would be mediated by SLA. Our findings suggest that shade and herbivores may differentially contribute to shape RGR of tree species through their effects on different resource‐uptake functional traits.
  相似文献   

4.
  • Steep climatic gradients boost morphological and physiological adjustments in plants, with consequences on performance. The three principal woody species of the Sierras Grandes Mountains of central Argentina have marked differences in sapling performance along their altitudinal distribution. We hypothesize that the steep gradient of climatic conditions across the species’ altitudinal distribution promotes trait differences between populations of different altitudes that are inherited by the following generation.
  • Seeds from different altitudes were exposed to three temperature regimes to assess differential germination responses. Saplings were then transplanted to a greenhouse to assess possible variations in attributes and performance after 18 months.
  • The three species showed differences in germination responses to temperature among altitudes and/or in sapling attributes and performance. In Maytenus boaria and Escallonia cordobensis, germination success was higher under high temperatures for the highest‐altitude, whereas lower temperatures boosted germination of the lowest altitudes. Polylepis australis showed no differences in germination among temperature treatments. In the greenhouse, saplings of the three species from intermediate altitudes showed high performance, whereas the upper and lower populations seemed to be adjusted to tolerating more stressful conditions (i.e., lower temperatures at the upper end and water stress at the lower end), showing lower performance toward both altitudinal limits.
  • These patterns agree with those described for saplings growing under field conditions, suggesting adjustments in response to environmental changes undergone by populations along the altitudinal range. The marked adjustments of populations to the local environment suggest a potentially high impact of climatic change on species distribution.
  相似文献   

5.
There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter‐ and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow‐release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua. Temporal variation in patch nutrient level had little effect on the species’ competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda, growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis. L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda. This flexibility gave L. styraciflua an advantage in interspecific competition.  相似文献   

6.
7.
Plants respond to changing environmental conditions, and their ability to adjust intra‐specifically to such shifts represents an ecological and evolutionary advantage. We studied seven plant traits for two common, rhizomatous granite outcrop species (the fern Cheilanthes austrotenuifolia, and the herb Stypandra glauca) with seasonal foliage during the cooler, wetter winter months at seven sites across an aridity gradient in southwestern Australia. We investigated trait patterns at regional and habitat scale, by investigating changes in trait values along the aridity gradient, and by comparing two different habitats types (sun‐exposed and sheltered). We expected plants occurring in more arid sites and highly irradiated, shallow‐soil (sun‐exposed) habitats, to exhibit traits indicative of more conservative resource acquisition, retention and use strategies. At the habitat scale, we found support for our prediction, with plants in more stressful, sun‐exposed habitats showing traits’ values associated with more conservative strategies (especially for water), such as smaller plants, denser leaves, higher foliar δ13C and C/N. However, at the regional scale many traits displayed the opposite pattern, suggesting less conservative resource acquisition in more arid sites. This evidence was particularly pronounced for specific leaf area (SLA), which exhibited a significant, positive relationship with increasing aridity. We suggest that the unexpected regional trends in foliar traits relate to shorter lived, faster growing leaves linked to highly efficient resource acquisition and use strategies during the shorter growing season in the more arid regions. These highly exploitative strategies may enable plants to avoid climate extremes, that is, hot and dry periods in the more arid sites. Our findings of contrasting foliar traits responses at different scales support the importance of multi‐scale approaches to quantify the role of intraspecific trait variability.  相似文献   

8.
Water-use strategies of Populus tremula and Tilia cordata, and the role of abscisic acid in these strategies, were analysed. P. tremula dominated in the overstorey and T. cordata in the lower layer of the tree canopy of the temperate deciduous forest canopy. Shoot water potential (), bulk-leaf abscisic acid concentration ([ABA]leaf), abscisic acid concentration in xylem sap ([ABA]xyl), and rate of stomatal closure following the supply of exogenous ABA (v) decreased acropetally through the whole tree canopy, and foliar water content per area (w), concentration of the leaf osmoticum (c), maximum leaf-specific hydraulic conductance of shoot (L), stomatal conductance (gs), and the threshold dose per leaf area of the exogenous ABA (da) required to reduce stomatal conductance increased acropetally through the tree canopy (from the base of the foliage of T. cordata to the top of the foliage of P. tremula) in non-stressed trees. The threshold dose per leaf dry mass of the exogenous ABA (dw) required to reduce stomatal conductance, was similar through the tree canopy. After a drought period (3 weeks), the , w, L, gs, da and dw had decreased, and c and v had increased in both species. Yet, the effect of the drought period was more pronounced on L, gs, da, dw and v in T. cordata, and on , w and c in P. tremula. It was concluded that the water use of the species of the lower canopy layer—T. cordata, is more conservative than that of the species of the overstorey, P. tremula. [ABA]leaf had not been significantly changed in these trees, and [ABA]xyl had increased during the drought period only in P. tremula. The relations between [ABA]leaf, [ABA]xyl and the stomatal conductance, the osmotic adjustment and the shoot hydraulic conductance are also discussed.  相似文献   

9.
10.
  • Environmental gradients, and particularly climatic variables, exert a strong influence on plant distribution and, potentially, population genetic diversity and differentiation. Differences in water availability can cause among‐population variation in ecological processes and can thus interrupt populations’ connectivity and isolate them environmentally. The present study examines the effect of environmental heterogeneity on plant populations due to environmental isolation unrelated to geographic distance.
  • Using AFLP markers, we analyzed genetic diversity and differentiation among 12 Salvia spinosa populations and 13 Salvia syriaca populations from three phytogeographical regions (Mediterranean, Irano‐Turanian and Saharo‐Arabian) representing the extent of the species’ geographic range in Jordan. Differences in geographic location and climate were considered in the analyses.
  • For both species, flowering phenology varied among populations and regions. Irano‐Turanian and Saharo‐Arabian populations had higher genetic diversity than Mediterranean populations, and genetic diversity increased significantly with increasing temperature. Genetic diversity in Salvia syriaca was affected by population size, while genetic diversity responded to drought in S. spinosa. For both species, high levels of genetic differentiation were found as well as two well‐supported phytogeographical groups of populations, with Mediterranean populations clustering in one group and the Irano‐Turanian and Saharo‐Arabian populations in another. Genetic distance was significantly correlated to environmental distance, but not to geographic distance.
  • Our data indicate that populations from moist vs. arid environments are environmentally isolated, where environmental gradients affect their flowering phenology, limit gene flow and shape their genetic structure. We conclude that environmental heterogeneity may act as driver for the observed variation in genetic diversity.
  相似文献   

11.
  • Soil fungal communities play an important role in the successful invasion of non‐native species. It is common for two or more invasive plant species to co‐occur in invaded ecosystems.
  • This study aimed to determine the effects of co‐invasion of two invasive species (Erigeron annuus and Solidago canadensis) with different cover classes on soil fungal communities using high‐throughput sequencing.
  • Invasion of E. annuus and/or Scanadensis had positive effects on the sequence number, operational taxonomic unit (OTU) richness, Shannon diversity, abundance‐based cover estimator (ACE index) and Chao1 index of soil fungal communities, but negative effects on the Simpson index. Thus, invasion of E. annuus and/or Scanadensis could increase diversity and richness of soil fungal communities but decrease dominance of some members of these communities, in part to facilitate plant further invasion, because high soil microbial diversity could increase soil functions and plant nutrient acquisition. Some soil fungal species grow well, whereas others tend to extinction after non‐native plant invasion with increasing invasion degree and presumably time. The sequence number, OTU richness, Shannon diversity, ACE index and Chao1 index of soil fungal communities were higher under co‐invasion of E. annuus and Scanadensis than under independent invasion of either individual species.
  • The co‐invasion of the two invasive species had a positive synergistic effect on diversity and abundance of soil fungal communities, partly to build a soil microenvironment to enhance competitiveness of the invaders. The changed diversity and community under co‐invasion could modify resource availability and niche differentiation within the soil fungal communities, mediated by differences in leaf litter quality and quantity, which can support different fungal/microbial species in the soil.
  相似文献   

12.
Genetic diversity may play an analogous role to species diversity, as it can contribute to ecosystem function and stability, and provision of ecosystem services. In the Baltic Sea, perennial algal beds are often comprised of only Fucus vesiculosus and the amount of genetic variation in fitness‐related traits (i.e., the ability of the alga to photosynthesize or withstand stress) will thus determine the alga's local persistence in a changing environment. To study genetic variation in the crucial traits behind persistence we grew replicate vegetative branches that came from the same genotype in common gardens. We quantified osmotic stress tolerance and recovery responses by exposing branches to desiccation, freezing, and hyposalinity regimens. Our results show that genetic variation among genotypes was apparent for some photosynthetic parameters (maximal electron transport rate, saturation irradiance for electron transport, nonphotochemical quenching) and growth. Algae tolerated freezing (1,440 min at ?2.5°C) and hyposalinity (1,560 min at 2.5) well, but did not recover from desiccation (70 min at 12°C, causing ~94% water loss). Furthermore, we found very little if any evidence on genetic variation in tolerance to these stressors. Our results suggest that low salinity and cold winters in the northern marginal populations selected for hyposalinity and freezing tolerant genotypes, possibly eroding genetic variation in tolerance, but that tolerance to harsh desiccation has been lost, likely due to relaxed selection. The overall availability of genetic variation in fitness related traits might be supportive for F. vesiculosus during adaptation to gradual changes of its environment.  相似文献   

13.
Local adaptation is a central feature of most species occupying spatially heterogeneous environments, and may factor critically in responses to environmental change. However, most efforts to model the response of species to climate change ignore intraspecific variation due to local adaptation. Here, we present a new perspective on spatial modelling of organism–environment relationships that combines genomic data and community‐level modelling to develop scenarios regarding the geographic distribution of genomic variation in response to environmental change. Rather than modelling species within communities, we use these techniques to model large numbers of loci across genomes. Using balsam poplar (Populus balsamifera) as a case study, we demonstrate how our framework can accommodate nonlinear responses of loci to environmental gradients. We identify a threshold response to temperature in the circadian clock gene GIGANTEA‐5 (GI5), suggesting that this gene has experienced strong local adaptation to temperature. We also demonstrate how these methods can map ecological adaptation from genomic data, including the identification of predicted differences in the genetic composition of populations under current and future climates. Community‐level modelling of genomic variation represents an important advance in landscape genomics and spatial modelling of biodiversity that moves beyond species‐level assessments of climate change vulnerability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号